Introduction	System model	Properties and results	Example of application	Conclusion
00000	000000000	0000000000	00	000

On real-time physical systems

Marco L. Della Vedova

University of Pavia (Italy)

RTNS, Toulouse, France Nov. 04, 2010

Authors: Marco L. Della Vedova Michele Ruggeri Tullio Facchinetti

Introduction 00000	$\mathbf{System \ model}$	Properties and results	Example of application	Conclusion

Outline

- 2 System model
- Properties and results
- Example of application

Introduction	$\begin{array}{c} \mathbf{System \ model} \\ \texttt{000000000} \end{array}$	Properties and results	Example of application	Conclusion
Outline				

- 2 System model
- B Properties and results
- Example of application

Introduction ●0000	$\begin{array}{c} \mathbf{System \ model} \\ \texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}$	Properties and results	Example of application	Conclusion 000
Real-Time Physical Systems				
Basic definit	tion			

- A Real-Time Physical System (RTPS) is defined by
 - a set of real-time resources to be timely allocated for using a limited resource
 - real-time resources are defined in terms of timing parameters and constraints
 - a physical quantity is associated with each resource
 - the physical quantity variation is bounded to the schedule of resources (activation/deactivation)

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	0000000000	00	000

Real-Time Physical Systems

Example of real-time resource schedule

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	0000000000	00	000

Real-Time Physical Systems

Example of real-time resource schedule

a real-time resource can be anything: a processing task, an electric device, a battery (charge/discharge), other physical processes

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	0000000000	00	000

Real-Time Physical Systems

Collocation among research fields

a RTPS is:

- built on top of Real-Time parameters, constraints, analysis techniques, and scheduling algorithms
- a special class of (Switched) Hybrid system
- a powerful modeling technique for Cyber-Physical (Energy) Systems

Introduction 0000●	$\begin{array}{c} \mathbf{System \ model} \\ \texttt{000000000} \end{array}$	Properties and results	Example of application 00	Conclusion		
Real-Time Physical Systems						
RTPSs and	real-time svst	tems				

- in power-aware real-time systems the physical quantity of interest is consumed power/energy
- in temperature-aware real-time systems the physical quantity of interest is the temperature

with respect to real-time systems, RTPS can be seen as generalization of power- and temperature-aware systems

Introduction 00000	System model $000000000000000000000000000000000000$	Properties and results	Example of application	Conclusion
Outline				

B Properties and results

Example of application

5 Conclusion

Introduction	System model ●00000000	Properties and results	Example of application	Conclusion	
Physical system model					
A set of res	ources				

• a set
$$\Lambda = \{\lambda_1, \cdots, \lambda_n\}$$
 of *n* resources

- turned on and off (or activated/deactivated)
- resource activity is controlled by a *resource scheduler* that decides when each resource is activated/deactivated

Introduction 00000	System model $0 \bullet 00000000$	Properties and results	Example of application 00	Conclusion	
Physical system model					
Definition o	f schedule				

the scheduler assigns to each resource λ_i a schedule that is modeled by the function $s_i(t)$:

$$s_i(t) = \begin{cases} 1 & \lambda_i \text{ is active at } t \\ 0 & \text{otherwise} \end{cases}$$

the schedule of all resources is then given by $s(t) = \{s_1(t), \dots, s_n(t)\}$

Introduction 00000	System model	Properties and results	Example of application 00	Conclusion	
Physical system model					
Dynamic sys	stem				

- one physical system Γ_i is associated to each resource λ_i
- a state variable x_i (i.e., the physical quantity of interest) evolves as a function of the activity of resource λ_i
- a dynamic system Φ_i determines the behavior of the state variable, which is defined by the following equation:

$$\Phi_i: \frac{dx_i(t)}{dt} = k_i^{\text{off}} \left(h_i^{\text{off}} - x_i(t) \right) + k_i^{\text{on}} \left(h_i^{\text{on}} - x_i(t) \right) s_i(t)$$

Introduction	System model	Properties and results	Example of application	Conclusion
00000	000000000	0000000000	00	000

Physical system model

Dynamic system: differential equation and time domain

$$\Phi_i: \frac{dx_i(t)}{dt} = k_i^{\text{off}} \left(h_i^{\text{off}} - x_i(t) \right) + k_i^{\text{on}} \left(h_i^{\text{on}} - x_i(t) \right) s_i(t)$$

$$\begin{aligned} A = & (k^{\text{on}}h^{\text{on}} + k^{\text{off}}h^{\text{off}})/(k^{\text{on}} + k^{\text{off}}) \\ \alpha = & k^{\text{on}} + k^{\text{off}} \\ B = & h^{\text{off}} \\ \beta = & k^{\text{off}} \end{aligned}$$

$$x(t) = \begin{cases} A - (A - x(0)) e^{-\alpha t} & \text{if } s(t) \equiv 1 \\ B - (B - x(0)) e^{-\beta t} & \text{if } s(t) \equiv 0 \end{cases}$$

Introduction	System model 0000●0000	Properties and results	Example of application	Conclusion
Physical system model				

Dynamic system behavior

two exponential decay behaviours

Marco L. Della Vedova On real-time physical systems

Introduction 00000	System model 00000●000	Properties and results	Example of application	Conclusion 000	
Physical system model					
Constraints on state variables					

- each physical system is characterized by a set of *constraints* Ψ_i on the state variable
- constraints considered in this work:

$$\Psi_i: \left\{ \begin{array}{ll} x_i(t) \leq x_i^{\max} & \forall t > t_i^\star \\ x_i(t) \geq x_i^{\min} & \forall t > t_i^\star \end{array} \right.$$

the state variable x_i is required to be bounded in the range $[x_i^{\min}, x_i^{\max}]$ after a certain time instant t_i^*

Introduction	System model	Properties and results	Example of application	Conclusion	
00000	000000000	0000000000	00	000	
Deal time medaling					

Real-time parameters

 $\lambda_i: \{T_i, C_i\}$

- T_i : time frame between two consecutive request times
- $C_i (\leq T_i)$: activation time
- deadline = period

utilization of λ_i $U_i = \frac{C_i}{T_i}$ request time $r_{i,k} = kT_i, k \in \mathbb{N}$ valid schedule S $\forall \lambda_i, \forall k$ $\int_{r_{i,k}}^{r_{i,k+1}} s_i(t) dt = C_i$

Introduction	System model	Properties and results	Example of application	Conclusion	
00000	000000000	0000000000	00	000	
Real-time modeling					

Example of behavior of x_i

Introduction	$\begin{array}{c} \mathbf{System \ model} \\ \circ \circ \circ \circ \circ \circ \circ \bullet \end{array}$	Properties and results	Example of application	Conclusion	
Problem statement					
Feasible RT	PS				

we seek the relationship between

- physical system parameters $(A_i, \alpha_i, B_i, \beta_i)$
- real-time parameters $(T_i \text{ and } C_i)$

in order to obtain a feasible RTPS:

 $\begin{cases} \mathcal{S} \text{ is a valid schedule} \\ \Psi_i \text{ are satisfied} \end{cases}$

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	0000000000	00	000

Outline

- 2 System model
- Properties and results
- Example of application

5 Conclusion

Introduction 00000	$\begin{array}{c} \mathbf{System \ model} \\ \texttt{000000000} \end{array}$	Properties and results •0000000000	Example of application	Conclusion
Theorems				
Succession	S			

Definition

the succession of values of the state variable in correspondence of request times is $S_k = \{x(t)\}$ $(t = r_k, k = 0, 1, 2, ...).$

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	0000000000	00	000
These				

Bounds for the succession S_k

Theorem

For any valid activation function s(t), the succession S_k is bounded between \tilde{x}^{\inf} and \tilde{x}^{\sup} for $k \ge k^*$.

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	0000000000	00	000
Theorems				

Bounds for the succession S_k

Equations

$$\tilde{x}^{\inf} = \frac{A + (B - A) e^{-\alpha UT} - Be^{-(\alpha U + \beta(1 - U))T}}{1 - e^{-(\alpha U + \beta(1 - U))T}}$$
$$\tilde{x}^{\sup} = \frac{B + (A - B) e^{-\beta(1 - U)T} - Ae^{-(\alpha U + \beta(1 - U))T}}{1 - e^{-(\alpha U + \beta(1 - U))T}}$$

 \tilde{x}^{inf} and \tilde{x}^{sup} are expressed as functions of physical parameters A, α, B, β and real-time parameters U, T

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	0000000000	00	000
(T)				

Theorems

Bounds for the state variable dynamics

Theorem

For any valid activation function s(t), the function x(t) is bounded between x^{\inf} and x^{\sup} for $t \ge t^*$.

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	0000000000	00	000

Theorems

Bounds for the state variable dynamics

Equations

$$x^{\inf} = A - \left(A - \tilde{x}^{\inf}\right) e^{-\alpha UT}$$
$$x^{\sup} = B - \left(B - \tilde{x}^{\sup}\right) e^{-\beta(1-U)T}$$

 x^{inf} and x^{sup} are expressed as functions of physical parameters A, α, B, β and real-time parameters U, T

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	0000000000	00	000
Theorema				

i neor ems

Asymptotic behavior for $T \rightarrow 0$

Fact

for any valid activation function s(t), it holds

$$T \to 0 \Rightarrow x(t) \to \bar{x}$$

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	00000000000	00	000
Theorems				

Theorems

Asymptotic behavior for $T \rightarrow 0$

Equation

$$\bar{x} = \lim_{t \to \infty, T \to 0} x(t) = \frac{A\alpha U + B\beta(1-U)}{\alpha U + \beta(1-U)}$$

Equation of \bar{x} is function of physical parameters A, α, B, β and real-time parameters U, T.

Introduction 00000	$\begin{array}{c} \mathbf{System \ model} \\ \texttt{ooooooooo} \end{array}$	Properties and results	Example of application	Conclusion		
Sensitivity analysis						
Feasibility r	egion					

Definition

the feasibility region Ω is a region in the U - T plane composed by all and only pairs (U, T) such that:

- s(t) is a valid schedule
- $\bullet\,$ constraints Ψ are satisfied

in other words, in the feasibility region holds:

$$x^{\inf} \ge x^{\min}$$
 and $x^{\sup} \le x^{\max}$

Introduction 00000	$\begin{array}{c} \mathbf{System \ model} \\ \texttt{000000000} \end{array}$	Properties and results $000000000000000000000000000000000000$	Example of application	Conclusion 000		
Sensitivity analysis						
Feasibility r	egion					

it is not possible to find values of U and T in closed form

since:

•
$$x^{\min} \le x^{\inf}$$

• $x^{\inf} = A - (A - \tilde{x}^{\inf}) e^{-\alpha UT}$
• $\tilde{x}^{\inf} = \frac{A + (B - A)e^{-\alpha UT} - Be^{-(\alpha U + \beta(1 - U))T}}{1 - e^{-(\alpha U + \beta(1 - U))T}}$

pairs $(U,T) \in \Omega$ need to be found using numerical techniques

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	00000000000	00	000

Sensitivity analysis

Example of feasible region Ω

Introduction	$\begin{array}{c} \mathbf{System \ model} \\ \texttt{ooooooooo} \end{array}$	Properties and results	Example of application	Conclusion
Sensitivity and	alysis			
Buonds on	the utilization	1		

range bounds U^{\min} and U^{\max} can be determined in closed form

by imposing $x^{\max} = \bar{x}$ and $x^{\min} = \bar{x}$:

$$U^{\max} = \frac{\beta(B - x^{\max})}{(\alpha - \beta)x^{\max} - (A\alpha - B\beta)}$$

$$U^{\min} = \frac{\beta(B - x^{\min})}{(\alpha - \beta)x^{\min} - (A\alpha - B\beta)}$$

Introduction 00000	$\mathbf{System \ model}$	Properties and results	Example of application	Conclusion
Outline				

1 Introduction

- 2 System model
- B Properties and results
- Example of application

5 Conclusion

Introduction 00000	$\begin{array}{c} \mathbf{System \ model} \\ \texttt{000000000} \end{array}$	Properties and results	Example of application \bullet	Conclusion
Problem				
Example of	application			

- the physical system associated with each resource is a fridge where the state variable x_i is the internal temperature
- the scheduler must keep temperature within bounds
- thermal phenomena have exponential decays:
 - A_i is the refrigerant temperature
 - B_i is the environmental temperature
 - α_i and β_i are related with physical properties such as thermal capacities and heat transfer coefficients

Introduction	System model	Properties and results	Example of application	Conclusion
00000	00000000	000000000	0●	000

Simulation

Example of application

i	A	α	B	β	x^{\min}	x^{\max}	x(0)	$ U^{\min}$	U^{\max}	U	T
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	-10 -10 -30	$\begin{array}{c} 0.10 \\ 0.15 \\ 0.20 \end{array}$	20 20 20	$0.04 \\ 0.03 \\ 0.03$	-4 1 -15	-1 5 -10	-1 2 -12	$\begin{array}{c c} 0.48 \\ 0.17 \\ 0.18 \end{array}$	$0.62 \\ 0.26 \\ 0.26$	$\begin{array}{c} 0.55 \\ 0.21 \\ 0.22 \end{array}$	$2.0 \\ 3.0 \\ 1.5$

 $U^{\text{tot}} = 0.98 < 1$ EDF activates at most one resource for any t

in general, it is possible to strongly limit the simultaneous activation of multiple resources, even if $U^{\text{tot}} > 1$

Introduction	$\mathbf{System \ model}$	Properties and results	Example of application 00	Conclusion

Outline

Introduction

- 2 System model
- B Properties and results
- Example of application

Introduction 00000	$\frac{\mathbf{System model}}{00000000000000000000000000000000000$	Properties and results	Example of application 00	Conclusion ●୦୦
Conclusion				
Conclusions				

- a new class of real-time systems has been introduced
- this class includes existing well-known models (power-aware, temperature-aware)
- a particular case of RTPS has been modeled and analyzed
- the focus has been put on the relationship between physical and real-time parameters

Introduction 00000	$\begin{array}{c} \mathbf{System \ model} \\ \texttt{ooooooooo} \end{array}$	Properties and results	Example of application 00	Conclusion 0●0			
Conclusion							
Future work	(S						

- accounting for event-driven (aperiodic) resource activations
- integration of feed-back techniques to cope with imprecision and inaccuracies in the model
- experimental validation required with practical implementation (promising on-going works)

Introduction 00000	System model 0000000000	Properties and results	Example of application	Conclusion ○○●
The End				

Merci

pour votre attention

Contact info

Marco L. Della Vedova, University of Pavia <marco.dellavedova@unipv.it>