
Shared Data Cache Conflicts Reduction for
WCET Computation in Multi-Core Architectures.
Benjamin Lesage, Damien Hardy & Isabelle Puaut
5th November 2010

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems 1/24

Context and Issues

 WCET computation:
  Compute tight and safe bounds of tasks’ WCET.

  Must take hardware into account.

 Caches:
  Help improving average case execution time.

  Dynamic behaviour, access history dependent.

 Multi-core architectures:
  Multiple tasks executing at the same time.

  Share hardware resources, such as caches.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems 2/24

Context and Issues

 WCET contribution of memory references w.r.t. caches
  Requires an estimate of cache contents at each point of a program.

  Sources of indeterminism in the context of cache analysis:
  Path indeterminism:

  Gather information for all possible incoming paths.

  Access indeterminism:

  Specific to data caches.

  The precise target of a reference may not be available statically.

  Different accesses may have the same target in memory.

  The same access may have different target according to the context.

  Cache hierarchies:

  Estimate accessed cache levels upon an access.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Static cache analysis

3/24

Context and Issues

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Multi-cores and shared caches - Example

Assumed architecture Analysed task

[a]

[b]

[a]

[b]

Cache

  Is the second access to memory block [a] a hit in the cache hierarchy ?
  Yes.

4/24

Context and Issues

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Multi-cores and shared caches - Example

[a]

[a]

  Is the second access to memory block [a] a hit in the cache hierarchy ?
  Yes.

Assumed architecture Analysed task

[a]

[b]

[a]

[b]

Cache

4/24

Context and Issues

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Multi-cores and shared caches - Example

Assumed architecture Analysed task (on Core 1)

[a]

[b]

[a]

[b]

Shared
Cache

  Is the second access to memory block [a] a hit in the cache hierarchy ?
  Yes.

4/24

Context and Issues

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Multi-cores and shared caches - Example

Assumed architecture Analysed task (on Core 1)

[a]

[b]

[a]

[b]

Shared
Cache

[X]

Rival task (on Core 2)

  Is the second access to memory block [a] a hit in the cache hierarchy ?
  Yes.

4/24

Context and Issues

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Multi-cores and shared caches - Example

Assumed architecture Analysed task (on Core 1)

[a]

[b]

[a]

[b]

Shared
Cache

[X]

Rival task (on Core 2)

  Is the second access to memory block [a] a hit in the cache hierarchy ?
  Not necessarily, depends on when the rival task accesses the shared cache.

4/24

Context and Issues

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

 WCET of task while considering its rivals on other cores.
  Safely consider rival tasks impact on shared data caches.
  Used by scheduling analyses.

 Reduce tasks’ pressure on shared data caches using bypass.

This presentation

5/24

Outline
 Context and Issues

 Method – Data cache analysis
  Overview

  Private caches

  Shared caches

 Bypass heuristics

 Results

 Conclusion and Future works

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems 6/24

Method

 Hierarchies enforcing neither exclusion nor
inclusion:
  LRU replacement policy.

  Set-associative caches.

  Details in the paper.

  Static analysis of data caches, one by one
  From the top to the bottom.

 Compute accesses occurrences on cache
level L based on:
  Occurrences on cache level L-1,

  Access classifications on cache level L-1,

  See [Hardy & Puaut – RTSS 2008].

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Method overview – Multi-level Data cache analysis

Cache analysis
Level L-1

Cache analysis
Level L

References

Access
 Classification

7/24

Cache analysis

  Estimate safely cache contents.
  All paths must be considered altogether.

 Based on abstract interpretation [Ferdinand & al. – 2000], 3 analyses:
  Must: memory blocks always present in the cache.

  May: memory blocks that may be present in the cache.

  Persistence: memory blocks which once loaded will not be evicted from the
cache.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Cache Hit/Miss Classification based on abstract cache contents
WCET contribution of references w.r.t. caches

8/24

Cache analysis

 Considered Data cache:

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Example – Must analysis

[a]

[a]

[b]

[a,b]

Indeterministic access, block a or b may be accessed.

Access to memory block a.

9/24

Cache analysis

 Considered Data cache:

 Update the cache upon an access.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Example – Must analysis

[a]

[a]

[b]

[a]

[a,b]

9/24

Cache analysis

 Considered Data cache:

 Update the cache upon an access.

  Join incoming states on branch convergence.
  Must: Intersection + Maximal Age

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Example – Must analysis

[a]

[a]

[b]

[a]

[a]

[a,b]

9/24

Cache analysis

 Considered Data cache:

 Update the cache upon an access.

  Join incoming states on branch convergence.
  Must: Intersection + Maximal Age

  Indeterministic accesses:
  Consider all possibilities, combine join and update.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Example – Must analysis

[a]

[a]

[b]

[a]

[a]

[a,b]

[a,b]

[a]

[a]

[b]

9/24

Cache analysis

 Private caches hierarchy: analysed.

  Still need to deal with shared caches.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Private Cache
Level L-1

Shared Cache
Level L

Private Cache
Level 1

10/24

Shared cache analysis

 Conflicts stemming from rival tasks are estimated.

 Conflicts estimation used during shared cache level analysis.
  Produced Cache Hit/Miss Classifications takes possible conflicts into account.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Overview

References Access
 Classification

Cache analysis
Shared Level L

Analysed task

Cache analysis
Level L

…

Conflicts count

Conflict Estimation

…

Conflicts count

Cache analysis
Level L

Conflict Estimation

Rival tasks

11/24

Shared cache analysis

 Any task, any time may alter shared caches
  Compute all interleavings: too costly in practice.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Conflict estimation

[a]

[a]

[b]

[w,x,y]

[d,e]

[b]

10

12/24

Shared cache analysis

 Any task, any time may alter shared caches
  Compute all interleavings: too costly in practice.

  To reduce this cost, we abstract from a task:
  Access ordering

  Occurrence count

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Conflict estimation

[a]

[a]

[b]

[w,x,y]

[d,e]

[b]

10

12/24

Shared cache analysis

 Any task, any time may alter shared caches
  Compute all interleavings: too costly in practice.

  To reduce this cost, we abstract from a task:
  Access ordering

  Occurrence count

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Conflict estimation

[a]

[b]

[w]

10

[x]

[y]

[d]

[e]

€

×∞

€

×∞

€

×∞

€

×∞

€

×∞

€

×∞

€

×∞

12/24

Shared cache analysis

 Any task, any time may alter shared caches
  Compute all interleavings: too costly in practice.

  To reduce this cost, we abstract from a task:
  Access ordering

  Occurrence count

  Each block stored by a task on a shared cache
level may trigger a conflict.

  For each cache set
  Find memory blocks used by the task.

  Count the total number of blocks.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Conflict estimation

Cache Block Conflict Number (CCN)
Conflicts generated by rival tasks for each cache set

[a]

[b]

[w]

10

[x]

[y]

[d]

[e]

€

×∞

€

×∞

€

×∞

€

×∞

€

×∞

€

×∞

€

×∞

12/24

Shared cache analysis

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Conflict Integration

 A cache analysis is performed using modified cache states:
  CCN cache blocks may have been allocated to rival tasks in the shared cache.

  Only (Cache L Associativity – CCN) ways are for sure available.

Set 0

Set 1

Example:

Set 0

Set 1

Base cache configuration Available cache space during analysis

Cache line occupied by a conflicting block

CCN0 = 2

CCN1 = 7

13/24

Shared cache analysis

 Conflict Estimation is pessimistic:
  Many blocks may clutter up the cache.

  Every block a task may store on a shared cache level is included.

  Little cache space detected as available during shared cache
analyses.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Need to control the impact of tasks on shared caches.

14/24

Bypass

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Mechanism overview

[a]

[c]

[c]

[a]

[b]

[c]

Access bypassing the cache

Considered cache

If an instruction bypasses a cache level, it does not alter this cache level:

Example:
Without bypass Using bypass

15/24

Bypass

 Bypass is used for cache usage control.
  Hardware support.

  Software-taken decision, offline.

  If instruction i bypasses cache level L:
  Instruction i does not alter cache level L in any way.

  Instruction i does not contribute to conflicts on cache level L.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Find a way to select instructions bypassing shared cache levels.

16/24

Bypass

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Heuristics – Reuse Information based

  Some data is not detected as reused before its eviction from the
cache:
  Inserting such data in the cache may not be useful.

 Reuse Bypass (RB) aims at preventing such insertions.
  Uses cache classifications from a prior cache analysis.

17/24

Bypass

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Heuristics – Accessed structures based

  Indeterministic accesses jeopardize the precision of data cache
analyses:
  No block can safely be inserted in the cache during analyses.

  All accessed blocks have to be present for a hit classification.

 All Indeterministic Bypass (AIB) targets indeterministic accesses.
  Based on the results of the address analysis.

18/24

Bypass

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Heuristics – Accessed structures based

  Indeterministic accesses jeopardize the precision of data cache
analyses.
  Large structures lead to an important shared cache usage from a task.

 Reduced Cache Usage Bypass (X-RCUB) allows for control on the
maximum cache space occupied by a task.
  Accesses with the largest accessed range are bypassed first.

19/24

Results

  2 levels cache hierarchy:
  Private L1: 4-way 1 KB data cache, 32B line size, 1 cycle access latency.

  Shared L2: 8-way 4KB data cache, 32B line size, 10 cycles access latency.

 Memory: 100 cycles access latency.
  150 cycles store latency.

  Perfect instruction cache.

 Metrics:
  DMCUL2: number of memory blocks stored by a task in the L2 cache.

  PHRL2: L2 cache hit ratio along the predicted worst-case execution path.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Experimental setup & Benchmarks

20/24

Results

 Analysed task sets:
  One task per core.

  Conflicts stems from sharing.

  Same bypass heuristic used for all benchmarks at once.

  Light task set:
  Tasks nearly fit altogether in the cache.

 Heavy task set:
  Each task generates more conflicts than the shared cache may hold.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Experimental setup & Benchmarks

21/24

Results

0
2
4
6
8

10
12
14
16
18
20

jfdctint minver qurt statemate

No BP

RB

AIB

2-RCUB

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Light task set

0
10
20
30
40
50
60
70
80
90

100

jfdctint minver qurt statemate

No BP

RB

AIB

2-RCUB

DMCUL2 in cache blocks PHRL2 (%)

 Small pressure on the cache, plainly considering conflicts seems reasonable.
 Bypass reduces this pressure, leading to even better results.

 But may have negative impact on tasks PHRL2.

22/24

Results

0

16

32

48

64

ludcmp ns matmult ludcmp

No BP

RB

AIB

2-RCUB

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Heavy task set

0
10
20
30
40
50
60
70
80
90

100

ludcmp ns matmult ludcmp

No BP

RB

AIB

2-RCUB

DMCUL2 in cache blocks PHRL2 (%)

 Too many conflicts, no reuse captured on the shared cache without bypass.
 Note that only ludcmp benefited from the L2 cache, according to analyses.

23/24

Results

0

16

32

48

64

ludcmp ns matmult ludcmp

No BP

RB

AIB

2-RCUB

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Heavy task set

0
10
20
30
40
50
60
70
80
90

100

ludcmp ns matmult ludcmp

No BP

RB

AIB

2-RCUB

DMCUL2 in cache blocks PHRL2 (%)

 AIB and 2-RCUB allows for the best predicted hit ratios:
 They impact both inter-task and, in the case of ludcmp, intra-task conflicts.

23/24

Results

0

16

32

48

64

ludcmp ns matmult ludcmp

No BP

RB

AIB

2-RCUB

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

Heavy task set

0
10
20
30
40
50
60
70
80
90

100

ludcmp ns matmult ludcmp

No BP

RB

AIB

2-RCUB

DMCUL2 in cache blocks PHRL2 (%)

 RB has the strongest impact on conflicts reduction.
 But does not provide the best predicted hit ratios.
 RB is a greedy heuristics:

 The cache classifications it relies on are not computed again once a
bypass decision has been taken.

23/24

Conclusion & Future works

 Plain conflicts estimation and consideration is not scalable.
  The more information about rival tasks kept, the more costly the analysis.

  A mechanism is required to reduce their number or occurrences.

 Bypass is an interesting solution to control a task’s cache usage.
  Clever selection of bypassed instructions depends on the goal.

 Combining conflicts precluding, reduction and estimation methods
should help.
  Aim at reducing hot spots in the cache.

  Combinations of locking, partitioning, bypass, synchronisation, etc.

  [Suhendra & al. – 2008 DAC]

  Including tasks’ preemptions and migrations is also to be done.

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems 24/24

Thank you for your attention.

Questions ?

B.Lesage, D.Hardy & I.Puaut - 18th International Conference on Real-Time and Network Systems

€

π /24

