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Summary . After demonstrating the necessity and the advantage of decompos-
ing the subdivision matrix in the frequency domain when analysing a subdivision
scheme,we present a general framework basedon the method intro duced in [1] which
computes the Discrete Fourier Transform of a subdivision matrix. The e�ectivit y of
the technique is illustrated by perfoming the analysis of Kobb elt's

p
3 scheme in a

very simple manner.

1 In tro duction

Nowadays, subdivision surfaceshave becomea standard technique for both
animation and freeform shape modeling [21]. After one step of subdivision,
a coarsemesh is re�ned to a �ner one and several iterations generatea se-
quenceof incrementally re�ned mesheswhich converge to a smooth surface.
The main advantage of subdivision surfaceson other freeform representations
such as splines [9] is that they are de�ned by control mesheswith arbitrary
connectivity while generating smooth surfaceswith arbitrary manifold topol-
ogy. One of the most important stagesin subdivision schemeanalysis is the
evaluation of the scheme'ssmoothnessproperties. This is done in two steps:

First, onehas to study the continuit y properties of the schemein a regular
lattice (composed of valence 6 vertices for triangles meshesand valence 4
verticesfor quad meshes).Often the schemeis derived from the uniform knot-
insertion operator of someBox-spline surface [2] which leads us to a trivial
analysis:By construction the re�ned meshesconvergeto piecewisepolynomial
surfaceswith a known degreeof smoothnessbetween the patches [3, 5, 11].
On the other hand, the schemecan be non-polynomial [8, 22, 10], i.e. it is not
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derived from any known surfacerepresentation and the continuit y of the limit
surfaceis analysedusing su�cien t conditions basedon z-Transforms[6, 10, 7].

As the second step in the analysis, one has to analyse the scheme's
smoothness in the vicinit y of extraordinary vertices (EVs). Up to now, the
z-Transform fails to provide an e�cien t tool at EVs, and even though we can
prove C1 continuit y for schemesderived from Box-splinesby showing that the
characteristic map is regular and injective [15, 12, 20], the complete analysis
is performed using necessaryconditions based on the eigenstructure of the
subdivision matrix [5, 1, 16]. In fact, the convergencebehavior of a subdivi-
sion schemeat an EV is completely determined by the eigencomponents of its
subdivision matrix. The analysisof a subdivision scheme[5, 11, 19, 14, 10] in
the vicinit y of such irregularities of the control meshhencerequires a simple
technique for identifying and computing the various eigencomponents. The
standard method exploits the scheme's rotational symmetries through the
use of the Fourier transform. This partitions the subdivision matrix, which
sizevaries linearly with the valenceof the EV, into a block diagonal matrix.
Although the number of blocks depends on the valence, the blocks are of
�xed size, and so it becomespossible to determine the eigencomponents for
all valenceswith a single algebraic computation.

In this paper, we �rst illustrate by a practical example the importance
of the frequency analysis and we emphasizethe necessity of identifying the
eigenvalues with respect to their rotational frequency. We then present the
generalform of Ball and Story's method [1] which performsa fast computation
of the di�eren t frequency blocks. This approach is illustrated on Kobbelt'sp

3 scheme [10] and we show how very simple computations performed on
a single subdivision iteration rather than on the square of the subdivision
matrix allow us to deal with the scheme's rotation property and to �nd the
speci�c subdivision rules for the EVs.

Another method computing the eigencomponents of a subdivision matrix is
basedon z-Transformsand it exploits the circulant structure of the subdivision
matrix' blocks. This technique also leads to very simple computations and
all details can be found in [12, 18]. Both methods are equivalent in terms of
complexity, however our method computesthe eigencomponents in the Fourier
domain while the use of z-Transforms provides the eigencomponents in the
spacial domain. Depending on the application, one or the other method can
be prefered.

2 Frequency of the di�eren t eigenvalues

The operator which maps a central EV of valencev and its r -ring neighbor-
hood P to the sametopological con�guration p after one step of subdivision
is called the subdivision matrix S. The vectors of old verticesP and new ver-
tices p are linked by the relation p = SP. The matrix S is squareand each of
its rows contains the coe�cien ts of an a�ne combination of the old verticesP
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which computesone new vertex of p. The convergencebehavior of the subdi-
vision schemeat the central EV is completely de�ned by the eigencomponents
(eigenvaluesand eigenvectors) of the matrix S. The matrix S is then decom-
posed into S = M � M � 1 where � is a diagonal matrix of eigenvalues f � j g
and M is a squarematrix whosecolumnsare the (right ) eigenvectorsm j . This
can be well understood if we interpret the eigencomponents as a local Tay-
lor expansion. Indeed, this interpretation allows us to associate the di�eren t
geometric con�gurations (position, tangent plane, curvature) with the eigen-
components by which they are de�ned. The smoothnessanalysis then relies
on necessaryconditions for the eigencomponents of the di�eren t geometric
con�gurations.

As we will see in Section 2.1, given the mere eigendecomposition of a
subdivision matrix, we cannot directly deducewhich eigenvalue corresponds
to which geometric con�guration so that we do not know how to apply the
conditions for the scheme'ssmoothnessanalysis. In Section 2.2 we show how
the decomposition of the subdivision matrix in the Fourier domain resolves
this problem.

2.1 Geometric con�gurations and their eigencomp onents

The Taylor expansionof a function f : R2 ! R can be written as follows:

f (x; y) = f + f x x + f y y + (f xx + f yy )
�

x2

4
+

y2

4

�

+ (f xx � f yy )
�

x2

4
�

y2

4

�
+ f xy xy + ::: ; (1)

where each function expressionon the right hand side is evaluated at (0; 0).
The point f is a position, the two �rst order partial derivatives f x and f y

are the coe�cien ts of x and y de�ning the tangent plane and the three second
order partial derivativesf xx , f yy and f xy are the coe�cien ts of three quadratic
con�gurations de�ning the curvature: An elliptic con�guration x2+ y2 denoted
as cup and two rotationally symmetric hyperbolic con�gurations x2 � y2 and
x y denoted as saddle.

On the other hand, the vector of new vertices p is expressedas a local
Taylor expansion when it is computed as p = S P = M � M � 1 P = M � l
with l = M � 1P [13]. We then have:

p = m 0 � 0 l0 + m 1 � 1 l1 + m 2 � 2 l2 + m 3 � 3 l3 + m 4 � 4 l4 + m 5 � 5 l5 + ::: ; (2)

where the l j 2 R3 are the approximations of the Taylor coe�cien ts, i.e., the
successive partial derivatives(l0 is a position, l1 and l2 approximate the �rst
order derivatives, etc), the m j s correspond to the polynomials in Eq. (1),
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whose function values scale with a certain factor � j . Eq. (1) and (2) both
behave like local Taylor expansionsapplied in di�eren t contexts. They have
identical geometric interpretation and in Eq. (2), the components m j , � j and
l j with index j = 0 are responsible for the central EV's position, components
with indices j = 1; 2 are responsible for the tangent plane and those with
indices j = 3; 4; 5 are responsible for the curvature: j = 3 for the cup and
j = 4; 5 for the two saddles.

Note that the components with indices j = 1; 2 de�ning the tangent plane
con�guration are images under rotation, yielding the property j� 1j = j� 2j.
This is alsothe casefor the two saddlecon�gurations which yields j� 4 j = j� 5j.

The study of the subdivision scheme'ssmoothnessat the EV is basedon
necessaryconditions a�ecting the di�eren t eigencomponents f � j g and f m j g.
For instance, the condition 1 = j� 0j > j� j j for all j > 0 is necessaryfor
convergenceof the scheme, the additional conditions 1 > j� 1j, 1 > j� 2j and
min( j� 1 j; j� 2 j) > j� j j for j > 2 are necessaryfor C1 continuit y and if the
schemeis C1. However, in practice, useful schemesare rotationally symmetric
and therefore we restrict our analysis to this special case.This gives us the
additional properties : j� 1j = j� 2 j and j� 4 j = j� 5 j. Properties like bounded
curvature (j� 2 j2 � j� 3 j, j� 2 j2 � j� 4 j = j� 5j and min(j� 3 j; j� 4j) > j� j j for
j > 5) are necessaryfor C2 continuit y. If j� 2 j2 = j� 3 j = j� 4 j = j� 5 j, the
schemehas a non-zero bounded curvature (without 
at spot at the EV) and
if j� 2j2 > j� j j, j = 3; 4; 5, the schemehaszero curvature generatinga 
at spot
at the EV.

A critical point in the analysis after eigendecomposition of the subdivi-
sion matrix is then to identify which index (or con�guration) corresponds
to which eigencomponents. Since we know which eigenvalue corresponds to
which eigenvector, the task is reduced to the identi�cation of the di�eren t
eigenvalues.This is illustrated by the following example:

Let us consider a variant of Loop's subdivision scheme [11] having its
n-uplet of eigenvalues(� 0; :::; � 7) at a valence7 EV sorted by geometric con-
�guration (following our Taylor notation (2)) and having their value in the
set:

f 1;
1
2

;
1
2

;
1
4

;
1
4

;
1
4

; � j <
1
4

g (3)

We emphasizethat the set of eigenvalues is not sorted sorted from the
greatest to the smallest as it is usually done, but by geometric con�guration.
The question is: How can we know which one of the eigenvalues in (3) is
� 0, � 1,... ? Indeed, following (2), each order satis�es di�eren t properties. For
instance, the eigenvaluescan have the following values:

(� 0; � 1; � 2; � 3; � 4; � 5; � 6; � 7) = (1;
1
2

;
1
2

;
1
4

;
1
4

;
1
4

; <
1
4

; <
1
4

); (4)

and hence one can deduce that the scheme is certainly C1 and that it has
bounded curvature. If indeed the analysis of the caracteristic map provesC1
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Fig. 1. Di�eren t versions of Loop's scheme at a valence 7 EV. The �rst column
shows the subdivision of a semi-regular planar mesh with the EV in its center. The
secondcolumn shows a subdivided saddle mesh with the EV in its center and the
third column illustrates the curvature behavior using re
exion lines on the same
saddle mesh. In the �rst row, the scheme has the eigenspectrum (4) and it is C1

contin uous with non-zero bounded curvature (no 
at spot). In the second row, it
has the eigenspectrum (5). We clearly seethe shrinking factor of � 1 = � 2 = 1

4 at
the EV in the planar con�guration and the C1 discontin uit y in the saddle mesh. In
the third row it has the eigenspectrum (6) and the scheme is C1 contin uous with
bounded curvature (
at spot in the saddle con�guration). The misbehavior of the
curvature is illustrated by the re
exion lines in the saddle mesh.
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continuit y, the schemeis C1 at the EV and it has boundedcurvature without

at spot (�rst row in Fig. 1). However if the eigenvaluesare actually:

(� 0; � 1; � 2; � 3; � 4; � 5; � 6; � 7) = (1;
1
4

;
1
4

;
1
4

;
1
2

;
1
2

; <
1
4

; <
1
4

); (5)

the necessarycondition for C1 continuit y is not satis�ed (j� 2 j < j� 4j) so that
the schemeis not C1 and it is not even necessaryto analysethe characteristic
map (secondrow in Fig. 1). Finally, the situation where :

(� 0; � 1; � 2; � 3; � 4; � 5; � 6; � 7) = (1;
1
2

;
1
2

;
1
4

; � 4 <
1
4

; � 5 <
1
4

;
1
4

;
1
4

); (6)

is more problematic becauseif the analysis of the characteristic map proves
that the scheme is C1, one could conclude from the eigenspectrum (3) that
it has also bounded curvature without 
at spot at the EV (j� 1 j2 = j� 2 j2 =
j� 3 j = j� 4 j = j� 5 j) while it is not the case.In the saddle con�guration, the
curvature is bounded with a 
at spot, and somecurvature misbehavior can
be intro duced in the limit surface by the eigenvectors corresponding to the
eigenvalues� 6 and � 7 (third row in Fig. 1).

The decomposition of the subdivision matrix in the Fourier domain will
allow us to determine if we are in the situation (4), (5), (6) or in a situation
where the eigenvaluesare sorted in a still di�eren t manner.

2.2 Iden ti�cation of the eigenvalues in the Fourier domain

The identi�cation of the eigenvalues is based on the decomposition of the
subdivision matrix S in the Fourier domain. The block circulant subdivision
matrix S with n blocks Si;j is transformed into a block diagonal matrix ~S hav-
ing v blocks ~S! which correspond to the rotational frequencies! = f 0; ::; v� 1g
ordered in frequency in ~S! (as illustrated in Equation (7)). We de�ne the ro-
tational frequency just below. The eigenvaluesof the frequencyblocks ~S! are
amplitudes of the eigenvaluesof the matrix S [1, 17], henceif we know which
frequencyrepresents each con�guration (position, tangent plane, cup and sad-
dle), we can identify the eigenvalues from the frequency block in which they
are computed.

S =

2

6
6
6
6
6
6
6
6
6
6
4

S0;0 � � � S0;n

...
. . .

...
...

. . .
...

Sn; 0 � � � Sn;n

3

7
7
7
7
7
7
7
7
7
7
5

� ! ~S =

2

6
6
6
4

�
~S0

�
0�

~S1
�

. . .
0

�
~Sv� 1

�

3

7
7
7
5

(7)
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In the Taylor expansion (1), the constant term refers to a position, the
terms for x and y de�ne the tangent plane and terms in x2 + y2, x2 � y2 and
xy de�ne the di�eren t curvature con�gurations (cup and two saddles). The
expressionof thesecon�gurations in a cylindrical coordinate system(Eq. (8))
as a periodic function g(� ) = � cos(! � + ' ) (where � is the amplitude, ! is
the frequency and ' is the phase) provides directly the rotational frequency
! associated to each con�guration. For instance, x2 � y2 = r 2 cos(2� ) and
hencethis saddlecon�guration has a frequency component ! = 2. Note that
due to rotational symmetry, ~S! = ~Sv� ! so that it is enough to consider the
frequencies! = f 0; ::; v

2 g.

(x; y; z) ! (r; � ; z) with

8
<

:

x = r cos(� )
y = r sin(� )
z = z

(8)

This tells us that the position con�guration has the frequency ! = 0 and
hencethe eigenvalue j� 0j is the dominant eigenvalueof the frequencyblock ~S0,
the tangent plane con�guration hasthe frequency! = 1 and j� 1 j = j� 2 j equals
the dominant eigenvalue ~� 1 of the frequency block ~S1, the cup con�guration
has the frequency! = 0 and j� 3 j equalsthe subdominant eigenvalue ~� 0 of the
frequency block ~S0 and �nally the saddle con�gurations have the frequency
! = 2 and j� 4 j = j� 5 j equalsthe dominant eigenvalue ~� 2 of the frequencyblock
~S2. This relation betweenthe di�eren t eigencomponents and their rotational
frequenciesis presented in [5].

When a scheme is convergent, its eigenvalue � 0 equals 1 (Sect. 2.1) and
since j� 0 j is the dominant eigenvalue of the frequency block ~S0, it can be
written as:

~S0 =
�

1 � � �
0

�
~S0

0

�
�

: (9)

In this paper, we only considerconvergent subdivision schemes,and so � 0 = 1
and the cup eigenvalue j� 3 j is the dominant eigenvalue ~� 0 of the block ~S0

0.

3 Computation of the frequency blo cks

In this section,we present a generalframework, usedin [1] on Catmull-Clark's
scheme [3], which computes the eigencomponents in the frequency domain.
We present the procedureon a triangular lattice with a 2-ring neighborhood
around the central EV and a standard dyadic re�nement (seeFig. 2(a)). The
adaptation to a single 1-ring neighborhood or to quad meshes[1] is straight-
forward. We notice that this method may not be suitable to analyse non-
rotationally symmetric schemes,however, aspointed out in [4], theseschemes
are mainly interesting for theoretical studiesand all the schemesusedin prac-
tical applications are rotationally symmetric.
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(a) (b)

Fig. 2. Subdivision with (a) a dyadic re�nement and (b) a
p

3 re�nement, of a
2-ring con�guration around a central EV A of valencev. Capital letters denote the
set of old vertices P and small letters the set of new vertices p.

The set of old vertices P is de�ned as follows:

P = f A; B0; ::; Bv� 1; C 1
2
; ::; Cv� 1

2
; D0; ::; D v� 1g;

where the di�eren t letters X = f B ; C; Dg denote the di�eren t sets of rota-
tionally symmetric vertices around the central EV A and the indices give the
rotational position of each vertex: Vertex X j is at an angle of j 2 �

v (where v
is the valenceof the EV) from the axis of origin. The set of new vertices p:

p = f a; b0; ::; bv� 1; c1
2
; ::; cv� 1

2
; d0; ::; dv� 1g;

represents the sametopologicalcon�guration, but after one stepof subdivision
and around the central EV a. The new verticesof p are computed using a�ne
combinations gj

k of the old vertices of P:

a = g0(P); bk = g1
k (P); ck+ 1

2
= g2

k (P); dk = g3
k (P); k = 0; ::; v � 1;

where the a�ne combinations gj
k are the rows of the subdivision matrix S.

Using the Discrete Fourier Transform (DFT):

~x ! =
1
v

v� 1X

l =0

x l exp(� 2� i! l=n); x = f a; b;c;dg; (10)

weexpressthe rotational frequenciesf ~a! ; ~b! ; ~c! ; ~d! g of each setof rotationally
symmetric new vertices of p in terms of the rotational frequencies ~P ! =
f ~A ! ; ~B ! ; ~C! ; ~D ! g of the old vertices of P:
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~a! = ~g0
! ( ~P ! ); ~b! = ~g1

! ( ~P ! ); ~c! = ~g2
! ( ~P ! ); ~d! = ~g3

! ( ~P ! );

where the a�ne combinations ~gj
! are the rows of the frequency blocks ~S! of

the discreteFourier transform ~S of the subdivision matrix S. In verticesA and
a, the only frequencyis the zero frequency, hencethe terms in exp(� 2� i! l=v)
vanish in the expressionof ~a! and we have: A = ~A0 = ~A, a = ~a0 = ~a and
8 ! > 0, ~A ! = ~a! = 0. Furthermore, in order to expressthe frequency block
~S0 as in Equation (9), we have to center the analysis at the central EV so
that:

2

6
6
4

~a0
~b0 � ~a0

~c0 � ~a0
~d0 � ~a0

3

7
7
5 =

2

6
6
4

~S0

3

7
7
5

2

6
6
4

~A0
~B0 � ~A0
~C0 � ~A0
~D0 � ~A0

3

7
7
5 with

h
~S0

i
=

�
1 � � �
0

�
~S0

0

�
�

;

hence

2

4
~b0 � ~a0

~c0 � ~a0
~d0 � ~a0

3

5 =

2

4 ~S0
0

3

5

2

4
~B0 � ~A0
~C0 � ~A0
~D0 � ~A0

3

5 ;

and becausefor ! > 0: ~A ! = ~a! = 0, 8 ! > 0 we have:

2

4
~b!

~c!
~d!

3

5 =

2

4 ~S!

3

5

2

4
~B !
~C!
~D !

3

5 :

The size of the frequency blocks is equal to the number of sets of ro-
tationally symmetric vertices in the neigborhood of the central EV. Hence,
these blocks are of �xed size (here they are 3 � 3 matrices) and they can be
expressedas a function of the valencev of the central EV. The original prob-
lem of computing the eigencomponents of large (3v + 1) � (3v + 1) matrices
(in the spatial domain) for each value of the valencev is reduced to a single
eigendecomposition of small 3� 3 matrices (in the Fourier domain), providing
the di�eren t eigencomponents expressedin terms of the valencev. Depending
on their complexity, the frequency blocks can be either decomposedby hand
computations or using the symbolic toolbox of any mathematical software.

We note that the right eigenvectors ~m 0 , ~m 1 and ~m 2 associated respec-
tiv ely to the eigenvalues ~� 0, ~� 1 and ~� 2, can be interpreted as amplitudes of
the eigenvectorsm 0 ; ::; m 5 of the spatial domain, e.g. the tangent plane eigen-
vector ~m 1 = [rB ; rC ; rD ] givesthe radii r X of verticesBk , Ck+ 1

2
and D k from

the central EV A.
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4 Example by Kobb elt's
p

3 scheme

We illustrate by the practical example of Kobbelt's
p

3 subdivision scheme
[10] the application of the generalprocedurepresented in Sect.3. This scheme
rotates the lattice after one step of subdivision due to the insertion of new
vertices in the middle of the old faces(as we can seein Fig. 2(b)). If the eigen-
decomposition is performed on the subdivision matrix S, we obtain complex
eigencomponents generatedby the scheme's rotation property. To overcome
this di�cult y, in [10] the scheme is rather analysedafter two stepsof subdi-
vision so that the lattice is aligned with the two steps older one but rotated
by one sector. The lattice is then rotated back using a permutation matrix
R, and the matrix studied �nally is Ŝ = R S2.

We �rst compute the frequencyblocks on the 2-ring con�guration shown in
Fig. 2(b). The computation is performed on a single subdivision step without
any back-rotation. We then reproduce the results presented in [10] using the
eigencomponents in the Fourier domain. We will seethat the computations
are so simple that they can be done quickly and easily by hand.

Kobbelt's
p

3 schemeis composedof two re�nement rules (stencils): One
which displacesan old vertex (Eq. (11)) and one which computesa new ver-
tex in the center of a triangle (Eq. (12)). They are de�ned by the following
formulae:

a = (1 � � v )A +
� v

v

v� 1X

j =0

B j (11)

bk+ 1
2

=
1
3

(A + Bk + Bk+1 ); (12)

where � v is a parameter which can be used in order to improve the surface
smoothnessat the EV for di�eren t valencesv. The new vertices ck are com-
puted using the regular relaxation rule (valence6 vertex) and the new vertices
dk+ 1

2
using the insertion rule as follows:

ck =
2
3

Bk +
1
18

(A + Bk � 1 + Bk+1 + Ck � 1
2

+ Ck+ 1
2

+ D k )

dk+ 1
2

=
1
3

(Bk + Bk+1 + Ck+ 1
2
):

The DFT (Eq. (10)) is then used to derive the rotational frequenciesof
the di�eren t setsof rotationally symmetric vertices:
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~a0 = 1:
0X

j =0

a e0 = (1 � � v )A +
� v

v

vX

j =0

B j using the DFT and Eq. (11)

= (1 � � v ) ~A0 + � v ~B0 becausethe only frequency in a is ! = 0

~b! =
1
v

v� 1X

j =0

bj e� 2� i! j =v DFT

=
1
v

v� 1X

j =0

�
1
3

(A + B j � 1
2

+ B j + 1
2
)
�

e� 2� i! j =v using Eq. (12)

=
1
3

A +
1
3v

v� 3
2X

l = � 1
2

B l e� 2� i! ( l + 1
2 )=v +

1
3v

v� 1
2X

l = 1
2

B l e� 2� i! ( l � 1
2 )=v

=
1
3

A +
1
3v

e� 2� i! =2v
v� 3

2X

l = � 1
2

B l e� 2� i! l=v +
1
3v

e2� i! =2v
v� 1

2X

l = 1
2

B l e� 2� i! l=v

=
1
3

~A0 +
1
3

�
e� � i! =v + e� i! =v

�
~B !

=
1
3

~A0 +
2
3

k! ~B ! with k! = cos
� � !

v

�
and becausee� i� + ei� = 2 cos�

hence 8
><

>:

~b0 � ~a0 =
�

2
3 � � v

� �
~B0 � ~A0

�
if ! = 0

~b! = 2
3 k! ~B ! otherwise.

Using similar computations, we obtain:

8
><

>:

~c0 � ~a0 =
�

7
9 � � v

� �
~B0 � ~A0

�
+ 1

9

�
~C0 � ~A0

�
+ 1

18

�
~D0 � ~A0

�
if ! = 0

~c! =
�

2
3 + 1

9 k2!
� ~B ! + 1

9 k! ~C! + 1
18

~D ! otherwise
8
><

>:

~d0 � ~a0 =
�

2
3 � � v

� �
~B0 � ~A0

�
+ 1

3

�
~C0 � ~A0

�
if ! = 0

~d! = 2
3 k! ~B ! + 1

3
~C! otherwise.

From theseexpressions,we directly deducethe frequencyblocks:

~S0
0 =

2

6
6
4

2
3 � � v 0 0
7
9 � � v

1
9

1
18

2
3 � � v

1
3 0

3

7
7
5 and if ! > 0 ~S! =

2

6
6
4

2
3 k! 0 0

2
3 + 1

9 k2!
1
9 k!

1
18

2
3 k!

1
3 0

3

7
7
5 :
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Since the only non-zero coe�cien t of the �rst rows of the matrices ~S0
0

and ~S! is the one in the left-hand corner, we directly obtain the dominant
eigenvalues ~� 0, ~� 1 and ~� 2 as:

~� 0 =
2
3

� � v ; ~� 1 =
2
3

k1; ~� 2 =
2
3

k2: (13)

As we see,the freeparameter � v only appearsin the cup eigenvalue, hence
the scheme's behavior is improved at the EV by bounding the curvature in
the cup con�guration using the condition: ~� 0 = ~� 2

1. The value of parameter
� v in Eq. (11) is then derived as follows:

~� 0 = ~� 2
1 ( )

2
3

� � v =
�

2
3

k1

� 2

( ) � v =
2
9

�
2 � cos

�
2�
v

��
:

The eigenvalues ~� i (i = 1; 2; 3) could have beencomputed in an even sim-
pler manner by only consideringa 1-ring neigborhood around the central EV.
However, the choiceof a 2-ring neighborhood is basedon our wish of giving an
example allowing a more complete analysis basedon a larger neighborhood.
It alsoallows us to check that more eigenvaluesare adequatelysorted (seethe
necessaryconditions on the eigenvalues in Sect. 2.1).

5 Conclusion

In this paper, we haveemphasizedthe importance of the analysisof the subdi-
vision matrix in the Fourier domain: The analysisof large matrices in the spa-
tial domain is reducedto the analysisof small matrices in the Fourier domain
sothat it becomeseasierto compute the di�eren t eigencomponents. Moreover,
wecandeterminewhich geometriccon�guration is de�ned by which eigencom-
ponents. We have presented a general framework computing the subdivision
matrix in the frequency domain and it has been illustrated on the practi-
cal example of Kobbelt's

p
3 scheme. We have shown how this computation

technique allows us to analysethe schemein a very simple manner.
There are limitations for this computation technique when the rotational

position of a set of rotationally symmetric vertices with respect to the axis
of origin is unknown. More investigations have to be carried out to solve
this problem while keeping the computations as simple as possible. As we
have demonstrated however, this approach performs on 2-ring neigborhood
con�gurations and henceit is very well suited to analysemost of the standard
subdivision schemesor any new rotationally symmetric scheme.
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