
Timing Analysis of Embedded Systems using Model

Checking

Vallabh R. Anwikar and Purandar Bhaduri

Dept. of Computer Science & Engineering

IIT Guwahati, India

pbhaduri@iitg.ernet.in

18th International Conference on Real-Time and Network Systems
Toulouse, France

November 4-5, 2010

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 1 / 26

Outline

1 Introduction

2 Background: Timed Automata

3 Model of Preemptable Tasks

4 Explicit-Time Model Checking

5 Conclusion

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 2 / 26

Introduction

Embedded control systems are often distributed with a shared bus for
communication.

automotive
aerospace

Distributed real-time embedded systems

Tasks run on processors, communicate through messages.
Tasks: Fixed priority preemptive scheduling.
Messages: Bus access protocol (e.g., FPNPS, TDMA, etc.).
Accurate timing analysis a challenging task.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 3 / 26

Timing Analysis

Existing approaches
1 Extensions of Classical Schedulability Theory

Holistic Scheduling
SymTA/S

2 Real-Time Calculus
3 Model Checking

The first two approaches are too approximate and therefore
pessimistic.

Timed Automata

Suffer from state space explosion.
Cannot model preemption accurately.

Goal: Test the limits of timed automata based analysis using:

A novel approach due to Waszniowski et al., 2005 to approximately
model preemption in timed automata.
A generalized task model for preemptable tasks.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 4 / 26

Related Work

Modeling preemption accurately requires stopwatches.

Reachability for stopwatch automata is undecidable. [Krcál et al., 2004]

Preemption in timed automata with approximation:

Method proposed by Madl et al., 2009

Approximates stopwatch automata using timed automata.
Discretizes clocks by introducing ’checkpoints’ to store execution time
before preemption.
Constructs a generalized task model implementing the approach in the
Dream Tool.

Method proposed by Waszniowski et al., 2005

Approximates the clock value by nearest lower and upper integers.
No generalized task model as in case of Madl et al.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 5 / 26

Related Work (cont.) – More Recent Approaches

Uppaal 4.1 [David et al., 2010] has added stopwatches, with a zone
based approximation algorithm for reachability.

Approach using Calendar Automata and discrete time by Rajeev et
al., 2010.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 6 / 26

Contribution

Constructed a generalized task model based on Waszniowski’s
method.

Performed case studies applying this method.

Compared with method proposed in Dream in terms of time taken.

Experimented with explicit-time approach for timing analysis.

Compared explicit-time results with implicit-time results.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 7 / 26

Timed Automata (Alur et al., 1994)

Timed Automaton: A timed automaton over set of actions Act and
set of clocks C is a tuple 〈L, l0,E , I ,V 〉 where

L is a finite set of locations
l0 is the initial location
E ⊆ L × Ψ(C) × Act × 2C × L is the set of edges. When

〈l , g , a, r , l
′

〉 ∈ E , we write l
g ,a,r
−→ l

′

I : L −→ Ψ(C) is a function which assigns a clock constraint called
invariant to a location
V : L → 2AP is a a function which for each location assigns a set of
atomic propositions that hold in the location

Timed Automaton Example

y<=5

y<=10

x<=8

y:=0y >= 3

x:=0

y >= 4 && x >= 6
V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 8 / 26

Uppaal Tool

Tool for modeling, validation and verification of real-time systems
modeled as networks of timed automata.

Timed automata are extended with bounded integers, arrays etc.

Real valued clock variables are used for measuring time.

Supports communication using synchronization and shared variables.

Uppaal Example

A

A A

B

B B

0

1 2

0

1 2

y <= 4

y= 0
y >= 4
a!

y <= 4

y >= 4
a!
y= 0

y <= 4

y >= 4
a!
y= 0

a?

a?

a?

i = i + 1

i = i + 1 i = i + 1

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 9 / 26

Timed Automata Models used in Verification

TA model for a distributed real-time system includes:

Scheduler model
Preemptable task model
Message model

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 10 / 26

Scheduler Model (Madl et al., 2009)

For fixed priority
preemptive scheduling.

Task1 has higher priority
than Task2.

Task1 is released by
timer 1 while Task2 is
released by the
completion of Task3

The guard en[1] indicates
that Task1 is enabled.

Whenever a higher
priority task is scheduled,
the Preempt signal is
broadcast

Scheduler Model in Uppaal

timer_1?

finishtask3?

Preempt

U

C

Idle

finishtask1?

runtask1!

finishtask2?

en[2] && !en[1]

runtask2!

Schedule

Runtask2

Runtask1

en[1]

!en[1] && !en[2]

tim
er_1?

Preempt_CPU!

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 11 / 26

Preemptable Task Model

Approximates
the elapsed
execution
time by using
a bisection
algorithm to
obtain:

nearest
lower
integer
bound lc,
and
nearest
upper
integer
bound
uc.

Preemptable Task Model in Uppaal

 C

wcet1 = wcet1 − lc,
bcet1 = bcet1 > uc ? bcet1 − uc : 0

t = 0 error

runtask?
t= 0 p_buf > buf_limit

Preempt_CPU!

lc = 0
uc = wcet1

uc = (lc + uc)/2
&& uc > t && (uc−lc) > 1
(lc+uc)/2 >= t && lc < t

lc = (lc + uc)/2

&& uc > t && (uc−lc) > 1
(lc+uc)/2 <= t && lc < t

lc < && uc > t
&& (uc−lc) <= 1

lc==t
uc = lc

uc==t
lc = uc

t= 0
bcet1 = bcet
wcet1 = wcet

runtask?

run

Init

t < wcet1

finishtask!

t >= bcet1 && t <= wcet1 &&
p_buf <= buf_limit

p_buf−−,

t=0

PreemptWait

C C

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 12 / 26

Over-approximation in Handling Preemption (Waszniowski
et al., 2005)

Clock value c is approximated to closest upper and lower integers uc
and lc

BCET new := BCET − uc

WCET new := WCET − lc

BCET new ≤ BCETReal

WCET new ≥ WCETReal

Real behavior ⊆ Modeled behavior

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 13 / 26

Message Model

Model of messages in the system.

Execution time represents transmission
time of message.

Non-preemptive, i.e., higher priority
message waits for lower priority
message on the bus.

Clocks cd and ce model deadline and
transmission time of the message.

Message Model in Uppaal

cd > dl

C

init

ce<=wcet

cd > dl

ce=0
runmsg?

error

run

wait

finishtask?

cd=0

cd=0

en[i]=0

finishmsg!

t>=bcet

ce=0

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 14 / 26

Case Study 2 Using Uppaal

Application containing CAN bus (di Natale et al., 2007)
ECU2

ECU1 CAN ECU3

O14
8 2

2

8 O15

O16O17

O18 O19

14

2

6

6 2

2 6

8

T3

T11

T8

T1

m7

m2

m10

T6

m4

m12

T3

T13T9

2

15

30

40

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 15 / 26

Application containing CAN bus

Time taken by a message to reach an actuator from a sensor is called
the end-to-end latency.

Important design parameter and has to be within a certain limit.

Multiple active chains in the system.

Preemptive scheduling for tasks mapped on the ECUs, and
Non-preemptive for messages

Array of clocks used for modeling each active chain.

Problem faced with the Dream tool.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 16 / 26

Results for Case Study 2: CAN Bus Application

Traditional methods considers blocking of lower priority tasks by
higher priority tasks (critical instant):

in reality such scenario may never occur in the system.

Model checking is more accurate

Explores each and every execution path of the system.

Chain Uppaal Real -Time Calculus

O14 − O15 28 32
O16 − O17 50 60
O18 − O19 110 210

Table: Worst case latencies of three task chains

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 17 / 26

Implicit-Time and Explicit-Time Model Checking

Implicit-Time Approach

Formalisms are extended with time e.g., Timed automata, Timed
Petri Nets

LTL, CTL need extension for handling timed automata specific
properties

Specialized data structures representing clock variables e.g.,
Differences Bounded Matrices.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 18 / 26

Implicit-Time and Explicit-Time Model Checking (cont.)

Explicit-Time Approach

A global integer variable is used for modeling time.

Variable is incremented/decremented showing passage of time.

We lose continuous semantics of time.

According to Henzinger et al., 1992, integer time verification is sound
for

Time-bounded invariance
Time-bounded response

Timing bounds are expressed via the use of

Countdown Timer
Countup Timer
Expiration Timer

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 19 / 26

Advantages of Explicit-Time Approach

Advantages

We can use model checkers like Spin, SMV etc., with easier learning
curves.

Easier to model preemption as we can store the current time value.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 20 / 26

Case Study 2 Using Spin

Application containing CAN bus
ECU2

ECU1 CAN ECU3

O14
8 2

2

8 O15

O16O17

O18 O19

14

2

6

6 2

2 6

8

T3

T11

T8

T1

m7

m2

m10

T6

m4

m12

T3

T13T9

2

15

30

40

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 21 / 26

Handling Preemption in Spin

PROMELA fragment

 ? eval(id);

1 active proctype()

2 {

3 start: do

4::atomic

5 {

14}

16}

9 rem_i = n;

13 fi;

15 od;

8 Proc_i

6 ((Proc_i ? [eval(id)])) −−> exe_i = rem_i

10 (runid == −1) −−> Proc_j !! id;

7 if :: expire(exe_i);

11 :: !((Proc_i ? [eval[id]))

12 −−> rem_i = exe_i; goto start;

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 22 / 26

Results of Case Study 2 Using Spin

Chain Uppaal Spin

O14 − O15 28 28
O16 − O17 50 55
O18 − O19 110 120

Table: Worst case latencies of three task chains

Results obtained with Spin are comparable with that of Uppaal.

Modeling with Spin is much easier than in Uppaal, but . . .

Requires more memory and time.

.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 23 / 26

Final Remarks

Constructed a general task model for handling a preemptive task
based on Waszniowski’s method.

Significant improvement as compared to real-time calculus and
holistic scheduling.

Our task model performs faster than method used in Dream tool.

Tried explicit-time approach for analyzing real-time systems.

Observed that they do not perform much worse than implicit-time
approach, but require significantly more memory.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 24 / 26

Future Work

Compare with Uppaal 4.1 (stopwatches) based analysis and the
Calendar Automata based method of Rajeev et al., 2010.

Try out bigger case studies for comparing the various approaches.

Try to handle the state space explosion problem by symbolic
approaches, model reduction, abstraction, etc.

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 25 / 26

Thank You...

V.R. Anwikar & P. Bhaduri (IIT Guwahati) Timing Analysis using Model Checking RTNS 2010 26 / 26

	Introduction
	Background: Timed Automata
	Model of Preemptable Tasks
	Explicit-Time Model Checking
	Conclusion

