Problem Statement BAT	A Lightn	ess Analysis Cor	mputation Analysis C	ase Study
000000 000	0000	000	oo o	0000000

Tightness and Computation Assessment of Worst-Case Delay Bounds in Wormhole Networks-On-Chip

> Frédéric Giroudot, Ahlem Mifdaoui ISAE Supaéro – Université de Toulouse

> > November 6, 2019

RTNS 2019

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study

< 日 > < 四 > < 臣 > < 臣 > < 臣 > <

Ę

200

Outline

Problem Statement

BATA

Tightness Analysis

Computation Analysis

Case Study

Problem Statement ●00000	BATA 0000	Tightness Analysis	Computation Analysis	Case Study

< ロ > < 同 > < 臣 > < 臣 > .

围

900

Outline

Problem Statement

BATA

Tightness Analysis

Computation Analysis

Case Study

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

Network-on-chip (NoC)

 Widely used and scalable interconnect for manycore platforms and SoCs

イロト イヨト イヨト ・

围

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

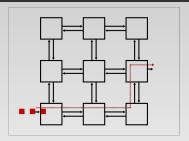
Network-on-chip (NoC)

 Widely used and scalable interconnect for manycore platforms and SoCs

토 > 토

Low latency, high throughput

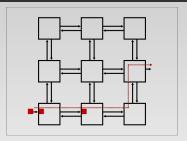
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0


Network-on-chip (NoC)

 Widely used and scalable interconnect for manycore platforms and SoCs

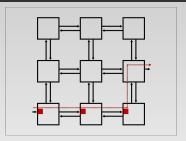
Image: A matrix and a matrix

- Low latency, high throughput
- Wormhole Routing allows small buffer sizes


Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	00000000

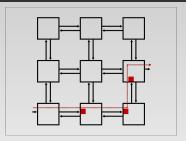
Ę

990


Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	00000000

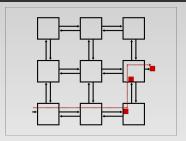
Ę

990

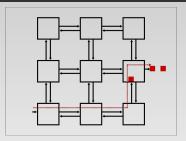

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

Ę

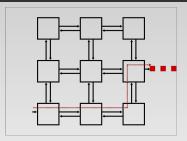
990


Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

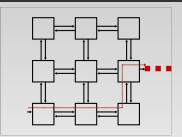
Ę


990

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0


围

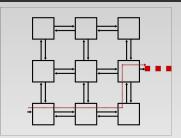
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	00000000


围

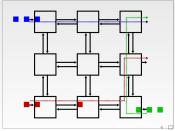
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	00000000

围

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

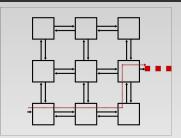


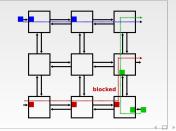
Now with congestion :


・ロト ・四ト ・日ト ・日ト

围

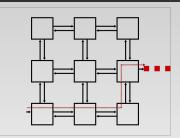
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

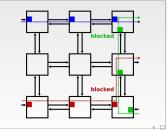

Now with congestion :


2 ▶ 2

-4

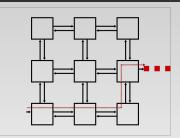
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

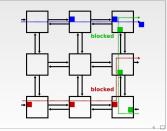

Now with congestion :


2 ▶ 2

-4

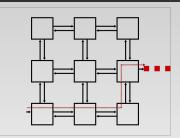
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

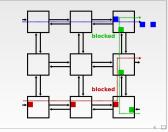

Now with congestion :


< ∃ >

E

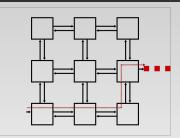
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

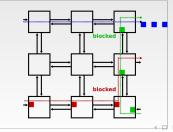

Now with congestion :


글▶ 글

4

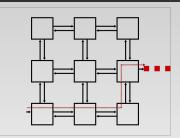
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

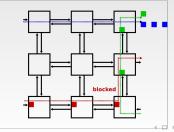

Now with congestion :


2 ▶ 2

-4

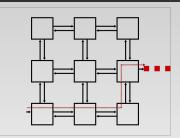
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

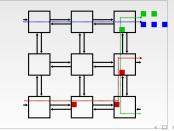

Now with congestion :


2 ▶ 2

-4

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0


Now with congestion :


2 ▶ 2

-4

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
00000	0000	0000	000	0000000 0

Now with congestion :

2 ▶ 2

-4

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000				0000000 0

Challenges of wormhole

Packets are spread in the network when congestion occurs

イロト イヨト イヨト ・

围

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000				0000000 0

Challenges of wormhole

Packets are spread in the network when congestion occurs

Image: A math a math

2 ▶ 2

Lossless transmission creates backpressure

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000				0000000 0

Challenges of wormhole

- Packets are spread in the network when congestion occurs
- Lossless transmission creates backpressure
- Flows that do not share resources may interfere (indirect blocking)

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000				

 Scheduling Theory (ST): University of York [1], HUST and KTH [2], Mälardalen University [3]

臣

< □ ▶

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000				

- Scheduling Theory (ST): University of York [1], HUST and KTH [2], Mälardalen University [3]
- Compositional Performance Analysis (CPA): TU Braunschweig [4, 5]

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000				

- Scheduling Theory (ST): University of York [1], HUST and KTH [2], Mälardalen University [3]
- Compositional Performance Analysis (CPA): TU Braunschweig [4, 5]
- ▶ Recursive Calculus (RC): ISAE [6], ENSEEIHT [7]

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000				

- Scheduling Theory (ST): University of York [1], HUST and KTH [2], Mälardalen University [3]
- Compositional Performance Analysis (CPA): TU Braunschweig [4, 5]
- Recursive Calculus (RC): ISAE [6], ENSEEIHT [7]
- Network Calculus: KTH [8, 9, 10], our approach BATA [11]

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

Approach		ç	т		CI	PA		RC				NC	
Contribution	[2]	[1]	[3]	[12]	[4]	[5]	[6]	[13]	[7]	[8]	[9]	[14]	BATA[11]
wormhole	x	х	х	х	х	х	х	х	х	x		х	x
multiple VCs	×	х	х	х		х					х	х	x
priority sharing		х	х		х	х				x	х		x
VCs sharing						х							x
flows serialization				х		х			х		х	х	x
B = 1 flit	x		х	x				х	х	x			x
$L \leq B$	×			х	х	х		х		x	х		x
$B \leq L$	×			х				х		x		х	x

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

Approach		ç	бΤ		CI	PA		RC				NC	
Contribution	[2]	[1]	[3]	[12]	[4]	[5]	[6]	[13]	[7]	[8]	[9]	[14]	BATA[11]
wormhole	x	х	х	х	x	х	x	х	х	x		х	x
multiple VCs	x	х	х	х		х					х	х	x
priority sharing		х	х		x	х				x	х		x
VCs sharing						х							x
flows serialization				х		х			х		х	х	x
B = 1 flit	x		х	x				х	х	x			x
$L \le B$	x			х	x	х		х		x	х		x
$B \le L$	x			х				х		x		х	x

< D > < D >

< 三→ 三三

We presented BATA [11] (Buffer-Aware Timing Analysis) Based on Network Calculus:

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

Approach		ç	бΤ		CI	PA		RC				NC	
Contribution	[2]	[1]	[3]	[12]	[4]	[5]	[6]	[13]	[7]	[8]	[9]	[14]	BATA[11]
wormhole	x	х	х	х	x	х	×	х	х	x		х	x
multiple VCs	x	х	х	х		х					х	х	x
priority sharing		х	х		x	х				x	х		x
VCs sharing						х							x
flows serialization				х		х			х		х	х	x
B = 1 flit	x		х	х				х	х	×			x
$L \leq B$	x			х	x	х		х		x	х		x
$B \leq L$	×			х				х		×		х	x

프 > 프

< □ ▶

We presented BATA [11] (Buffer-Aware Timing Analysis) Based on Network Calculus:

address limitations of existing approaches

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

Approach		ç	т		CI	PA		RC				NC	
Contribution	[2]	[1]	[3]	[12]	[4]	[5]	[6]	[13]	[7]	[8]	[9]	[14]	BATA[11]
wormhole	x	х	х	х	x	х	×	х	х	×		х	x
multiple VCs	x	х	х	х		х					х	х	x
priority sharing		х	х		x	х				x	х		x
VCs sharing						х							x
flows serialization				х		х			х		х	×	x
B = 1 flit	x		х	х				х	х	x			x
$L \le B$	x			х	x	х		х		x	х		x
$B \leq L$	×			х				х		x		х	x

We presented BATA [11] (Buffer-Aware Timing Analysis) Based on Network Calculus:

- address limitations of existing approaches
- provide a general and tight approach

 Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
 000000	●000	0000	000	0000000 0

< ロ > < 同 > < 臣 > < 臣 > .

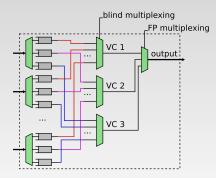
E

900

Outline

Problem Statement

BATA

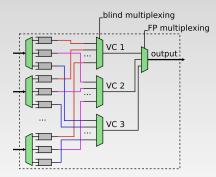

Tightness Analysis

Computation Analysis

Case Study

00000 0000 0000 000 0000 0000	Tightness Analysis Computation Analysis Case Study	alysis Case Stud	Analysis Case Stu	Computation Ar	Tightness Analysi	BATA	Problem Statement
	oooooooooooooooooooooooooooooooooooooo					0000	

System Model and Assumptions

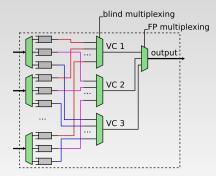

 Input-buffered routers (minor changes for output-buffered routers)

イロト イヨト イヨト イヨト

良

Problem Statement	BATA ○●○○	Tightness Analysis	Computation Analysis	Case Study

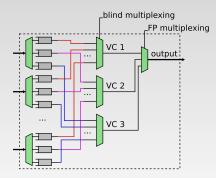
System Model and Assumptions


- Input-buffered routers (minor changes for output-buffered routers)
- Arbitrary multiplexing within a VC

4 ∰ ≥ < Ξ</p>

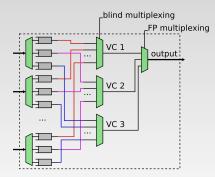
< □ ▶

문 문 문

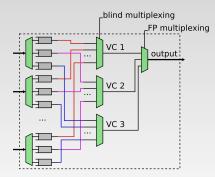

Problem Statement	BATA ○●○○	Tightness Analysis	Computation Analysis	Case Study

- Input-buffered routers (minor changes for output-buffered routers)
- Arbitrary multiplexing within a VC
- Priority-based arbitration between VCs

< □ ▶


Problem Statement	BATA ○●○○	Tightness Analysis	Computation Analysis	Case Study

- Input-buffered routers (minor changes for output-buffered routers)
- Arbitrary multiplexing within a VC
- Priority-based arbitration between VCs
- VC-sharing


< □ ▶

Problem Statement	BATA ○●○○	Tightness Analysis	Computation Analysis	Case Study

- Input-buffered routers (minor changes for output-buffered routers)
- Arbitrary multiplexing within a VC
- Priority-based arbitration between VCs
- VC-sharing
- Priority sharing

Problem Statement	BATA ○●○○	Tightness Analysis	Computation Analysis	Case Study

- Input-buffered routers (minor changes for output-buffered routers)
- Arbitrary multiplexing within a VC
- Priority-based arbitration between VCs
- VC-sharing
- Priority sharing
- Flit-level preemption

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Main idea : compute the **end-to-end service curve** for a *foi* f :

$$\beta_f(t) = R_f \left(t - T_f \right)^+$$

・ロト ・日ト ・ヨト ・ヨト

良

200

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Main idea : compute the **end-to-end service curve** for a *foi* f :

$$eta_f(t) = R_f \left(t - T_f
ight)^+$$

良

≣⊳

< □ ▶

where :

- R_f : bottleneck rate along the flow path
- \blacktriangleright T_f : service latency

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Main idea : compute the **end-to-end service curve** for a *foi f* :

$$eta_f(t) = R_f \left(t - T_f \right)^+$$

夏

where :

- R_f : bottleneck rate along the flow path
- ► T_f : service latency

$T_f = T_{DB} + T_{IB} + T_{\mathbb{P}_f}$

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Main idea : compute the **end-to-end service curve** for a *foi f* :

$$eta_f(t) = R_f \left(t - T_f
ight)^+$$

where :

- R_f : bottleneck rate along the flow path
- ► T_f : service latency

$$T_f = T_{DB} + T_{IB} + T_{\mathbb{P}_f}$$

Direct blocking latency, due to flows sharing resources with f

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Main idea : compute the **end-to-end service curve** for a *foi f* :

$$eta_f(t) = R_f \left(t - T_f
ight)^+$$

where :

- R_f : bottleneck rate along the flow path
- ► T_f : service latency

$$T_f = T_{DB} + T_{IB} + T_{\mathbb{P}_f}$$

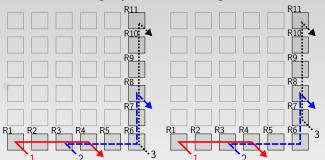
Technological latency (routers)

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

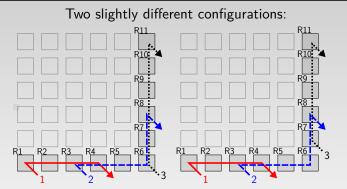
Main idea : compute the **end-to-end service curve** for a *foi f* :

$$eta_f(t) = R_f \left(t - T_f
ight)^+$$

where :

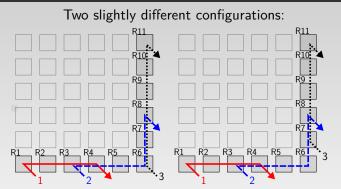

- R_f : bottleneck rate along the flow path
- ► T_f : service latency

$$T_f = T_{DB} + T_{IB} + T_{\mathbb{P}_f}$$


Indirect blocking latency, due to backpressure: takes buffer size into account

 Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

Two slightly different configurations:


000000 000 000 000 000 000 000 000 000	Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
	000000	0000	0000	000	00000000

Flow 2 shares resources with flows 1 and 3 \Rightarrow indirect blocking

< □ ▶

000000 000 0000 000 0000 00000	udy
	000

Flow 2 shares resources with flows 1 and 3 \Rightarrow indirect blocking . . . Really?

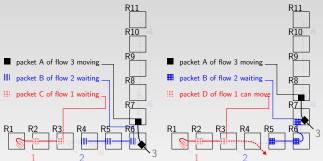
< □ ▶

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000			0000000 0

Two slightly different configurations:

Let's see how packets queue!

▲□▶ ▲圖▶ ▲園▶ ▲園▶

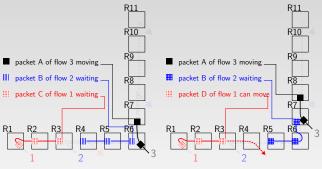

悥

200

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
	0000			

Two slightly different configurations:

Let's see how packets queue!


< □ ▶

≣⊳

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
 000000	0000	0000	000	0000000

Two slightly different configurations:

Let's see how packets queue!

Flow 3 blocks flow 1 in only one configuration!

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	● 000	000	0000000 0

▲ロト ▲圖ト ▲ 頭ト ▲ 画ト

Ę

900

Outline

Problem Statement

BATA

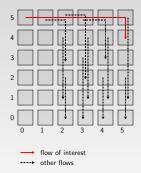
Tightness Analysis

Computation Analysis

Case Study

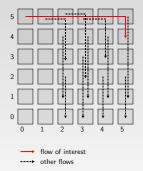
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

Problem Statement I	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

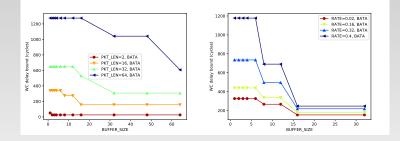

 Determine how the input parameters (buffer size, packet length and flow rate) impact the computed delay bound

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

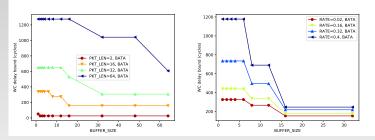
- Determine how the input parameters (buffer size, packet length and flow rate) impact the computed delay bound
- Use the insight to study tightness


Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

- Determine how the input parameters (buffer size, packet length and flow rate) impact the computed delay bound
- Use the insight to study tightness


Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

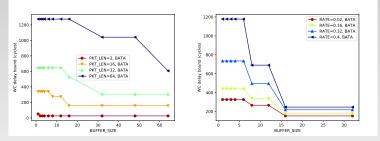
- Determine how the input parameters (buffer size, packet length and flow rate) impact the computed delay bound
- Use the insight to study tightness



We use a configuration exhibiting a lot of potential interference between flows

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

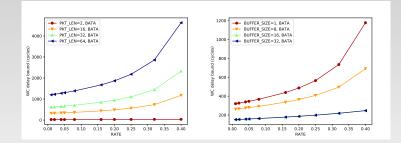

"Step decrease" of delay bounds when $B \nearrow$

◆□▶ ◆圖▶ ◆恵▶ ◆恵▶

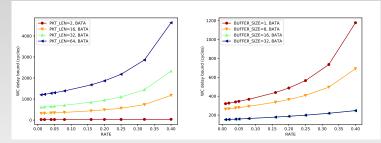
Ę

990

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000		00000000


"Step decrease" of delay bounds when $B \nearrow$ Buffer size: directly impacts spread index and complexity of IB patterns

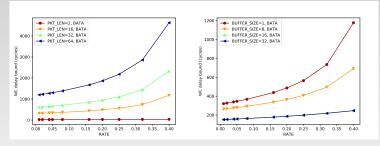
・ロト ・回ト ・ミト ・ミト


E

200

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

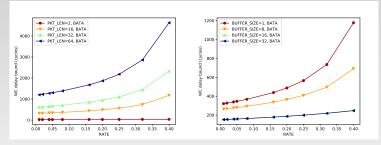

Increase of delay bounds with rate (polynomial)

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ...

悥

990

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0



Increase of delay bounds with rate (polynomial) **Rate:** terms in ρT in delay bound computation due to burst propagation

・ロト ・日ト・モン・

E

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
		0000		0000000 0

Increase of delay bounds with rate (polynomial)Rate:terms in ρT in delay bound computation due to burst
propagation

We perform the tightness analysis while varying **buffer size** and **flow rate**

<ロト <回ト < 三ト < 三ト

良

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
		0000		0000000 0

Simulate the configuration with Noxim [15] while varying the most sensitive parameters

イロト イヨト イヨト イヨト

良

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
		0000		00000000

Simulate the configuration with Noxim [15] while varying the most sensitive parameters Compute tightness ratio $\tau = \frac{\text{Simulated worst-case}}{\text{Theoretical bound}}$

< □ > < □ > < 三

良

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
		0000		00000000

Simulate the configuration with Noxim [15] while varying the most sensitive parameters Compute tightness ratio $\tau = \frac{\text{Simulated worst-case}}{\text{Theoretical bound}}$

 \rightarrow lower bound of the actual tightness!

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
		0000		00000000

Simulate the configuration with Noxim [15] while varying the most sensitive parameters

Compute tightness ratio $\tau = \frac{\text{Simulated worst-case}}{\text{Theoretical bound}}$

 \rightarrow **lower bound** of the actual tightness!

Rate	8%			32%			
Buffer	4	8	16	4	8	16	
Tightness Statistics							
Average	70.1%	72.1%	80.8%	49.7%	64.2%	79.8%	
Max	91.7%	92.0%	88.3%	95.6%	88.9%	97.3%	
Min	40.6%	38.1%	48.9%	20.8%	33.3%	43.8%	

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
		0000		00000000

Simulate the configuration with Noxim [15] while varying the most sensitive parameters

Compute tightness ratio $\tau = \frac{\text{Simulated worst-case}}{\text{Theoretical bound}}$

 \rightarrow **lower bound** of the actual tightness!

Rate	8%			32%		
Buffer	4	8	16	4	8	16
Tightness Sta	atistics					
Average	70.1%	72.1%	80.8%	49.7%	64.2%	79.8%
Max	91.7%	92.0%	88.3%	95.6%	88.9%	97.3%
Min	40.6%	38.1%	48.9%	20.8%	33.3%	43.8%

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
		0000		0000000 0

Simulate the configuration with Noxim [15] while varying the most sensitive parameters Compute tightness ratio $\tau = \frac{\text{Simulated worst-case}}{\text{Theoretical bound}}$ \rightarrow lower bound of the actual tightness! 32% 8% Rate Buffer 4 8 16 8 16 4 **Tightness Statistics** 70.1% 72.1% 80.8% 49.7% 64.2% 79.8% Average Max 91.7% 92.0% 88.3% 95.6% 88.9% 97.3% Min 40.6% 38.1% 48.9% 20.8% 33.3% 43.8% Results Average tightness up to 80%

.⊒ →

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
		0000		0000000 0

Simulate the configuration with Noxim [15] while varying the most sensitive parameters Compute tightness ratio $\tau = \frac{\text{Simulated worst-case}}{\text{Theoretical bound}}$ \rightarrow lower bound of the actual tightness! 32% 8% Rate Buffer 4 8 16 8 16 4 **Tightness Statistics** 72.1% 80.8% 49.7% 64.2% 79.8% Average 70.1% Max 91.7% 92.0% 88.3% 95.6% 88.9% 97.3% Min 40.6% 38.1% 48.9% 20.8% 33.3% 43.8% Results Average tightness up to 80%

- 4 回 ト 4 三 ト 4 三 ト

Tightness is better for large buffers and small rates

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	•00	0000000 0

▲ロト ▲圖ト ▲ 頭ト ▲ 画ト

Ę

900

Outline

Problem Statement

BATA

Tightness Analysis

Computation Analysis

Case Study

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
			000	0000000 0

◆□▶ ◆圖▶ ◆恵▶ ◆恵▶

悥

990

Computational Analysis

Goal

Determine how well the approach scales

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
			000	0000000 0

Computational Analysis

Goal

Determine how well the approach scales **Method**

 Use many randomly generated configurations with different numbers of flows (4 to 128)

A (1) > A (2)

< □ ▶

토 > 문

Problem Statement B	ATA ⁻	Fightness Analysis	Computation Analysis	Case Study
000000 00	000 (0000	000	0000000 0

Computational Analysis

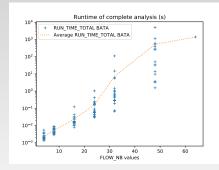
Goal

Determine how well the approach scales

Method

- Use many randomly generated configurations with different numbers of flows (4 to 128)
- Perform timing analysis and measure the computation times (total, IB analysis, service curve computation)

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0


Results

Complete analysis

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	0000000 0

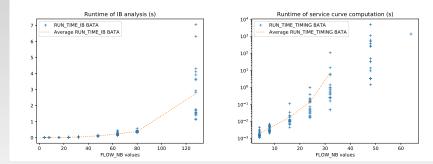
Results

Complete analysis

Problem Statement	BATA 0000	Tightness Analysis 0000	Computation Analysis ○○●	Case Study
Results				

Split IB analysis and service curve computation

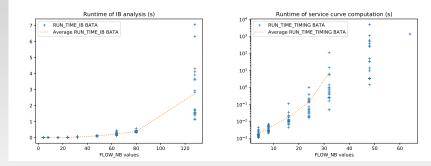
・ロト ・回ト ・ミト ・モト


悥

990

Problem Statement	BATA	Tightness Analysis	Computation Analysis ○○●	Case Study
000000	0000	0000	000	00000000

Results


Split IB analysis and service curve computation

Problem Statement	BATA	Tightness Analysis	Computation Analysis ○○●	Case Study
000000	0000	0000	000	00000000

Results

Split IB analysis and service curve computation

Complexity: service curve computation

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
				●000000 0

▲ロト ▲圖ト ▲ 頭ト ▲ 画ト

Ę

990

Outline

Problem Statement

BATA

Tightness Analysis

Computation Analysis

Case Study

Problem Statement	BATA 0000	Tightness Analysis	Computation Analysis	Case Study ○●○○○○○○
Case Study				

◆□▶ ◆圖▶ ◆恵▶ ◆恵▶ …

玊

990

Problem Statement	BATA 0000	Tightness Analysis	Computation Analysis	Case Study ○●○○○○○○
Case Study				

< D > < B >

문 문 문

200

Control of an autonomous vehicle, used in [12]

• 4×4 manycore chip with a mesh-NoC

Problem Statement	BATA 0000	Tightness Analysis 0000	Computation Analysis	Case Study ○●○○○○○○
Case Study				

<ロト <回ト < 三ト < 三ト

E

200

- 4×4 manycore chip with a mesh-NoC
- ► 33 tasks

Problem Statement	BATA 0000	Tightness Analysis 0000	Computation Analysis	Case Study ○●○○○○○○
Case Study				

< □ > < □ > < 三

< ∃ >

- IN-

良

200

- 4×4 manycore chip with a mesh-NoC
- 33 tasks
- ► 38 data flows

Problem Statement	BATA 0000	Tightness Analysis 0000	Computation Analysis	Case Study ○●○○○○○○

- 4×4 manycore chip with a mesh-NoC
- 33 tasks
- 38 data flows
- 4 non-shared virtual channels (configuration-specific VC mapping)

Problem Statement	BATA 0000	Tightness Analysis 0000	Computation Analysis	Case Study ○●○○○○○○

Control of an autonomous vehicle, used in [12]

- 4×4 manycore chip with a mesh-NoC
- 33 tasks
- 38 data flows
- 4 non-shared virtual channels (configuration-specific VC mapping)

Analysis

Computations for different buffer sizes (2, 100 flits and infinite)

Problem Statement	BATA 0000	Tightness Analysis 0000	Computation Analysis	Case Study ○●○○○○○○

Control of an autonomous vehicle, used in [12]

- 4×4 manycore chip with a mesh-NoC
- 33 tasks
- 38 data flows
- 4 non-shared virtual channels (configuration-specific VC mapping)

Analysis

Computations for **different buffer sizes** (2, 100 flits and infinite) **Comparison** with state-of-the-art approach [12] based on ST

Problem Statement	BATA 0000	Tightness Analysis 0000	Computation Analysis	Case Study ○●○○○○○○

Control of an autonomous vehicle, used in [12]

- 4×4 manycore chip with a mesh-NoC
- 33 tasks
- 38 data flows
- 4 non-shared virtual channels (configuration-specific VC mapping)

Analysis

Computations for different buffer sizes (2, 100 flits and infinite) Comparison with state-of-the-art approach [12] based on ST Further computations with shared VCs

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Delay bounds and simulated delays

	<i>B</i> = 2	<i>B</i> = 100	$B = \infty$
Average tightness	64%	67%	71%
Average tightness difference	+0.07%	+0.08%	-0.03%
Maximum tightness difference	+3.70%	+3.49%	+0.01%
Minimum tightness difference	-0.10%	-0.10%	-0.10%

< □ > < @ > <

-Þ $\equiv \rightarrow$ E

-4

200

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Delay bounds and simulated delays

	<i>B</i> = 2	<i>B</i> = 100	$B = \infty$
Average tightness	64%	67%	71%
Average tightness difference	+0.07%	+0.08%	-0.03%
Maximum tightness difference	+3.70%	+3.49%	+0.01%
Minimum tightness difference	-0.10%	-0.10%	-0.10%

< 17 ►

< □ ▶

문 문 문

Delay bounds are very similar to [12]

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Delay bounds and simulated delays

	<i>B</i> = 2	<i>B</i> = 100	$B = \infty$
Average tightness	64%	67%	71%
Average tightness difference	+0.07%	+0.08%	-0.03%
Maximum tightness difference	+3.70%	+3.49%	+0.01%
Minimum tightness difference	-0.10%	-0.10%	-0.10%

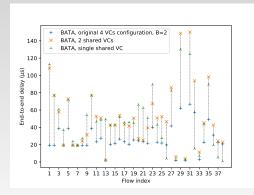
Delay bounds are very similar to [12]

• On average, they differ by less than 0.1%

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Delay bounds and simulated delays

	<i>B</i> = 2	<i>B</i> = 100	$B = \infty$
Average tightness	64%	67%	71%
Average tightness difference	+0.07%	+0.08%	-0.03%
Maximum tightness difference	+3.70%	+3.49%	+0.01%
Minimum tightness difference	-0.10%	-0.10%	-0.10%


- Delay bounds are very similar to [12]
- On average, they differ by less than 0.1%
- ► Good tightness: 64% to 71% on average

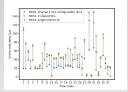
Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

We reduced the number of VCs and computed the WC bounds

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

We reduced the number of VCs and computed the WC bounds

臣▶ ★ 臣≯

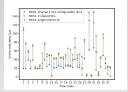

 良

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

토 논 문

Extended Results

We reduced the number of VCs and computed the WC bounds

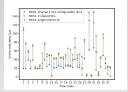


Improvements of BATA

All flows remain schedulable with 2 shared VCs

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

We reduced the number of VCs and computed the WC bounds

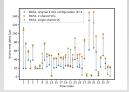

Improvements of BATA

- All flows remain schedulable with 2 shared VCs
- All flows remain schedulable with one shared VC

≣⊳

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

We reduced the number of VCs and computed the WC bounds



Improvements of BATA

- All flows remain schedulable with 2 shared VCs
- All flows remain schedulable with one shared VC
- Wider applicability domain

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

We reduced the number of VCs and computed the WC bounds

Improvements of BATA

- All flows remain schedulable with 2 shared VCs
- All flows remain schedulable with one shared VC
- Wider applicability domain
- Computation times with shared VCs are higher but remain reasonable

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Summary

BATA is:

generic (multiple shared VCs, priority-sharing, buffer size...)

◆□ ▶ ◆圖 ▶ ◆恵 ▶ ◆恵 ▶

良

200

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Summary

BATA is:

generic (multiple shared VCs, priority-sharing, buffer size...)

▲□▶ ▲圖▶ ▲園▶ ▲園▶

良

200

► tight

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
000000	0000	0000	000	00000000

Summary

BATA is:

generic (multiple shared VCs, priority-sharing, buffer size...)

・ロト ・回ト ・ミト ・ヨト

良

200

- ► tight
- but computationally expensive!

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
				00000 00

Perspectives

Computational aspect: reduce complexity of the approach

・ロト ・回 ト ・ヨト ・ヨト

悥

200

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
				00000000

Perspectives

Computational aspect: reduce complexity of the approach

 Applicability: extend model to support bursty traffic on heterogeneous platforms

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
				00000 00

Perspectives

- **Computational aspect**: reduce complexity of the approach
- Applicability: extend model to support bursty traffic on heterogeneous platforms
- Integration : integrate model in DSE methodologies

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
				00000000

Thank you for your attention!

▲ロ → ▲圖 > ▲ 国 > ▲ 国 >

悥

990

Problem Statement	BATA 0000	Tightness Analysis	Computation Analysis	Case Study

Z. Shi and A. Burns, "Real-time communication analysis with a priority share policy in on-chip networks," in 21st Euromicro Conference on Real-Time Systems, pp. 3–12, July 2009.

- Q. Xiong, F. Wu, Z. Lu, and C. Xie, "Extending real-time analysis for wormhole nocs," IEEE Transactions on Computers, vol. PP, no. 99, pp. 1-1, 2017.
- M. Liu, M. Becker, M. Behnam, and T. Nolte, "Tighter time analysis for real-time traffic in on-chip networks with shared priorities," in 10th IEEE/ACM International Symposium on Networks-on-Chip, 2016.
- S. Tobuschat and R. Ernst, "Real-time communication analysis for networks-on-chip with backpressure," in Design, Automation Test in Europe Conference Exhibition, 2017.

Problem Statement	BATA 0000	Tightness Analysis 0000	Computation Analysis	Case Study ○○○○○○●

- E. A. Rambo and R. Ernst, "Worst-case communication time analysis of networks-on-chip with shared virtual channels," in *Proceedings of Design, Automation Test in Europe Conference Exhibition*, 2015.
- T. Ferrandiz, F. Frances, and C. Fraboul, "A method of computation for worst-case delay analysis on spacewire networks."
- L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, "Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores," in *10th IEEE International Symposium on Industrial Embedded Systems (SIES)*, pp. 1–10, June 2015.

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
				0000000

Y. Qian, Z. Lu, and W. Dou, "Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip," in *Networks-on-Chip, 3rd ACM/IEEE International Symposium on*, May 2009.

F. Jafari, Z. Lu, and A. Jantsch, "Least upper delay bound for vbr flows in networks-on-chip with virtual channels," *ACM Trans. Des. Autom. Electron. Syst.*, vol. 20, pp. 35:1–35:33, June 2015.

- A. Mifdaoui and H. Ayed, "Buffer-aware worst case timing analysis of wormhole network on chip," arXiv, vol. abs/1602.01732, 2016.
- F. Giroudot and A. Mifdaoui, "Buffer-aware worst-case timing analysis of wormhole nocs using network calculus," in 2018 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), (Porto, PT), pp. 1–12, 2018.

Problem Statement	BATA 0000	Tightness Analysis 0000	Computation Analysis	Case Study

- B. Nikolic, S. Tobuschat, L. Soares Indrusiak, R. Ernst, and A. Burns, "Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays," *Real-Time Systems*, 06 2018.
- M. Liu, M. Becker, M. Behnam, and T. Nolte, "Buffer-aware analysis for worst-case traversal time of real-time traffic over rra-based nocs," in 27th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, March 2017.
- M. Boyer, B. Dupont De Dinechin, A. Graillat, and L. Havet, "Computing Routes and Delay Bounds for the Network-on-Chip of the Kalray MPPA2 Processor," in *ERTS* 2018 - 9th European Congress on Embedded Real Time Software and Systems, (Toulouse, France), Jan. 2018.

Problem Statement	BATA	Tightness Analysis	Computation Analysis	Case Study
				0000000

V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, "Cycle-accurate network on chip simulation with noxim," *ACM Trans. Model. Comput. Simul.*, vol. 27, pp. 4:1–4:25, Aug. 2016.