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Summary . After demonstrating the necessiy and the advantage of decompos-
ing the subdivision matrix in the frequency domain when analysing a subdivision
scheme, we presert a generalframework basedon the method intro duced in [1] which
computes the Discrete Fourier Transform of a subdivision matrix. TBe_e ectivit y of
the technique is illustrated by perfoming the analysis of Kobbelt's = 3 schemein a
very simple manner.

1 Intro duction

Nowadays, subdivision surfaceshave becomea standard technique for both
animation and freeform shape modeling [21]. After one step of subdivision,
a coarsemeshis rened to a ner one and se\eral iterations generatea se-
quenceof incremertally re ned mesheswhich corvergeto a smooth surface.
The main advantage of subdivision surfaceson other freeform represenations
such as splines[9] is that they are de ned by corntrol mesheswith arbitrary
connectivity while generating smooth surfaceswith arbitrary manifold topol-
ogy. One of the most important stagesin subdivision scheme analysisis the
evaluation of the scheme'ssmaoothnessproperties. This is donein two steps:
First, onehasto study the cortinuity properties of the schemein a regular
lattice (composed of valence 6 vertices for triangles meshesand valence 4
verticesfor quad meshes).Often the schemeis derived from the uniform knot-
insertion operator of some Box-spline surface [2] which leads us to a trivial
analysis: By construction the re ned meshesconvergeto piecewisepolynomial
surfaceswith a known degreeof smoothnessbetweenthe patches|[3, 5, 11].
On the other hand, the schemecan be non-polynomial [8, 22, 10, i.e. it is not
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derived from any known surfacerepresenation and the cortin uity of the limit
surfaceis analysedusing su cien t conditions basedon z-Transforms(6, 10, 7].

As the second step in the analysis, one has to analyse the scheme's
smoothnessin the vicinity of extraordinary vertices (EVSs). Up to now, the
z-Transform fails to provide an e cien t tool at EVs, and even though we can
prove C* continuity for shemesderived from Box-splinesby shawing that the
characteristic map is regular and injective [15, 12, 20], the complete analysis
is performed using necessaryconditions based on the eigenstructure of the
subdivision matrix [5, 1, 16]. In fact, the convergencebehavior of a subdivi-
sion schemeat an EV is completely determined by the eigencompnerts of its
subdivision matrix. The analysisof a subdivision scheme[5, 11, 19, 14, 10 in
the vicinity of such irregularities of the cortrol meshhencerequiresa simple
technique for identifying and computing the various eigencompnerts. The
standard method exploits the scheme's rotational symmetries through the
use of the Fourier transform. This partitions the subdivision matrix, which
sizevaries linearly with the valenceof the EV, into a block diagonal matrix.
Although the number of blocks depends on the valence, the blocks are of
xed size,and soit becomespossibleto determine the eigencommnerts for
all valenceswith a single algebraic computation.

In this paper, we rst illustrate by a practical example the importance
of the frequency analysis and we emphasizethe necessiy of identifying the
eigervalues with respect to their rotational frequency We then presern the
generalform of Ball and Story's method [1] which performsa fast computation

f the dierent frequency blocks. This approad is illustrated on Kobbelt's

3 scheme [10] and we shov how very simple computations performed on
a single subdivision iteration rather than on the square of the subdivision
matrix allow us to deal with the scheme'srotation property and to nd the
speci ¢ subdivision rules for the EVs.

Another method computing the eigencommnerts of a subdivision matrix is
basedon z-Transformsand it exploits the circulant structure of the subdivision
matrix' blocks. This technique also leads to very simple computations and
all details can be found in [12, 18]. Both methods are equivalent in terms of
complexity, however our method computesthe eigencompnerts in the Fourier
domain while the use of z-Transforms provides the eigencompmnerts in the
spacial domain. Depending on the application, one or the other method can
be prefered.

2 Frequency of the dieren t eigenvalues

The operator which maps a certral EV of valencev and its r-ring neighbor-
hood P to the sametopological con guration p after one step of subdivision
is called the subdivision matrix S. The vectors of old vertices P and new ver-
tices p are linked by the relation p = SP. The matrix S is squareand ead of
its rows contains the coe cien ts of an a ne combination of the old verticesP
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which computesone new vertex of p. The corvergencebehavior of the subdi-
vision schemeat the certral EV is completely de ned by the eigencommnerts
(eigenvaluesand eigenvectors) of the matrix S. The matrix S is then decom-
posedinto S= M M ! where is a diagonal matrix of eigenvaluesf jg
and M is a squarematrix whosecolumnsare the (right) eigervectorsm;. This
can be well understood if we interpret the eigencompnerts as a local Tay-
lor expansion.Indeed, this interpretation allows us to assaiate the di erent
geometric con gurations (position, tangent plane, curvature) with the eigen-
componerts by which they are de ned. The smoothnessanalysis then relies
on necessaryconditions for the eigencommnerts of the dierent geometric
con gurations.

As we will seein Section 2.1, given the mere eigendecompsition of a
subdivision matrix, we cannot directly deducewhich eigervalue corresponds
to which geometric con guration sothat we do not know how to apply the
conditions for the scheme'ssmaoothnessanalysis. In Section 2.2 we show how
the decomposition of the subdivision matrix in the Fourier domain resolves
this problem.

2.1 Geometric congurations and their eigencomp onents

The Taylor expansionof a function f : R>! R can be written as follows:

x2 2
fOGy)=F +fux+fyy+ (fux + fyy) Z"'Z
2 2
+ (fxx  Tyy) 7 yZ + iy xy+ Q)

where ead function expressionon the right hand side is evaluated at (O; 0).
The point f is a position, the two rst order partial derivativesfy and fy
are the coe cien ts of x and y de ning the tangent plane and the three second
order partial derivativesf,y , fyy, andf,, arethe coe cien ts of three quadratic
con gurations de ning the curvature: An elliptic con guration x?+ y? denoted
ascup and two rotationally symmetric hyperbolic con gurations x> y? and
Xy denoted as sadde.

On the other hand, the vector of new vertices p is expressedas a local
Taylor expansionwhen it is computedasp = SP =M M P =M |
with | = M P [13]. We then have:

p=mg glo+tmy 1li+my 2lo+mz zlg+mg 4sla+ms sls+ 0 (2)

wherethe I; 2 R® are the approximations of the Taylor coe cien ts, i.e., the
successie partial derivatives(lp is a position, I; and |, approximate the rst
order derivatives, etc), the mjs correspond to the polynomials in Eq. (1),
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whose function values scalewith a certain factor ;. Eq. (1) and (2) both
behave like local Taylor expansionsapplied in di erent corntexts. They have
identical geometricinterpretation and in Eq. (2), the componerts m;, ; and
l; with indexj = O are responsible for the certral EV's position, componerts
with indicesj = 1;2 are responsible for the tangent plane and those with
indicesj = 3;4;5 are responsible for the curvature: j = 3 for the cup and
j = 4;5 for the two saddles.

Note that the componerts with indicesj = 1;2 de ning the tangent plane
con guration are images under rotation, yielding the property j 1j = | 2j.
This is alsothe casefor the two saddlecon gurations which yieldsj 4j = | s5j.

The study of the subdivision scheme'ssmoothnessat the EV is basedon
necessaryconditions a ecting the di erent eigencommnerts f ;gand fm;g.
For instance, the condition 1 = j oj > j ;j for all j > 0 is necessaryfor
convergenceof the scheme, the additional conditions 1 > j 1j, 1> j »j and
min(j 1j;j 2j) > j jj for j > 2 are necessaryfor C! corntinuity and if the
schemeis C1. However, in practice, useful schemesare rotationally symmetric
and therefore we restrict our analysisto this special case.This givesus the
additional properties:j 1j = j 2j andj 4j = | sj. Properties like bounded
curvature (j 2> j aj, j 2° J 4 = | sj and min(j sj;j 4) > | jj for
j > 5) are necessaryfor C? cortinuity. If j 22 = j 3j = | 4j = | sj, the
schemehas a non-zem bounded curvature (without at spot at the EV) and
ifj 2j2>j ji,j = 3;4;5, the schemehaszem curvature generatinga at spot
at the EV.

A critical point in the analysis after eigendecompsition of the subdivi-
sion matrix is then to identify which index (or con guration) corresponds
to which eigencompnerts. Since we know which eigernvalue corresponds to
which eigervector, the task is reducedto the identi cation of the dierent
eigenvalues. This is illustrated by the following example:

Let us consider a variant of Loop's subdivision scheme [11] having its
n-uplet of eigervalues( o;:::; 7) at a valence7 EV sorted by geometric con-
guration (following our Taylor notation (2)) and having their value in the
set:

fl._._._._._. < =

bl 21 21 41 41 41 4g (3)
We emphasizethat the set of eigervaluesis not sorted sorted from the
greatestto the smallestasit is usually done, but by geometric con guration.
The question is: How can we know which one of the eigervaluesin (3) is
0, 1, ?Indeed, following (2), eat order satis es di erent properties. For

instance, the eigernvaluescan have the following values:

11111 1 1
G e e T T N N P A

( 0, 1, 25 3y 45 55 6 7) (11 2! 2! 41 41 41 4' 4)' (4)
and hence one can deducethat the schemeis certainly C! and that it has
bounded curvature. If indeed the analysis of the caracteristic map provesC?
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Fig. 1. Dierent versions of Loop's scheme at a valence 7 EV. The rst column
shows the subdivision of a semi-regular planar meshwith the EV in its certer. The
second column shows a subdivided saddle mesh with the EV in its certer and the
third column illustrates the curvature behavior using re exion lines on the same
saddle mesh. In the rst row, the scheme has the eigenspectrum (4) and it is C*
contin uous with non-zem bounded curvature (no at spot). In the secondrow, it
has the eigenspectrum (5). We clearly seethe shrinking factor of 1 = , = % at
the EV in the planar con guration and the C?! discontin uity in the saddle mesh. In
the third row it has the eigenspectrum (6) and the schemeis C! contin uous with
bounded curvature (at spot in the saddle con guration). The misbehavior of the
curvature is illustrated by the re exion lines in the saddle mesh.
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continuity, the schemeis C! at the EV and it has bounded curvature without
at spot (rst row in Fig. 1). However if the eigervaluesare actually:
11111 1 1
Ce e B T T N N P

( 0, 1, 25 3y 45 55 6 7) (11 4! 4! 41 21 21 4' 4)' (5)
the necessarycondition for C! continuity is not satis ed (j 2j < j 4j) sothat
the schemeis not C* and it is not even necessaryto analysethe characteristic
map (secondrow in Fig. 1). Finally, the situation where:

111 1 111
( 0, 1, 25 35 4y 55 6; 7) - (11515121 4 < Zy 5 < Z,Z,Z), (6)

is more problematic becauseif the analysis of the characteristic map proves
that the schemeis C*, one could conclude from the eigensgectrum (3) that
it has also bounded curvature without at spot at the EV (j 1j2 = | 2% =
i 31 =] 4] =] sj) while it is not the case.In the saddle con guration, the
curvature is bounded with a at spot, and some curvature misbehavior can
be introduced in the limit surface by the eigenvectors corresponding to the
eigervalues ¢ and 7 (third row in Fig. 1).

The decomposition of the subdivision matrix in the Fourier domain will
allow us to determine if we are in the situation (4), (5), (6) or in a situation
where the eigervaluesare sorted in a still di erent manner.

2.2 ldentication of the eigenvalues in the Fourier domain

The identi cation of the eigervalues is based on the decomposition of the
subdivision matrix S in the Fourier domain. The block circulant subdivision
matrix S with n blocks S;; is transformed into a block diagonal matrix S hav-
ing v blocks S; which correspond to the rotational frequencies! = f0;:;;v 19
orderedin frequencyin S; (asillustrated in Equation (7)). We de ne the ro-
tational frequencyjust below. The eigenvaluesof the frequencyblocks S; are
amplitudes of the eigervaluesof the matrix S [1, 17], henceif we know which
frequencyrepreserns eat con guration (position, tangent plane, cup and sad-
dle), we can identify the eigervaluesfrom the frequencyblock in which they
are computed.

2
So;0 Soin 2 3
So 0
. . . S
S= : . . ! S= i (7)

Sn;O Sn;n

O
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In the Taylor expansion (1), the constart term refersto a position, the
terms for x and y de ne the tangent plane and terms in x? + y?, x> y? and
Xy de ne the dierent curvature con gurations (cup and two saddles). The
expressionof these con gurations in a cylindrical coordinate system(Eq. (8))
as a periodic function g( ) = cog! + ') (where isthe amplitude, ! is
the frequencyand ' is the phase)provides directly the rotational frequency
| assaiated to eadh con guration. For instance, x> y? = r2coq2 ) and
hencethis saddlecon guration has a frequency componert ! = 2. Note that
due to rotational symmetry, S; = S, | sothat it is enoughto considerthe
frequencies! = f0;:; 5g.

g x =rcoq )
xy;2)! (r; ;2) with o y=rsin() (8)
Tz=1z
This tells us that the position con guration hasthe frequency! = 0 and
hencethe eigervaluej oj is the dominant eigervalue of the frequencyblock Sp,
the tangert plane con guration hasthe frequency! = landj 1j = »j equals

the dominant eigernvalue ~; of the frequencyblock S;, the cup con guration
hasthe frequency! = 0andj 3j equalsthe subdominant eigenvalue ~g of the
frequency block Sy and nally the saddle con gurations have the frequency
I = 2andj 4j = j s5j equalsthe dominant eigervalue ~; of the frequencyblock
S,. This relation betweenthe di erent eigencommnerts and their rotational
frequenciesis presened in [5].

When a schemeis corvergen, its eigervalue o equalsl (Sect. 2.1) and
sincej oj is the dominant eigernvalue of the frequency block Sy, it can be
written as:

1
S = 0 Sg . (9)

In this paper, we only considercorvergert subdivision schemes,andso o= 1
and the cup eigervalue j 3j is the dominant eigervalue ~, of the block S§.

3 Computation of the frequency blocks

In this section, we presert a generalframework, usedin [1] on Catmull-Clark’s

scheme [3], which computes the eigencompnerts in the frequency domain.
We presert the procedureon a triangular lattice with a 2-ring neighborhood
around the certral EV and a standard dyadic re nement (seeFig. 2(a)). The
adaptation to a single 1-ring neighborhood or to quad mesheg[1] is straight-

forward. We notice that this method may not be suitable to analyse non-
rotationally symmetric schemes,however, aspointed out in [4], theseschemes
are mainly interesting for theoretical studiesand all the schemesusedin prac-
tical applications are rotationally symmetric.
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. A . . P
Fig. 2. Subdivision with (a) a dyadic re nement and (b) a 3 renement, of a
2-ring con guration around a central EV A of valencev. Capital letters denote the
set of old vertices P and small letters the set of new vertices p.

The set of old vertices P is de ned as follows:
P =1fABo;:iBy 1,C1;:5Cy 1:Do; Dy 10;

where the dierent letters X = fB;C;Dg denote the dierent sets of rota-
tionally symmetric vertices around the certral EV A and the indices give the
rotational position of eac vertex: Vertex X; is at an angle of \2, (where v
is the valenceof the EV) from the axis of origin. The set of new verticesp:

p=faby:iby 156 1idosindy 10
represerts the sametopological con guration, but after one step of subdivision

and around the certral EV a. The new verticesof p are computed using a ne
combinations gl of the old vertices of P:

a=g'(P) b= 6(P) Guy= &P de=gl(P) k=0umv L

wherethe ane combinations gf( are the rows of the subdivision matrix S.
Using the Discrete Fourier Transform (DFT):

1X?
¥ = " xpexp( 2 it I=n); x = fa;b;c;dg; (20)
1=0
we expressthe rotational frequencies & ;B ;& ; d g of eat setof rotationally

symmetric new vertices of p in terms of the rotational frequenciesP, =
fA, ;B ;C ;D g of the old vertices of P:
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a =e¢’(P); B=g(P) &=6(CP) d=g(F);

where the ane combinations g are the rows of the frequencyblocks S; of
the discrete Fourier transform S of the subdivision matrix S. In verticesA and
a, the only frequencyis the zem frequency hencethe termsin exp( 2 i! [=v)
vanish in the expressionof & and we have: A = Ay = A, a= & = a and
8! > 0,A =& = 0. Furthermore, in order to expressthe frequency block
Sp asin Equation (9), we have to certer the analysis at the certral EV so
that:

2 2 32 3
2o Ao h i
B aoé_g So é Bo Koé 1
& ab” CORthSo—OSg,
do & Do Ao
hence
2 3 2 32 3
h & Bo 0
4% a05:4 Sg 54CO A-OS;
d & Do Ao
and becausefor! > 0: Ay = & = 0,8! > 0we have:
2 3 2 32 3
o B\
4 5=4 5 54¢c 5:
di D

The size of the frequency blocks is equal to the number of sets of ro-
tationally symmetric vertices in the neigborhood of the certral EV. Hence,
these blocks are of xed size (here they are 3 3 matrices) and they can be
expressedas a function of the valencev of the certral EV. The original prob-
lem of computing the eigencompnerts of large (3v+ 1) (3v+ 1) matrices
(in the spatial domain) for eat value of the valencev is reducedto a single
eigendecompsition of small 3 3 matrices (in the Fourier domain), providing
the di erent eigencommnerts expressedn terms of the valencev. Depending
on their complexity, the frequency blocks can be either decomposedby hand
computations or using the symbolic toolbox of any mathematical software.

We note that the right eigervectors mo, m; and m, assaiated respec-
tively to the eigervalues ~p, ~; and ~;, can be interpreted as amplitudes of
the eigervectorsmy; ::; ms of the spatial domain, e.g.the tangent plane eigen-
vectormi = [rg;rc;rp] givesthe radii rx of verticesBy, C,, : and Dy from
the certral EV A.
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p—
4 Example by Kobb elt's = 3 scheme

We illustrate by the practical example of Kobbelt's P 3 subdivision scheme
[10] the application of the generalprocedurepreseried in Sect. 3. This scheme
rotates the lattice after one step of subdivision due to the insertion of new
verticesin the middle of the old faces(as we can seein Fig. 2(b)). If the eigen-
decomposition is performed on the subdivision matrix S, we obtain complex
eigencommnents generatedby the scheme'srotation property. To overcome
this dicult vy, in [10] the schemeis rather analysedafter two steps of subdi-
vision sothat the lattice is aligned with the two steps older one but rotated
by one sector. The lattice is then rotated badk using a permutation matrix
R, and the matrix studied nally is $ = R S2.

We rst computethe frequencyblocks on the 2-ring con guration shownin
Fig. 2(b). The computation is performed on a single subdivision step without
any back-rotation. We then reproduce the results preseried in [10] using the
eigencommnerts in the Fourier domain. We will seethat the computations
are so simple B@t they can be done quickly and easily by hand.

Kobbelt's = 3 schemeis composedof two re nement rules (stencils): One
which displacesan old vertex (Eq. (11)) and one which computesa new ver-
tex in the center of a triangle (Eq. (12)). They are de ned by the following
formulae:

K1
v

a=(1 v)A + m B; (11)
j=0

1
h(,r% = é(A+ Bk + Bk+1); (12)

where  is a parameter which can be usedin order to improve the surface
smoothnessat the EV for di erent valencesv. The new vertices ¢, are com-
puted using the regular relaxation rule (valence6 vertex) and the new vertices
dy+ 1 using the insertion rule as follows:

2 1
Cc = §Bk+ 1_8(A+ Bk 1+ Byksr + C¢ 1+ Cyin + Dy)

1
dk+ 1 = é(Bk + By + Ck+ %)

The DFT (Eg. (10)) is then usedto derive the rotational frequenciesof
the di erent setsof rotationally symmetric vertices:
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X0 xv
=1 ae®=(@1 DA+ 7" B; usingthe DFT and Eq. (11)

i=0 i=0
=1 v)Ao+ Bo becausethe only frequencyin ais! = 0
1 X1 -
b == he?" = DFT
j=0
1X1t 1 - .
=3 §(A +Bj 1+Bj,1) e "=V using Eq. (12)
j=0
3 1
1.1 X? i (1e1)ey | 1 X7 L e
= TA+ = Bie 2l (#3)™v 4 =7 pge2i( )
3 3v|: . 3v =t
2 2
3 1
= }A-{- ie 2 il =2v \5( ’ BI e 2 il I=v + iez il =2V\§( ’ B|e 2 il I=v
3 3v 3v
= 3 =1
= %KO+ % e il =v + e il =v B!
1 2 . ! C
= §R0+ §k! B, with ki = cos ~ and becausee ' + € = 2cos
hence 8
2 &= % v Bo Ao if ! =0
> .
" b o= 2k B otherwise.

Using similar computations, we obtain:

260 8= & v Bo Ao +1 Co Ay +% Do Ao if! =0
" = 2+ Lk By + 1k C + Dy otherwise
ga*o = 2 , By Ay +1 Co Ao if! =0

d = 2k By + 3C otherwise.

From these expressionswe directly deducethe frequency blocks:

2 3 2
2, 0 0 2k, 0 0
nggg v & i éandif!>0 S:§%+%k2! ke & Z:
i v.3 O ke 30
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Since the only non-zero coe cien t of the rst rows of the matrices S§
and S, is the onein the left-hand corner, we directly obtain the dominant
eigervalues ~g, ~; and ~; as:

=3 v ~1 = %kl; ~ = %kzi (13)

As we see the free parameter , only appearsin the cup eigenvalue, hence

the scheme's behavior is improved at the EV by bounding the curvature in

the cup con guration using the condition: ~g = ~2. The value of parameter
v in EQ. (11) is then derived as follows:

2
~=~2 () g v= %kl () \,:SZ 00527

The eigervalues~; (i = 1;2; 3) could have beencomputed in an even sim-
pler manner by only consideringa 1-ring neigborhood around the certral EV.
However, the choiceof a 2-ring neighborhood is basedon our wish of giving an
example allowing a more complete analysis basedon a larger neighborhood.
It alsoallows usto ched that more eigenvaluesare adequately sorted (seethe
necessaryconditions on the eigenvaluesin Sect. 2.1).

5 Conclusion

In this paper, we have emphasizedthe importance of the analysisof the subdi-
vision matrix in the Fourier domain: The analysisof large matricesin the spa-
tial domain is reducedto the analysisof small matrices in the Fourier domain
sothat it becomeseasierto computethe di erent eigencommnerts. Moreover,
we can determine which geometriccon guration is de ned by which eigencom-
ponerts. We have preseried a general framework computing the subdivision
matrix in the frequency (ﬂ)oinain and it has beenillustrated on the practi-
cal example of Kobbelt's = 3 scheme. We have shovn how this computation
technique allows us to analysethe schemein a very simple manner.

There are limitations for this computation technique when the rotational
position of a set of rotationally symmetric vertices with respect to the axis
of origin is unknown. More investigations have to be carried out to solve
this problem while keeping the computations as simple as possible. As we
have demonstrated however, this approach performs on 2-ring neigborhood
con gurations and henceit is very well suited to analysemost of the standard
subdivision schemesor any new rotationally symmetric scheme.
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