Impact on credit freeze before gate closing in CBS and GCL integration into TSN

Marc Boyer, Hugo Daigmorte

ONERA – The French Aerospace Lab Toulouse, France

27th International Conference on Real-Time Networks and Systems – RTNS 2019 November 6th

Once upon a time

2/28

Boyer and al.: "TSN behaves like this, then..."

Boyer and al.: "TSN behaves like this, then..."

Reviewer: "No, TSN behaves like that..."

Boyer and al.: "TSN behaves like this, then..."

Reviewer: "No, TSN behaves like that..."

Standard:

Boyer and al.: "TSN behaves like this, then..."

Reviewer: "No, TSN behaves like that..."

Standard: neither this nor that

Boyer and al.: "TSN behaves like this, then..."

Reviewer: "No, TSN behaves like that..."

Standard: neither this nor that

Strange situation

- The standart behavior is not the one proposed in previous studies.
- All performance analyses do assumption different from the standard.

Boyer and al.: "TSN behaves like this, then..."

Reviewer: "No. TSN behaves like that..."

Standard: neither this nor that

Strange situation

• The standart behavior is not the one proposed in previous studies.

• All performance analyses do assumption different from the standard.

Questions

• Why this choice?

Boyer and al.: "TSN behaves like this, then..."

Reviewer: "No. TSN behaves like that..."

Standard: neither *this* nor **that**

Strange situation

- The standart behavior is not the one proposed in previous studies.
- All performance analyses do assumption different from the standard.

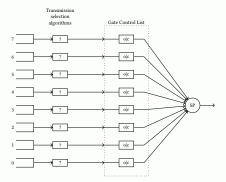
Questions

- Why this choice?
- What are the impacts on performances?

Once upon a time

Time Sensitive Networking (TSN) Credit-Based Shaper (CBS) Gate Control List (GCL)

CBS and GCL integration


Simulation Model Results

Conclusion

The Time Sensitive Networking IEEE working group

- Designing a new Ethernet-based real-time network
 - Extention of the work done on Audio Video Bridging (AVB)
- Focus of this study:
 - frame selection at output port
 - interactions between Credit Based Shaper (AVB) and Gate Control List

Once upon a time

Time Sensitive Networking (TSN) Credit-Based Shaper (CBS)

CBS and GCL integration

Simulation Model Results

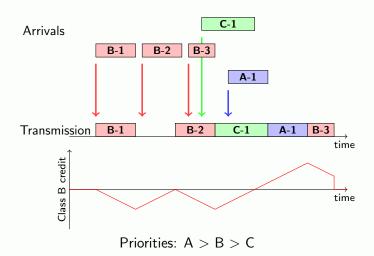
Conclusion

Credit-Based Shaper (CBS)

An algorithm to select the next frame when the link is idle.

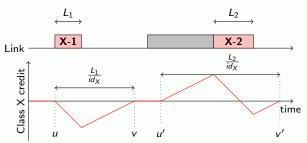
Credit-Based Shaper (CBS)

An algorithm to select the next frame when the link is idle.

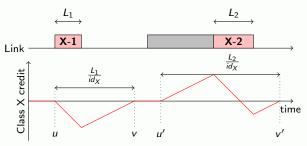

• each queue X as a credit c_X , initialised to 0, and a "idle slope" parameter $id_X \in [0, R]$, with R the link capacity

Credit-Based Shaper (CBS)

An algorithm to select the next frame when the link is idle.


- each queue X as a credit c_X , initialised to 0, and a "idle slope" parameter $id_X \in [0, R]$, with R the link capacity
- the head-of-queue frame can be selected for transmission only if
 - $c_X > 0$
 - no higher priority frame can be transmitted
- the credit evolution rules are
 - when a frame is waiting, increase with slope id_X
 - when a frame is transmitted, decrease with slope $id_X R$
 - when the queue is empty and c < 0, increase with slope id_X up to 0
 - when the queue is empty and c > 0, reset c = 0

CBS illustration


CBS is a shaper and bandwidth limiter

• The "idle slope" parameter is bandwidth allocation: value id_X allows throughput id_X

CBS is a shaper and bandwidth limiter

• The "idle slope" parameter is bandwidth allocation: value id_X allows throughput id_X

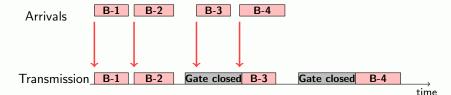
Higher credit value leads to higher burst.

Once upon a time

Time Sensitive Networking (TSN)

Credit-Based Shaper (CBS)
Gate Control List (GCL)

CRS and GCL integration


Simulation Model

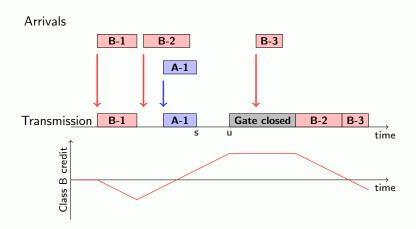
Conclusion

The gate control list

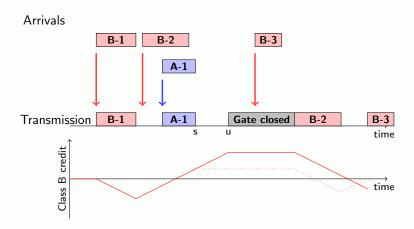
- each queue has a gate
- the gate is either open or closed
- a cyclic schedule defines per queue opening and closing time
 - ⇒ TDMA-like
- a frame can be selected only if
 - the gate is open
 - it can be transmitted up to completion before next closing (avoid encroaching)

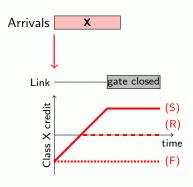
CBS and GCL integration

CBS and GCL integration

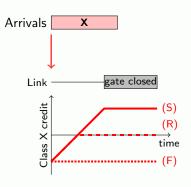

Main principles

- a frame can be selected only if
 - the CBS rules are satisfied $(c_X \ge 0)$
 - the gate is open (and no "near" closing event)
- the credit is frozen when the gate is closed
 - rational: avoid bursts after gate opening (?)

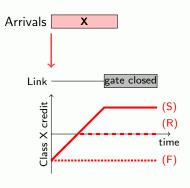

Question

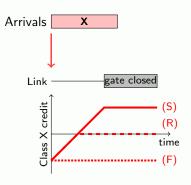

What appends if a frame is blocked to avoid encroaching on next closed interval?

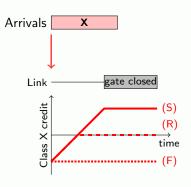
Integration illustration

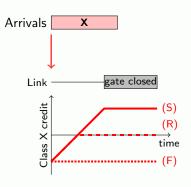


Integration illustration




- Three rules
 - S: standard
 - F: frozen
 - R: return to zero


- Three rules
 - S: standard
 - F: frozen
 - R: return to zero
- Can we quantify the differences?

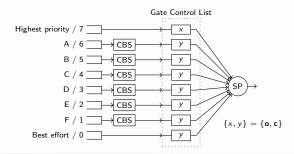

- Three rules
 - S: standard
 - F: frozen
 - R: return to zero
- Can we quantify the differences?
 - on worst case delays

- Three rules
 - S: standard
 - F: frozen
 - R: return to zero
- Can we quantify the differences?
 - on worst case delays another paper

- Three rules
 - S: standard
 - F: frozen
 - R: return to zero
- Can we quantify the differences?
 - on worst case delays another paper
 - on mean delays

- Three rules
 - S: standard
 - F: frozen
 - R: return to zero
- Can we quantify the differences?
 - on worst case delays another paper
 - on mean delays simulations

Simulation Model Results


Simulation Model

Simulated system

Single TSN/CBS+CCL port

- a high-priority queue, without shaper
- 3 CBS queues, A, B, C
- one best-effort queue (lower priority, no shaper)
- exclusive gating:
 - when the high-priority gate is open, all others are closed
 - when the high-priority gate is closed, all others are open

Simulation parameters

- port bandwidth: 100Mb/s
- gate cycle: 1s
- CBS gates closed 20% of the time with two policies
 - random: 1000 intervals, with duration 0.2ms each, randomly set (without overlaping)
 - uniform: one closed interval each ms
 - 400 with duration 0.1ms
 - 400 with duration 0.2ms
 - 200 with duration 0.4ms
- each CBS queue is shared by 20 periodic flows of 1Mb/s throughput each
 - 50 simulations of duration 5s
 - random offset for each flow for each simulation
- the best-effort queue is always ready to send a frame

Once upon a time

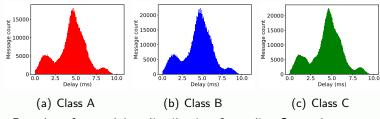
Time Sensitive Networking (TSN) Credit-Based Shaper (CBS) Gate Control List (GCL)

CBS and GCL integration

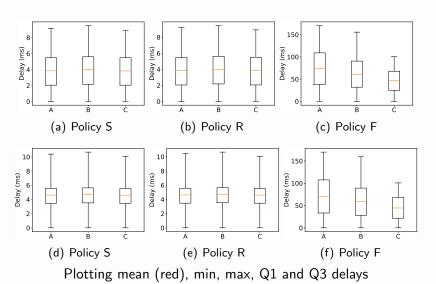
Simulation

Model

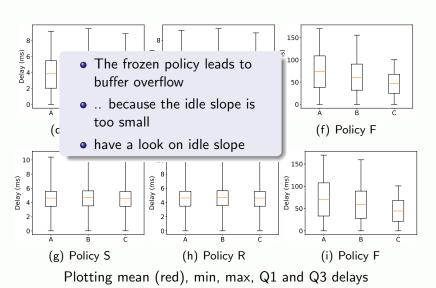
Results


Conclusion

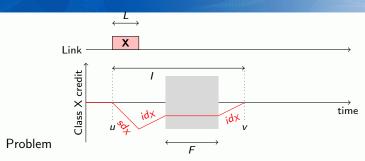
Same distribution for all queues A, B, C


The delay distribution shape is independent of the class.

- ⇒ good quality of CBS shaping
- \Rightarrow only min/max/average/Q1/Q3 in next figures

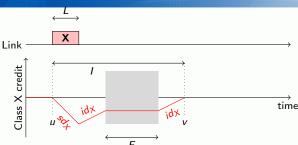

Per class frame delay distribution for policy S, random gate closing.

Uniform (a,b,c) and random (d,e,f) gate closing



ONERA

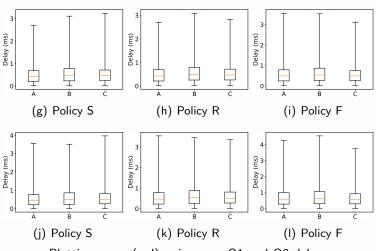
Uniform (a,b,c) and random (d,e,f) gate closing



Duration of frozen intervals and idle slope

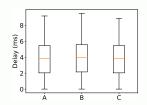
- Credit freezing reduces credit refuelling opportunities
- ⇒ Freezing reduces throughput

Duration of frozen intervals and idle slope

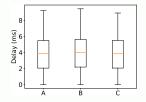

- Solution / workaround: $id = bandwidth \times \frac{CycleTime}{CycleTime F}$
- S: F is known, F = CloseTime,

$$id_S = \mathsf{bandwidth} imes rac{\mathsf{CycleTime}}{\mathsf{CycleTime} - \mathsf{CloseTime}}$$

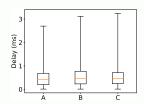
• F,R: F is dynamic, CloseTime $\leq F \leq$ CloseTime $+ n \frac{L^{M}}{R}$

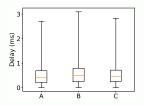

$$\mathit{id}_{F,R} = \mathsf{bandwidth} imes rac{\mathsf{CycleTime}}{\mathsf{CycleTime} - \mathsf{CloseTime} - n rac{L^M}{R}}$$

Same experiment with larger idle slope $id_{F,R}$



Plotting mean (red), min, max, Q1 and Q3 delays Closing interval distribution: uniform (d-e-f), random (g-h-i)


Comparing impact of the idle slope


(m) Policy S, id = 25Mb/s

(o) Policy R, id = 25Mb/s

(n) Policy S, id = 27.78 Mb/s

(p) Policy R, id = 27.78 Mb/s

Outline

Conclusion

Conclusion

- The ratio "throughput/idle slope" has strong influence on delays.
- The "frozen" rule requires modification of the idle slope.
- The expected benefits of "frozen" rule are not visible on theses simulations.
- A new rule (return to zero) is proposed.
 - trade-off between both
 - looks slightly better than standard on simulations
- Evaluation on worst case delay is coming.

Outline

More figures

Same distribution for all queues A, B, C (F, id, random)

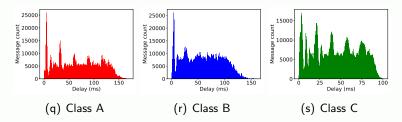


Figure: Per class delay distribution for policy F, idle slope id, random gate closing.

Same distribution for all queues A, B, C (S, id, uniform)

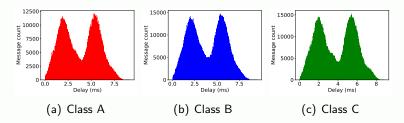


Figure: Per class delay distribution for policy S, idle slope id, uniform gate closing.

Same distribution for all queues A, B, C (F, id, uniform)

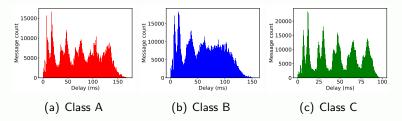


Figure: Per class delay distribution for policy F, idle slope id, uniform gate closing.