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The age of the cyber-physical machine.

• Manipulate the physical world via computers

• “Smart” {city, factory, home}

• Industry 4.0

• Autonomous Driving

• IEEE Time-sensitive Networking (TSN) Workgroup

More distributed systems interfacing with the physical world
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requires real-time communication



But! There’s a catch.

• message delivery with bounded delay & jitter

• introduced by “coupling” with the physical world

• lack of quality potentially disastrous

• often implemented with time-triggered paradigm with static schedule

RTNS 2019 4

Ubiquitous quality requirements
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Messages can have different “importance”

time

I’m still standing!

now!

I’m falling!
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I’m falling! (88.5°)

I’m falling! (87.7°)

I’m falling! (87°)

suddenly high datarate!
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aka. best-effort

we need a certain quality, 

of the communication, else

our application will fail
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guaranteed quality level  and 

“applications” can send at will

→ resource utilization suffers from 

reservation for the worst-case



But! There’s a catch.

Conflicts for real-time communication in shared networks

Quality

DynamicsUtilization

RTNS 2019 22



But! There’s a catch.
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guaranteed quality level  and high network 

utilization (static resource planning)

→ applications are constrained by 

transmission schedule, “meaningless traffic”



Contributions

• guarantee (minimal) communication quality

• allow (some) dynamics to improve application performance

• account for “utility” of messages for the application via traffic metric

• How to route and schedule complemental flows?

Complemental flows
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Complemental flows
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Quality

deterministic traffic part

time

• Application:

• periodic transmissions

• certain level of application performance is guaranteed 

(e.g., stability of control-system)

• Network:

• well-specified traffic (when, how much data)

• delivery with bounded delay



Complemental flows
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Dynamics

opportunistic traffic part

time

• Application:

• transmit, “when it makes sense”, e.g., unforeseen 

external disturbance 

• improve application performance beyond minimum

• traffic metric

• Network:

• dynamic traffic load

• relaxed (or no) guarantees



Complemental flows

• Control systems: 

• Linsenmayer, S., B. W. Carabelli, F. Dürr, J. Falk, F. Allgöwer, and K. Rothermel.. 

“Integration of Communication Networks and Control Systems Using a Slotted 

Transmission Classification Model.” CCNC '19
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Applications?

time

deterministic and opportunistic messages are 

temporally and semantically interrelated!



Complemental flows

deterministic traffic partopportunistic traffic part

Traffic 

Engineering?
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relation between time-triggered and non-time-triggered traffic?



Traffic Engineering

Problem
Input:

• Network Topology (graph)

• Set of flows (including requirements and 

specifications for deterministic and 

opportunistic traffic part)

Output:

Optimal traffic configuration:

• route (connected sequence of edges from 

source to destination of flow)

• schedule (i.e., phase of deterministic 

transmissions)

• optimal with respect to expected 

opportunistic traffic
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Network

stationary

point-to-point



Traffic Engineering
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Switch

switching fabric

with constant

processing delay



Traffic Engineering
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Switch
synchronized time in 

network



Traffic Engineering
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Switch
full-duplex ports with

output buffering and

time-aware shaper



Traffic Engineering
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Time State
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≥ 1 queue (among

which 1 queue for

opp. transm.)

1 queue:

det. transm.

time-triggered

access (according to

configurable cyclic

schedule

Time State

𝑡1

𝑡2

𝑡3

time-triggered

access (according to

configurable cyclic

schedule)

msg to TX

enqueued

according to

traffic class
Time-aware shaper

compute this!



Traffic Engineering

• relates application performance to opportunistic messages

• offline traffic-engineering, i.e., traffic metric is required a-priori 

• estimation

• measurement

• analysis

• additive

• different temporal granularity
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Traffic metric for opportunistic traffic



Traffic Engineering

time-independent

• e.g., average bandwidth of opportunistic 

messages

• “scalar” value

Traffic metric for opportunistic traffic
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Traffic Engineering

time-independent

• e.g., average bandwidth of opportunistic 

messages

• “scalar” value

Traffic metric for opportunistic traffic

time-dependent

• e.g., average probability of transmission 

(expected traffic load)

• deterministic messages are ”renewal” 

points 
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Traffic Engineering
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Two approaches: mixed integer linear programming

Edge-granularity routing and time-

independent traffic metric:

• MILP decides for each individual edge 

whether it is part of the route

• min-max to reduce globally highest value 

of the accumulated traffic metric (i.e., 

aiming for more even traffic distribution)

freedom in routing

deterministic transmissions impose 

constraints on feasibility

opportunistic transmissions influence 

optimality
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Two approaches: mixed integer linear programming

Path-granularity routing and time-

dependent traffic metric

• MILP chooses pre-computed path as 

route for each flow

• min-max optimization of the accumulated 

value of the traffic metric on any edge at 

any time

possibly more freedom in routing

deterministic transmissions impose 

constraints on feasibility

opportunistic transmissions influence 

optimality

more temporal information

deterministic transmissions impose 

constraints on feasibility

opportunistic transmissions influence 

optimality



MILP: Path-Granularity Routing and Time-Dependent Traffic Metric
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Min-max objective

we expect 

problems 

(increased 

delay, drops)

flow 1
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Min-max objective

we expect 

problems 

(increased 

delay, drops)

flow 1

flow 2

perfectly feasible

find another feasible solution, 

with lower accumulated value of 

the traffic metric value
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MILP: Path-Granularity Routing and Time-Dependent Traffic Metric
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Modeling space.
upath 𝑓, 0 ∈ {0,1}

upath 𝑓, 1 ∈ {0,1}

upath 𝑓, 2 ∈ {0,1}



MILP: Path-Granularity Routing and Time-Dependent Traffic Metric

Modeling time.

time

global time = 0

periodphase
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scheduling variable (per edge, per flow),

derivation of schedules from phase
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Discrete time.

cell length 𝜏
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1 1 0 0 0 0 0 0 0 0 10
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MILP: Path-Granularity Routing and Time-Dependent Traffic Metric

Discrete time.

cell length 𝜏

1 1 0 0 0 0 0 0 0 0 10

0 0 8 8 6 6 4 4 3 3 03

transmission of 

deterministic message

traffic metric value
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MILP: Path-Granularity Routing and Time-Dependent Traffic Metric

Phase = 0
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1 1 0 0 0 0 0 0 0 0

0 0 8 8 6 6 4 4 3 3

0 0 0 0 0 0 0 0

8 8 6 6 4 4 3 3

1 1 0 0 0 0 0 0 0 0

0 0 8 8 6 6 4 4 3 3
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Phase = 1 ⋅ 𝜏
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1 1 0 0 0 0 0 0 0 0

0 0 8 8 6 6 4 4 3 3

1 1 0 0 0 0 0 0 0 0

0 0 8 8 6 6 4 4 3 3

0 0 0 0 0 0 0 0

8 8 6 6 4 4 3 3
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Phase = 2 ⋅ 𝜏
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1 1 0 0 0 0 0 0 0 0

0 0 8 8 6 6 4 4 3 3

1 1 0 0 0 0 0 0 0 0

0 0 8 8 6 6 4 4 3 3

1 0 0 0 0 0 0 0 0

0 8 8 6 6 4 4 3 3
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Phase = 2 ⋅ 𝜏
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1 1 0 0 0 0 0 0 0 0

0 0 8 8 6 6 4 4 3 3

1 1 0 0 0 0 0 0 0 0

0 0 8 8 6 6 4 4 3 3

1 0 0 0 0 0 0 0 0

0 8 8 6 6 4 4 3 3

increment phase → „circular shift“
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phase 0

phase 1

phase 2

…

Combining the scheduling variable and the cell arrays to model temporal 

properties.

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 00

1 1 0 0 0 0 0 00 0

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

cell matrix
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phase 0

phase 1

phase 2

…

Combining the scheduling variable and the cell arrays to model temporal 

properties.

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 00

1 1 0 0 0 0 0 00 0

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

cell matrix

0 ⋯0 1 0 ⋯0 ⋅
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

= i’th row

1 in i’th position 
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phase 0

phase 1

phase 2

…

Combining the scheduling variable and the cell arrays to model temporal 

properties.

1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 00

1 1 0 0 0 0 0 00 0

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

cell matrix

0 ⋯0 1 0 ⋯0 ⋅
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

= i’th row

1 in i’th position MILP scheduling 

variables
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Intraflow scheduling and zero-queuing

t

opening gate,

starting transmission

starting transmission

at next switch

With zero-queuing, phases on subsequent edges are „linked“ via delay
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Intraflow scheduling and zero-queuing

t

opening gate,

starting transmission
propagation

delay

transmission

delay

processing

delay

starting transmission

at next switch

With zero-queuing, phases on subsequent edges are „linked“ via delay
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MILP: Path-Granularity Routing and Time-Dependent Traffic Metric
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Exemplary constraints: Interflow scheduling and temporal exclusion

cell 0 on edge x

(flow 1, shift = 0 cells)

(flow 2, shift = 1 cells)

| 1 0 0 0 0 0 0 0 |

| 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 |
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Exemplary constraints: Interflow scheduling and temporal exclusion

cell 0 on edge x last cell in hypercycle on edge x

(flow 1, shift = 0 cells)

(flow 2, shift = 1 cells)

| 1 0 0 0 0 0 0 0 || 1 0 0 0 0 0 0 0 |

| 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 |



MILP: Path-Granularity Routing and Time-Dependent Traffic Metric

RTNS 2019 75

Exemplary constraints: Interflow scheduling and temporal exclusion

cell 0 on edge x last cell in hypercycle on edge x

feasible, if sum per column <2 on every edge

(flow 1, shift = 0 cells)

(flow 2, shift = 1 cells)

| 1 0 0 0 0 0 0 0 || 1 0 0 0 0 0 0 0 |

| 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 |



Evaluation

• edge-gran., min-max

• edge-gran., no obj.

• path-gran., min-max

• path-gran., no obj.

• time limit: 30 min 

• container, pyomo + gurobi 8.1.0

• 4x Intel Xeon E7-4850, 2.1 GHz, 1 TB RAM, 

Linux 4.19.4
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4-way comparison



Evaluation
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Varying number of flows

4 precomputed paths for path no obj./min-max

• edge, no obj./min-max yields larger MILP (order of ~10^5 constraints/variables) compared to path, no 

obj./min-max (order of ~10^4 constraints/variables)

• path, min-max reaches runtime limit earlier than edge, min-max (cf. 2 instances at 10 flows)

• infeasibility discovered quickly



Evaluation
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Varying number of paths

16 flows

• more paths: increases feasibility and possible improvement, (edge, no obj./min-max always return 

feasible solution)

• MILP with objective yields improvement over “feasible” schedule



Final remarks

• Complemental flows to improve application performance

• Routing + scheduling of complemental flows

• Different MILP formulations

• trade-off routing vs. scheduling fidelity

• Open Question

• Consideration of queueing effects for opportunistic messages?
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La fin.
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Application

Network

smart sensor

• stationary

• directed, point-to-point data stream 

• traffic metric for opp. traffic

?


