Half-modelling of shaping in FIFO net

Half-modelling of shaping in FIFO net with network calculus

Marc Boyer

RTNS 2010 - nov. 4th 2010

Marc Boyer (ONERA, France)

Half-modelling of shaping in FIFO net

-RTNS 2010 - nov. 4th 2010

-

.

Outline

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies)

Local delay an shaping LUB

Our contribution

Conclusion

1 Context

2 Network calculus: overview

3 Network calculus: topologies

4 Previous works (tandem topologies)

- Local delay and shaping
- PBOO without shaping (LUB)
- 5 Our contribution
- 6 Conclusion

-

Outline

Half-modelling of shaping in FIFO net

Context

1 Context

Network calculus: topologies

4 Previous works (tandem topologies)

- Local delay and shaping
- PBOO without shaping (LUB)

Marc Boyer (ONERA, France)

э

Half-modelling of shaping in FIFO net

Marc Boyer

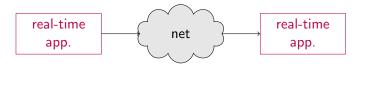
Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies)

shaping LUB


Our contribution

Conclusion

Net in real-time systems

Embedded systems are:

- real-time (\implies real-time scheduling)
- communicating:

< A

010 4 / 24

-

-

Half-modelling of shaping in FIFO net

Marc Boyer

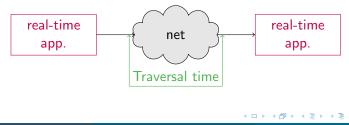
Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies) Local delay and

shaping LUB


Our contribution

Conclusion

Net in real-time systems

Embedded systems are:

- real-time (\implies real-time scheduling)
- communicating: network delay (traversal time)

4th 2010 4 / 24

Half-modelling of shaping in FIFO net

Marc Boyer

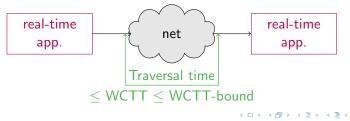
Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies)

shaping LUB


Our contribution

Conclusion

Net in real-time systems

Embedded systems are:

- real-time (\implies real-time scheduling)
- communicating: network delay (traversal time)
- ⇒ need of end-to-end delay bound (WCTT)

Half-modelling of shaping in FIFO net

Marc Boyer

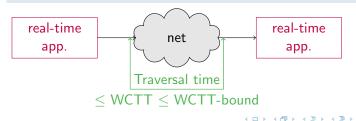
Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies) Local delay and

shaping LUB


Our contribution

Conclusion

Net in real-time systems

Embedded systems are:

- real-time (\implies real-time scheduling)
- communicating: network delay (traversal time)
- \Rightarrow need of end-to-end delay bound (WCTT)
 - traffic contract and service guarantee

Outline

Half-modelling of shaping in FIFO net

Network calculus: overview

2 Network calculus: overview

Network calculus: topologies

4 Previous works (tandem topologies)

- Local delay and shaping
- PBOO without shaping (LUB)

Marc Boyer (ONERA, France)

3

Basic ideas

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies) Local delay and shaping LUB

Our contribution

Conclusion

- Theory designed to compute WCTT bounds
- Used to certify A380
- Strong mathematical background: (min, +) dioid

$$\mathcal{F} = \left\{ f : \mathbb{R} \to \mathbb{R} \mid \begin{array}{c} x < y \implies f(x) \le f(y) \\ x < 0 \implies f(x) = 0 \end{array} \right\}$$
$$f * g)(t) = \inf_{0 \le u \le t} (f(t-u) + g(u)) \tag{1}$$

$$(f \oslash g)(t) = \sup_{0 \le u} (f(t+u) - g(u))$$
(2)

.

3

э

Reality modelling

Half-modelling of shaping in FIFO net

Marc Boyer

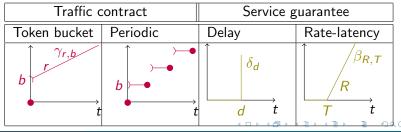
Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies)

Local delay a shaping LUB


Our contribution

Conclusion

- Data flow: R(t) amount of data up to time t (cumulative curve)
- Server: transforms input into output $R \xrightarrow{S} R'$
- Arrival curve: α

 $\forall t, d \geq 0: R(t+d) - R(t) \leq \alpha(d) \iff R \leq R * \alpha$

Service curve:
$$\beta$$
 iff $R' \ge R * \beta$

First results

Half-modelling of shaping in FIFO net

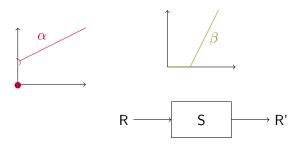
Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tander topologies) Local delay and shaping


Our contribution

Conclusion

Given:

an arrival traffic contract

a service guarantee

.

-

First results

Half-modelling of shaping in FIFO net


Network calculus: overview

Given:

- an arrival traffic contract.
- a service guarantee

it can compute

- a delay bound (h)
- output traffic contract

Outline

Half-modelling of shaping in FIFO net

Network calculus: topologies

Network calculus: topologies 3

4 Previous works (tandem topologies)

Local delay and shaping

PBOO without shaping (LUB)

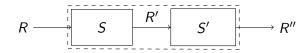
3 RTNS 2010 - nov. 4th 2010

э

Pay burst only once principle

Marc Boyer

Context


Network calculus: overview

Network calculus: topologies

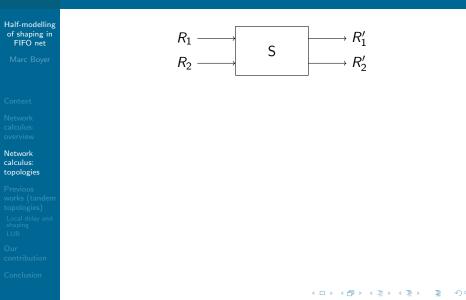
Previous works (tandem topologies) Local delay and shaping LUB

Our contribution

Conclusion

Pay burst only once

The sequence S, S' can be replaced by a virtual server S; S' with service curve $\beta * \beta'$.


Interest End-to-end delay is less than sum of individual delays.

$$h(\alpha,\beta*\beta') \le h(\alpha,\beta) + h(\alpha,\beta') \tag{3}$$

Proof $R'' \ge R' * \beta \ge (R * \beta) * \beta' = R * (\beta * \beta')$

Marc Boyer (ONERA, France)

FIFO Aggregate scheduling

FIFO Aggregate scheduling

Half-modelling of shaping in FIFO net

Marc Boyer

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies) Local delay and shaping LUB

Our contribution

Conclusion

First FIFO result: aggregated delay (Th. 1)

If $d = h(\alpha_1 + \alpha_2, \beta)$ is the delay for the aggregated flow, then δ_d is a service curve for each flow.

$$lpha_i'(t) = (lpha_i' \oslash \delta_d)(t) = lpha(t+d)$$

-∢ ∃ ▶

FIFO Aggregate scheduling

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies) Local delay and shaping LUB

Our contribution

Conclusion

First FIFO result: aggregated delay (Th. 1)

If $d = h(\alpha_1 + \alpha_2, \beta)$ is the delay for the aggregated flow, then δ_d is a service curve for each flow. $\alpha'_i(t) = (\alpha'_i \otimes \delta_d)(t) = \alpha(t+d)$

Second FIFO result: residual service (Th. 2)

Let be $\theta \ge 0$ then, β_i^{θ} is a service curve for flow R_i $\beta_i^{\theta} = [\beta - \alpha_j \oslash \delta_{\theta}]^+ \mathbb{1}_{\{>\theta\}} \qquad \alpha'_i = \alpha_i \oslash \beta_i^{\theta}$ with $\mathbb{1}_{\{>\theta\}}(x) = 1$ if $x > \theta$, 0 otherwise.

RTNS 2010 - nov. 4th 2010

Outline

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies)

Local delay ar shaping LUB

Our contribution

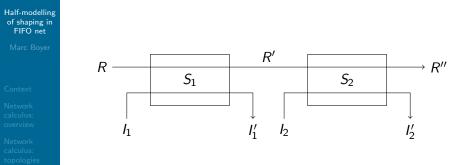
Conclusion

1 Context

2 Network calculus: overview

Network calculus: topologies

4 Previous works (tandem topologies)


- Local delay and shaping
- PBOO without shaping (LUB)

Our contribution

6 Conclusion

э

Considered topologies

- Tandem topology
- One flow of interest R
- One interfering flow I_i per server S_i

Previous

works (tandem topologies)

-

Two approaches

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies)

Local delay ar shaping LUB

Our contribution

Conclusion

Local delay and shaping

- Global delay as sum of local delays
- Use of Th 1 (FIFO: aggregate result)
- University of Toulouse (IRIT, Networks and Telecommunication group)

PBOO without shaping

- End to end delay with Pay Burst Only Once result
- Use of Th 2 (FIFO: residual service)
- University of Pisa (Computing Networking Group)

Marc Boyer (ONERA, France)

Half-modelling of shaping in FIFO net

RTNS 2010 - nov. 4th 2010

Shaping modelling

Half-modelling of shaping in FIFO net

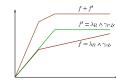
Marc Boyer

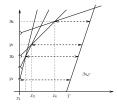
Context

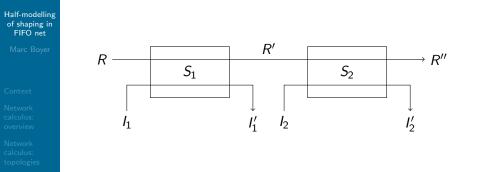
Network calculus: overview

Network calculus: topologie:

Previous works (tandem topologies)

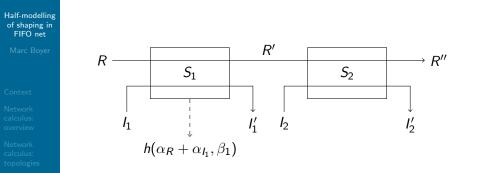

Local delay and shaping LUB


Our contribution

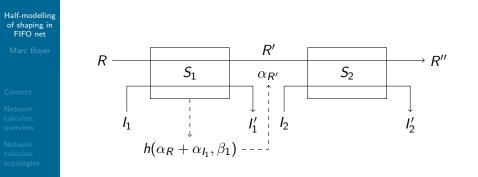

Conclusion

Applicative traffic is shaped by link capacity.

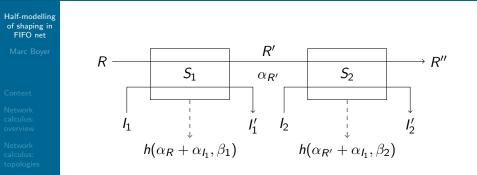
- new kind of curve (CPL)
- aggregate delay simple to compute



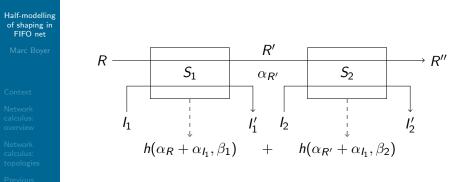
modelling: CPL arrival curve for *R* and *I_i* (full shaping)
 propagation of result: aggregate delay


end-to-end delay: sum of individual delays

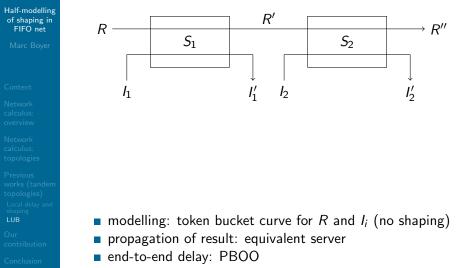
Local delay and shaping


- modelling: CPL arrival curve for R and I_i (full shaping)
 propagation of result: aggregate delay
 - end-to-end delay: sum of individual delays

Local delay and shaping

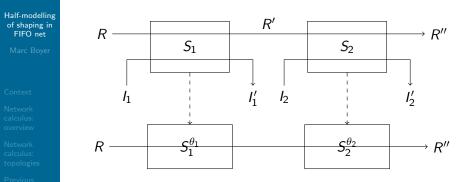

- modelling: CPL arrival curve for R and I_i (full shaping)
 propagation of result: aggregate delay
 - end-to-end delay: sum of individual delays

Local delay and shaping


- modelling: CPL arrival curve for R and I_i (full shaping)
 propagation of result: aggregate delay
 - end-to-end delay: sum of individual delays

Local delay and shaping

- modelling: CPL arrival curve for R and I_i (full shaping)
 propagation of result: aggregate delay
 - end-to-end delay: sum of individual delays


Local delay and shaping

Sac

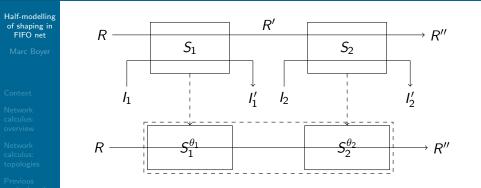
3

• hard point: choice of θ_i

topologies) Local delay and shaping LUB

Our contribution

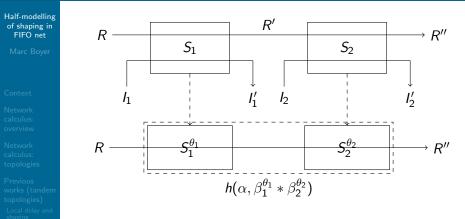
Conclusion


• modelling: token bucket curve for R and I_i (no shaping)

(a)

Sac

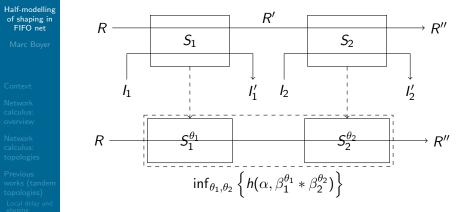
3


- propagation of result: equivalent server
- end-to-end delay: PBOO
- hard point: choice of θ_i

• modelling: token bucket curve for R and I_i (no shaping)

(日)

- propagation of result: equivalent server
- end-to-end delay: PBOO
- hard point: choice of θ_i



- modelling: token bucket curve for R and I_i (no shaping)
 propagation of result: equivalent server
 - end-to-end delay: PBOO
 - hard point: choice of θ_i

Marc Boyer (ONERA, France)

Half-modelling of shaping in FIFO net

RTNS 2010 - nov. 4th 2010

- Our contributio
- Conclusion

modelling: token bucket curve for R and I_i (no shaping)
 propagation of result: equivalent server

- end-to-end delay: PBOO
- hard point: choice of θ_i

Marc Boyer (ONERA, France)

Half-modelling of shaping in FIFO net

RTNS 2010 - nov. 4th 2010

2010 17 / 24

Outline

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies) Local delay and shaping

Our contribution

Conclusion

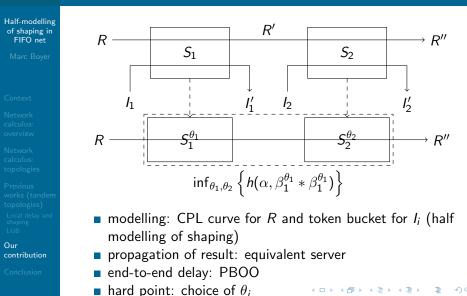
1 Context

2 Network calculus: overview

8 Network calculus: topologies

4 Previous works (tandem topologies)

Local delay and shaping


■ PBOO without shaping (LUB)

5 Our contribution

6 Conclusion

3 → 4 3

Contribution: half-modelling of shaping

Marc Boyer (ONERA, France)

Half-modelling of shaping in FIFO net

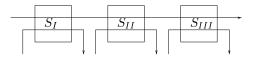
RTNS 2010 - nov. 4th 2010

Experiment

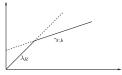
Half-modelling of shaping in FIFO net

Marc Boyer

Context


Network calculus: overview

Network calculus: topologie:


Previous works (tandem topologies) Local delay and shaping

Our contribution

Conclusion

- Three identical servers
- Identical interfering flows
- Two rates CPL, approximated by token bucket if needed

Experimental results ;-)

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies) Local delay and shaping

Our contribution

Conclusion

							Configu	irations								
Conf	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
R	1	1	1	1	5	5	5	5	1	1	1	1	1	1	1	1
T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
r	-9-	1011	-91	-91	-91	101	-87	-91	-611	-01	-8-1	-	100	10	190	-90
b	1	1	5	100	1	1	5	190	10	10	510	150	10	10	5	150
r	utr-	1	1	1	1	13	1	1	1	1	1	1	10	10	10	10
b'	1	5	1	1	1	5	1	15	10	5	10	1 50	1	5 10	10	1 50
$\rho = \frac{r+r'}{R}$	67%	67%	67%	67%	13%	13%	13%	13%	67%	67%	67%	67%	33%	33%	33%	33%
Delai R crossing S _I ; S _{II}																
LUB	5.50	13.50	11.50	2.70	2.61	4.21	3.47	2.12	2.35	3.15	2.95	2.07	2.32	3.12	2.80	2.06
Loc. Shap.	5.41	10.50	9.75	2.81	2.43	2.62	2.54	2.09	2.49	3.12	2.92	2.23	2.27	2.60	2.44	2.08
Half. Shap.	4.75	12.75	7.75	2.55	2.41	4.01	2.47	2.08	2.27	3.07	2.57	2.05	2.22	3.02	2.32	2.04
						Del	ai R crossi	ng S _I ; S _{II}	; S _{III}							
LUB	7.50	19.50	13.50	3.90	3.81	6.21	4.67	3.16	3.45	4.65	4.05	3.09	3.42	4.62	3.90	3.08
Loc. Shap.	8.81	18.50	15.87	4.58	3.66	4.07	3.83	3.14	4.05	5.19	4.76	3.63	3.47	4.20	3.72	3.17
Half. Shap.	6.75	18.75	9.75	3.75	3.61	6.01	3.67	3.12	3.37	4.57	3.67	3.07	3.32	4.52	3.42	3.06
					Ga	in on the r	new metho	d for R d	rossing S	; S _{II}						-
vs. LUB	13.63%	5.55%	32.60%	5.55%	7.61%	4.72%	28.65%	1.87%	3.19%	2.38%	12.71%	0.72%	4.13%	3.07%	17.14%	0.93%
vs. Loc. Shap.	12.30%	-21.42%	20.51%	9.46%	0.78%	-52.81%	2.83%	0.36%	8.69%	1.60%	11.96%	7.91%	2.34%	-16.30%	4.91%	1.79%
					Gain	on the new	v method	for R cro	ssing S _I ; S	$S_{II}; S_{III}$						
vs. LUB	10.00%	3.84%	27.77%	3.84%	5.21%	3.20%	21.29%	1.25%		1.61%	9.25%	0.48%	2.80%	2.07%	12.30%	0.62%
vs. Loc. Shap.	23.46%	-1.35%	38.58%	18.23%	1.22%	-47.64%	4.06%	0.64%	16.80%	11.94%	22.83%	15.37%	4.29%	-7.54%	8.09%	3.48%

Half-modelling of shaping in FIFO net

RTNS 2010 - nov. 4th 2010

∃ → (∃ →

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

21 / 24

3

Interpretation

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies) Local delay and shaping LUB

Our contribution

Conclusion

new method always better than LUB (direct generalisation)

- gain depends on burst sizes
- gain independent on path lenght
- new method vs "shaping+local delays"
 - depends on interfering burst size (not shaped)
 - gain increases with path length (PBOO)

- (E

Outline

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologie:

Previous works (tandem topologies)

Local delay a shaping LUB

Our contribution

Conclusion

1 Context

2 Network calculus: overview

Network calculus: topologies

4 Previous works (tandem topologies)

- Local delay and shaping
- PBOO without shaping (LUB)

Our contribution

6 Conclusion

3

э

-

Conclusion

Half-modelling of shaping in FIFO net

Marc Boyer

Context

Network calculus: overview

Network calculus: topologies

Previous works (tandem topologies)

shaping LUB

Our contribution

Conclusion

To have better bounds, two aspects must be modelled:

- shaping
- pay burst only once

FIFO in network calculus:

- local delay and shaping
- PBOO without shaping
- Our contribution:
 - Half modelling of shaping + PBOO
 - O(n log(n)) complexity (sorting and sums)

Future works: full modelling of shaping

RTNS 2010 - nov. 4th 2010 24 / 24