RTNS: Scheduling Analysis under Fault Bursts

Florian Many, Frédéric Boniol, David Doose

5 November 2010

(Introduction)

Fault Model

Strategies

Scheduling Analysis

Performan

Conclusions

Context (1/3)

Different Layers of Protection

- Hardware Layer
- Architecture Layer
- Software Layer

(Introduction)

Conclusions

Context (2/3)

Fault Tolerance Mechanisms

- Hardware Layer
 - Shield
 - Location
- Architecture Layer
 - Duplication et triplication of critical equipments
- Software Layer
 - Robust data model
 - Method based on code execution or re-execution

Context (3/3)

Real-Time System Overview

- A set of tasks with hard temporal constraints
- A scheduler to assign task to processors

Some Relevant Questions

- Assign priority to tasks
- Manage shared ressources
- Manage fault tolerance mechanisms

Schedulability Analysis

Prove a priori the respect of all temporal constraints

RTNS: Scheduling Analysis under Fault Bursts

Strategies

Scheduling Analysis

Performance

Conclusions

Plan of this Presentation

Problematic

Coupling Scheduling Analysis and Fault Tolerance

Guidelines

- Definition of a fault model
- Definition of the scheduler behaviour when an error occurs
- Schedulability Analysis

(Introduction)

ault Model

Strategies

Conclusions

Fault Burst Model

- Fault Features
- Fault Burst Model
- Example

2 Detection, Correction and Strategies

- Error-Detection and Error-Correction
- Error Recovery Strategies

3 Scheduling Analysis

- Background
- Worst Case Response Time Equation
- Evaluation of Recovery Term F_i

Performance

Fault Features

Origins of Faults

- Inner faults
 - Bad design or implementation
 - Electromagnetic Compatibility : Power supply and computer
- Environmental faults
 - · Sensors masked by an outer object
 - Electromagnetic fields (radar waves), space rays

Consequences on Real-Time Systems

- Permanent ⇒ Spatial Redundancy
- Transient ⇒ Temporal Redundancy

Temporal Distributions

- Pseudo-periodic fault
- Fault bursts

Scheduling Analysis

Performance

Conclusions

Fault Burst Model

Burst Definition

- Δ_F = time interval during which there are potential faults
- Inner temporal distribution of faults unknown
- No fault outside a burst
- T_F = minimum time interval between two fault burst starts

Example of Phenomenon

· Aircraft through an electromagnetic field generated by radar waves

Strategies

cheduling Analysi

Performan

Conclusions

An Illustrated Example

Case of Rotative Air Radar [1, 2]

- For a fly-by or over ground aircraft :
 - · Elapsed time between two swept : few seconds
 - Exposure time : tenth of seconds
- Worst case for a slow aircraft :
 - 15 swepts (2 seconds between swepts)
 - 100 ms of exposure time by swept

RTCA and EUROCAE

Guide to Certification Of Aircraft in a High Intensity Radiated Field (HIRF) Environment ED 107 - ARP 5583, 2001.

RTCA and EUROCAE

Environmental Conditions and Testprocedures for Airborne Equipment ED 14E - DO 160E, 2005.

(Strategies)

Error-Detection and Error-Correction

Detection Mechanisms

- Use of acceptance tests, checksums, timer watchdogs etc...
- Instant of detection :
 - At the end of task
 - Checkpoints (splitted tasks)

Correction Method

- Re-execution of code
 - · Full or partial re-execution of the erroneous task
 - Alternative tasks, recovery blocks
 - Exception Handlers
- Assumption : Re-execution of the task corrects all errors

(Strategies)

Error Recovery Strategies

At Task Level

• Tactic = error-detection + error-correction

At System Level

- At error detection, different actions :
 - Manage preempted tasks
 - Anticipate potential undetected errors
- Strategies
 - Definition of scheduler behaviour towards preempted tasks

Remark

Error recovery strategies infer fault tolerance

RTNS: Scheduling Analysis under Fault Bursts

(Strategies)

Focused Error Recovery Strategies

End Detection/Full Re-execution/Multiple Strategy

- End Detection
- Full Reexecution
- Correction of the erroneous task
- Preventive correction of preempted tasks
- Ex : Corrupted shared data

Computational Model

Task Features

- WCET : C_i, Deadline : D_i, Period : T_i
- Deadline less than or equal to period : $D_i \leq T_i$
- independent, periodic
- distinct priority

System Features

- uniprocessor
- fixed priority assignement
- fault free scheduler

RTNS: Scheduling Analysis under Fault Bursts

Evaluation of Task Set Feasibility

Validation Techniques

- Upper bound to the processor utilisation
- Worst Case Response Time
- Model Checking (multiprocessor)
- Workload

Worst Case Response Time

- (Completion time release date) task in the worst case
- schedulable task τ_i : WCRT $\leq D_i$
- task set feasible : $\forall i, \tau_i$ schedulable

RTNS: Scheduling Analysis under Fault Bursts

Computation of the Worst Case Response Time $\mathcal{R}_i^{\Delta_F}$

$$\mathcal{R}_{i}^{\Delta_{F}} = \mathcal{R}_{i}^{\Delta_{F}} = \mathcal{R}_{i} \qquad \qquad \mathcal{R}_{i}^{\Delta_{F}} = \mathcal{R}_{i} + \Delta_{F}$$

- \mathcal{R}_i : Free fault WCRT
- Δ_F : Duration of the fault burst
- · Interference due to the highest priority tasks after the fb end

$$I_{I}^{\Delta F} = \sum_{h_{F}(i)} \left\lceil \frac{\mathcal{R}_{i}^{\Delta F} - (\mathcal{R}_{i} + \Delta_{F})}{T_{j}} \right\rceil C_{j}$$
(2)

• F_i : Additional temporal cost due to the error recovery strategies

RTNS: Scheduling Analysis under Fault Bursts

(1)

Evaluation of Recovery Term F_i

Computation of the F_i for the ED/FR/M Strategy

(Performance)

Conclusions

Example

$\Delta_{F} = 100$								
Р	Т	C	D	\mathcal{R}	S	$\mathcal{R}^{\Delta F}$	M2	$\mathcal{R}^{\Delta F}$
1	300	10	300	10	20	130	20	130
2	500	50	500	60	120	290	70	240
3	800	150	800	210	420	800	260	630

Descritpion

- 3-task set with $D_i = T_i$
- scheduler : Rate Monotonic

Benefits

- Efficiency of strategies : significative reduction of WCRT (25%)
- Unvailibility of the system : $T_{F}=$ 800, $\Delta_{F}=$ 100 \Rightarrow 12, 5%

First impression

• Multiple strategy better than simple

Simulation (1/2)

Qualitative explanation of the benefits

- $\bullet~$ "Temporal Economy" \Rightarrow reduction of necessary error-detections
- In practice, temporal additional cost (preventive re-executions)
- But effective approach for the validation of RTS

cheduling Analysis

Performance

Conclusions

Simulation (2/2)

M. Pandya and M. Malek

Minimum achievable utilization for fault-tolerant processing of periodic tasks IEEE Transactions on Computers, 47(10):1102–1112, 1998.

Conclusions

Conclusion

- A representative issue : UAVs in Radar waves (ONERA research)
- Results :
 - Fault Burst Model
 - Error recovery strategies
 - Schedulability Analysis
 - Realistic approach showed by simulation

Perspectives

- Implement strategies in a RTOS
- Works at system level ⇒ entry points :
 - safety : equipment failure
 - platform features

RTNS: Scheduling Analysis under Fault Bursts

Introduction

Thanks for your attention

