Team UWr and Tooploox
(sharp-perch)
solution to
Airbus ATC Challenge 2018
Team members

● University of Wroclaw:
 ○ faculty: Jan Chorowski, Paweł Rychlikowski
 ○ PhD students: Michał Zapotoczny
 ○ master students: Igor Gajowiak, Grzegorz Jurdziński, Bartosz Kostka, Bartosz Krzeczkowski, Szymon Malik

● Tooploox:
 ○ Krzysztof Wróbel, Tomasz Trzciński
Our model at a glance

- Deep neural net with CTC, Convs and BiLSTMs over Mel Filterbanks
- Predicts phonemes at 33Hz, context handled using biphones
- 4-gram LM trained on training transcripts
- Lattice decoding using Kaldi (CTC mapped to HMM topology)
- Data augmentation (frequency shifts, noising)
- Final model is an ensemble of 6 networks with different hyperparams
Details: Acoustic modelling network

Inspired by Deep Speech 2

- **Input**: 80 mel-filterbanks at 100Hz with energy, deltas+ddeltas, CMVN
- **2 Conv layers**:
 - 7x7 stride 1x2 + 7x7 stride 3x1
 - Batchnorm after each conv
- **5 BiLSTMs**
 - 768 units in each direction + batchnorm
Details: model training

- Models trained in one step, no dependency on traditional GMM-HMM
- Typical training time: 2 days on a single K40 gpu
- Used mini-batch SGD, learning rate decayed based on dev set performance
- After initial convergence (5000 iterations), we introduced weight noise (at each iterations small Gaussians added to each weight)
- Polyak averaging used for checkpoints didn’t improve final results, but gave much faster convergence
Details: Data augmentation

Our final model ensembled networks trained with different data augmentations. WER decrease 8.5% -> 7.8% on dev set (sampled from train data)

- Audio:
 - Adding random utterance audio as noise, with varied SNR
 - we have noticed that some original audio files had background spoken noise
 - Random pitch changes (up to 300% up and down)
 - Speed change (both slowdown and speedup)

- Text:
 - Introduced edit errors:
 - Removing characters
 - Replacing character with random one
 - Swapping neighboring characters
 - This was aimed to prevent network overconfidence (putting all probability mass on just one character per frame, which kill LM integration)
Details: Biphoneme model and lattice decoder

- For CTC training we used Biphoneme targets (previous, current)
- Trained with one giant softmax with $|V|^2$ outputs, no decision tree involved
- Used WFST-based decoding using Kaldi tools:
 - CLG are standard
 - Kaldi’s basic decoder used a CTC-specific H graph (FST that removes duplicates and discards blanks)
 - Kaldi’s lattice decoder required an HMM topology, CTC can be modeled as a two-states per phone architecture with all blanks tied using the decision tree.
- Final model used lattice decoding, with a slight word insertion bonus and same weighting of acoustic model and language model
Details: Language model and data augmentation

- Standard 4-gram models trained on augmented transcripts form train data.
- Motivation for LM training corpus augmentation:

 if one aircraft can do something, then others can do it as well

- LM training corpus generation:
 - Identify “safe” call signs in train data
 - Compute call sign statistics (distribution \(P_{cs} \))
 - For every sentence in train data create its variants with call signs replaced by cs drawn from \(P_{cs} \)

- This creates new, potentially useful, N-grams not present in learning data
- LM overfits less to a single aircraft doing one thing multiple times in the training corpus
Callsign detection: Overview

- Simple call sign definition:
 - Fixed prefix from https://en.wikipedia.org/wiki/List_of_airline_codes + some contractions found in learning data (royal air instead royal air maroc, …)
 - Followed by some digits and letters (from NATO alphabet)

- (simple) CS finding:
 - Do some shallow parsing identifying phrases with digits and letter which are NOT cs
 - Find maximal CS which does not intersect with phrases from previous step
 - Is parsing useful?
 - KLM six three tango five mile final ILS three two right
 - Germania one eight eight one three and half miles
 - huh Toulouse Cargolux triple seven two thousand five hundred feet climbing level seven zero
Callsign detection: shallow parsing

- Simple recursion free grammar describing some phrases in text:

 A -> alpha|bravo|charlie|...|zulu
 D -> one|two|...|nine

 RUNWAY_IN_USE -> runway in use D D left|right
 RUNWAY_IN_USE -> runway D D in use

 QFE -> qfe D D
 QFE -> quebec fox|foxtrot echo D D

 HOLDING_POINT -> holding point A D D left|right
 HOLDING_POINT -> holding point A D D left
 HOLDING_POINT -> holding point A D

- Approx. 250 handcrafted rules
- Constructs that matched were usually restricted from being parts of callsigns
Calsign detection: Details

- Problem: some CS does not fulfill simple definition:
 - two six delta lima turn right heading zero eight zero (Air Hop omitted)
 - Civil aircraft call signs (only letters and digits)

- Our solution:
 after shallow parsing try to detect promising digits and letters sequences at the beginning or at the end of utterance

- Future work:
 Add more machine learning to call sign detection

- (perhaps more reliable data will be needed)
Takeaways: What did work for us

- CTC: fast training from scratch
- Biphone output modelling
- Polyak checkpoint averaging: speedy model convergence
- Data augmentation
 - both for Acoustic and Language models
 - key differentiator between models in the ensemble
- Lattice decoding and ensembling of lattices
- Future work with LM: separate ATIS from rest of the corpora, apply text data augmentation with other ‘categories’ (wind information, temperature, speed)
- Using bigger context can be very useful (for instance repeated call signs)
Takeaways: What didn’t work

- Uniform train/dev/test data split
 - had same conversation in all splits
 - overfitting due to speaker and phrase overlap
 - better to split by date or location

- Data denoising
 - need to train on denoised data too, otherwise results prone to deteriorate
 - better to train the net to implicitly denoise by data augmentation

- Two-pass decoding with LM adaptation hurt

- Training on data transformed with scoring rules hurt
 (e.g. we replaced all *nines* with *niners*)

- However: no observed benefits from training on disambiguated transcripts
 (some transcripts used *niners* for clearly audible *nines*)
Conclusions

- This was a fun competition to participate - thanks!
- There are lots of new research directions
 - Speaker adaptation: so far our model is speaker independent
 - Use the context and assume that speech comes from conversation
 (useful e.g. for callsign detection)
Acknowledgements

We thank:

- National Science Center (Poland) for Grant Sonata 2014/15/D/ST6/04402
- PLGrid project for computational resources on Prometheus cluster