ABSTRACT

In this paper, a novel solution to the problem of unsupervised stream weight estimation for multi-stream classification tasks is proposed. Our work is based on theoretical results in [10] for the two-class problem where the optimal stream weights are shown to be inversely proportional to the single stream misclassification error. These two-class results are applied to the multi-class problem by using models and “anti-models” (class-specific background models) thus posing the multi-class problem as multiple two-class problems. A non-linear function of the ratio of the inter- to intra-class distance is proposed as an estimate for single stream classification error and used for stream weight estimation. The proposed unsupervised stream weight estimation algorithm is evaluated on both artificial data and on the problem of audio-visual speech recognition. It is shown that the proposed algorithm achieves results comparable to the supervised minimum-error training approach under most testing conditions.

Index Terms— Fusion Methods, Parameter Estimation, Error Analysis, Speech Recognition, Audio-Visual Systems

1. INTRODUCTION

Information fusion methods have been extensively employed for speech processing applications in the literature. In this work, the performance of the automatic speech recognition (ASR) systems is improved by using complementary features that are extracted either from the audio and/or the video streams. In [1], the authors propose an ASR system based on the multi-band approach, features from different frequency bands with different reliability are combined and weighted accordingly in a multi-stream speech recognition approach. In [2], features such as fundamental frequency are combined with traditional spectral-based features to improve speech recognition performance. Visual information has also been integrated with audio using the multi-stream approach [3]. For the AV-ASR case, audio and video features contain complementary information. In addition, visual information is not affected by adverse recording conditions, which may be varying with time; depending on the type and level of background noise the audio stream should be weighted more or less in the decision process. Therefore a mechanism to adaptively weight the contribution of the various information sources (feature streams) in the final decision is needed. In the literature, there are well known methods for computing feature stream weights using minimum error classification in a supervised manner: the reliability can be obtained directly from the streams through training error minimization [6, 7]. Alternatively, and for changing recording conditions the reliability of the streams can be computed for each environmental conditions, typically using the signal-to-noise ratio (SNR); the stream weights are then estimated using an SNR estimate in the field [8, 9].

The algorithms proposed above are either supervised or require specific knowledge of the conditions in the field. In this work, we propose stream weight estimates that can be computed in an unsupervised way (no class labels required or field conditions). The proposed algorithm builds on prior theoretical work on optimal stream weight estimation [10] where it is shown that stream weights should be approximately inversely proportional to the single stream classification error. We propose estimates of the single stream classification error using limited amount of unlabeled data and show that the proposed stream weight estimates perform well for both artificial and real data for an audio-visual speech classification task.

2. MULTI-STREAM CLASSIFICATION

For the two class \(\{ w_1, w_2 \} \) problem the feature pdfs and class prior probabilities are \(\{ p(z | w_1), p(z | w_2) \} \) and \(\{ p(w_1), p(w_2) \} \) respectively. See Figure 1 for a 2-D two-class classification problem visualization. Assuming a random variable \(z \) that follows a normal distribution with mean zero and variance \(\sigma^2 \), \(N(0, \sigma^2) \) that model the estimation/modeling error

\[
p(w | x, \lambda) - p(w | x) = z, \tag{1}
\]

where \(\lambda \) stands for the selected model/estimation method, and the estimated and real distributions are \(p(w | x, \lambda) \) and \(p(w | x) \) respectively. As it was explained in [10] the deviation from the optimal boundary value is given by the random variable \(z = (z_1 - z_2)p(z) \). For a feature vector broken up into two independent streams \(\{ x_1, x_2 \} \), with dimension \(\{ d_1, d_2 \} \) and stream weights

This work was partially funded by MUSCLE and HIWIRE EU FP6-IST projects. The authors wish to thank to Prof. Gowdy for the database.
\{s_1, s_2\} and under the assumption of a constant \(p(x) \) in the region of interest the total (Bayes, estimation and modeling) error can be computed and minimized as follows. Assuming that the Bayes error increase is small compared to the decrease in estimation/modeling error and that the estimation error for the \(i^{th} \) class and \(j^{th} \) stream is a random variable that follows a normal distribution \(z_{ij} = N(z; 0, \sigma_{ij}^2) \), \(z \) is:

\[
z \approx 2[p(x_1|w_1)p(w_1)]^{-1}[p(x_1|w_2)p(w_2)]^{-1} [s_1(z_{11} - z_{21}) + s_2(z_{12} - z_{22})],
\]

and its variance is:

\[
\sigma^2 \sim p(x_1|w_1)^{-2} p(x_2|w_1)^{-2} [\sigma_{12}^2 + s_1^2 \sigma_{11}^2 + s_2^2 \sigma_{22}^2],
\]

where \(\sigma_{ij}^2 = \sum_{i=1}^2 \sigma_{ij}^2 \) is the total stream variance.

From the last equation it can be observed that the error can be reduced by employing weights if the estimation errors are different and/or if the single-stream classification errors are different. These two factors correspond to the two cases that follow. First, assuming the same Bayes classification error, \(p(x_1|w_1) \approx p(x_2|w_1) \), the optimal weights can be computed as:

\[
s_1 = \frac{\sum_{i=1}^2 \sigma_{1i}^2}{\sum_{i=1}^2 \sigma_{2i}^2},
\]

Second, assuming the same single-stream estimation error, \(\sigma_{1i} = \sigma_{2i} \), the optimal weights are

\[
s_1 \approx \frac{p(x_2|w_1)}{p(x_1|w_1)},
\]

where \(p(x_1|w_1), p(x_2|w_1) \) are computed close to the decision boundary. As discussed in [10] the quantities above approximate the misclassification error for streams 1 and 2 respectively, and thus the stream weights should be approximately inversely proportional to the single stream misclassification error. Furthermore the weights are constrained as follows:

\[
s_1 + s_2 = 1, \quad 0 \leq s_1, s_2 \leq 1.
\]

Next we apply these theoretical results to the problem of unsupervised stream weight estimation.

3. UNSUPERVISED STREAM WEIGHT ESTIMATION

The problem at hand is stream weight estimation for multi-stream classification in the field. For example, for the problem of audio-visual speech recognition it is common that the recording conditions in the field are both time-varying and different from the conditions under which the acoustic models were trained. In this case, the stream weights for the audio and video streams have to be adapted to their optimal values without knowledge of the transcription or “class labels”. Our goal is to devise robust algorithms for estimating the stream weights using small amounts of unlabeled data, i.e., unsupervised stream weight estimation. For the speech recognition example stream weights are estimated at a per-utterance basis.

We attack the problem of unsupervised stream weight estimation using the theoretical results summarized in the previous section as our guide. However, these results are not directly applicable to our problem due to two main reasons: (i) only results for the two-class classification problem are available, while in general the multi-class classification problem is of interest, and (ii) knowledge of class membership for each observation vector \(z \) is required to compute the likelihoods in equation Eq. 5, i.e., the theoretical results are directly applicable only to the supervised stream weight estimation problem.

To resolve the first issue we introduce the concept of anti-models\(^1\). Specifically, during training and for each class we separate the training data into two groups: one containing the training examples of the class of interest and the other containing the rest of the training examples. Models and “anti-models” are built from the two training sets; anti-models can be thought of as class-specific “background/garbage” models. By creating models and anti-models the multi-class classification problem is reposed as (multiple) two-class classification (problems).

To resolve the second issue the single stream misclassification error has to be estimated in an unsupervised way. It is well known, that for the two class classification problem, when \(p(x|w_i) \) follow Gaussian distributions \(N(\mu_i, \sigma^2) \), the Bayes error is a function of \(D = (\mu_1 - \mu_2)/\sigma \). In general, the quantity \(D \) can be estimated in an unsupervised way, by performing k-means classification and then using the inter- and intra-class distances to estimate the quantities in the nominator and denominator respectively. Indeed the intra-class distance is the average distance between the means of each class and the inter-class distance an estimate of the average class variance. In our case, the mean of the model and anti-model are used to initialize the k-means algorithm (\(k = 2 \)) for each class; the estimated \(D \)’s are then averaged over all classes.

To gain better insight into the use of the inter- to intra-class ratio see Fig. 1. A two-stream two-class classification problem is outlined: axes \(x_1 \) and \(x_2 \) correspond to the features in the two streams; the (Gaussian) distributions for classes \(w_1 \) and \(w_2 \) are shown for each stream and jointly. The relationship between the Bayes error (shaded area) and the inter- and intra-class distances is approximately inversely and directly proportional respectively.

Overall, the stream weights are computed using the inter-class distance \(d_{ntr} \), \((l, m; j) \) between classes \(l \) and \(m \) for stream \(j \), normalized by the intra-class distance \(d_{ntr} \), \((i; j) \) for the class \(i \) in each stream. For the two-stream two-class case the stream weights \(s_1, s_2 \) are estimated as:

\[
s_1 = c f\left(\frac{d_{ntr}(1, 2; j)/\sum_i d_{ntr}(i; j)_{j=2}}{d_{ntr}(1, 2; j)/\sum_i d_{ntr}(i; j)_{j=1}} \right),
\]

\(^{1}\) Anti-digit models have been employed in utterance verification [13].
estimation error in the two streams (see Eq. (4)). For the two-stream multi-class case the quantity in function $f(.)$ becomes

$$
\sum_k \left(\frac{d_{inter}(m_k, a m_k; j)}{\sum_i \left(\frac{d_{inter}(m_k, a m_k; j)}{\sum_i \left(d_{inter}(m_k, a m_k; j) / d_{intra}(i, j) \right) \right)} \right)
$$

(8)

where m_k and $a m_k$ are the centroids for the “model” and “anti-model”\(^2\) for class k and \sum_k is over all classes.

Here are the main assumptions underlying the proposed unsupervised stream weight estimation method: (i) Two-class classification error can be approximated as a function of inter- to intra-class distance ratio. (ii) Multi-class classification error can be estimated by the class/anti-class classification error averaged across all classes. (iii) Single stream estimation error variance is approximately constant for each stream under all field conditions. We proceed next to experimentally verify the validity of these assumption both for artificial and real data.

4. ARTIFICIAL DATA EVALUATION

For the artificial data experiments the next table summarizes the employed parameters for the 1-D Gaussian distributions for two class $\{w_1, w_2\}$ problem. A number N of samples was generated using those parameters and the total classification error was computed for different weights. The samples were used to estimate the distributions for the two classes by a clustering process. The k-means process with $k = 2$ was employed to cluster the samples. The estimated clusters were used to compute the distances as explained in the previous section. In Figure 2, the results obtained using the parameters specified in the Table 1 are presented. In each figure, the thick solid lines (black) represent the estimated distributions and the solid line (green) connects the k-mean estimated centroids. The thin lines (blue and red) represent the real distributions. In the figure on the left, computing the total error, the optimal value was equal to 0.5

<table>
<thead>
<tr>
<th>w_1</th>
<th>w_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>$\mu_{11} = 4.0$</td>
</tr>
<tr>
<td>x_2</td>
<td>$\mu_{12} = 1.5$</td>
</tr>
</tbody>
</table>

Table 1. Parameters for the Gaussian distributions; two classes (w_1, w_2) and two streams stream (x_1, x_2).

5. AUDIO-VISUAL SPEECH CLASSIFICATION

To verify our claims a set of experiments using real data were performed. An audio-visual speech classification task was investigated where the two feature streams contain audio and visual information respectively.

For the purposes of this experiment the CUAVE audio-visual speech database was employed [11]. The subset of the CUAVE database used in these experiments consists of videos of 36 persons each uttering 50 connected digits. The training set is made up of 30 speakers (1500 utterances) and the test set contains 6 speakers (300 utterances). The audio signal was corrupted by additive babble noise at various SNR levels; the video signal was clean in all the experiments. The audio features were used as the “standard” Mel-Frequency Cepstrum Coefficients (MFCCs) computed for frames with duration 20 ms, extracted every 10 ms. The acoustic vectors, dimension $d_A = 39$, consist of 12-dimensional Mel-frequency cepstral coefficients (MFCCS), energy, and their first and second order derivatives. The visual features were extracted from the mouth region of each video frame by gray-scaling, down-sampling and finally performing a 2-D Discrete Cosine Transform (DCT). The first 13 most “energetic” DCT coefficients within the odd columns were kept [12] resulting in a video feature vector of dimension $d_V = 39$ including the first and second order derivatives. Hidden Markov Models (HMMs) were used for both acoustic and video model training. Context-independent whole-digit models with 8 states per digit and a single Gaussian continuous density distribution per state were used. The HTK HMM toolkit was used for training each stream, audio and video, and for also for testing (using HTK’s built-in multi-stream capabilities).

An important part of the training process is the generation of “anti-models” [13]. The class and anti-class models are both built in the training phase using only “clean” data. The class model for each stream is built following the traditional training process. The anti-class models are trained using all the data that does not belong to the corresponding class. For example, the model for the digit one is created using all training data labeled as one, while the anti digit model one is trained using all the data not labeled as one. At the end of this process 20 model are obtained for each stream, ten models for the digits (0-9) and ten anti-digits all with the same number of parameters.

During the test phase these class and anti-class models are used to initialize the k-means classification algorithm. Specifically, the means of the Gaussian distribution in the class and anti-class model are used as the initial k-mean centroids\(^3\). Given that a-priori it is not known to which class each utterance belongs, the features in each utterance are split into two classes ($k = 2$) in ten different ways one for each digit and anti-digit model. The stream weights are estimated using Eqs. (7), (8). The inter-d_{inter} and intra-class d_{intra}

\(^2\)m_k and $a m_k$ are computed in an unsupervised way using k-means initialized from the “mis-matched” model and anti-model means; thus a more appropriate term might be “adapted” model and anti-model centroids.

\(^3\)It is important to remark that these anti-class models are only used to initialize the clustering process and that the models are trained using data recorded in ‘clean’ conditions (different than the conditions in the field).
distance is computed for each of the ten splits and the resulting inter-to intra-class ration is averaged over the ten splits. Note that the stream weights are estimated for each utterance.

In Figure 3, the digit classification results are shown for various stream weight estimation algorithms. The solid thick curve (green) represents the results obtained searching by hand for the optimal values for the weights. The lower curve (black) uses equal weights in both streams (0.5). These two curves serve as reference and used to compare our approach. The first (and crudest) stream weight estimate is shown with the dashed curve (red) and corresponds to the erf function. This last curve provides a good match between linear transformation of the weights, a parabola in this case (similar to the hand-picked optimal stream weight values).

The dotted curve (magenta) shows the results obtained using a non-linear transformation of the weights, a parabola in this case (similar to the hand-picked optimal stream weight values). As seen in Eq. (7), the optimal weights are a non-linear function of the distances. This last curve provides a good match between the D value and the Bayes error and results in performance comparable to the hand-picked optimal stream weight values.

6. CONCLUSIONS

In this paper, we proposed a stream computation method for a multi-class classification task based on theoretical results obtained for a two classes classification problem and making use of an anti-model technique. The proposed method employs only the information contained in the trained models and requires a single utterance to compute the stream weights. Therefore the obtained results are of interest for the problem of unsupervised estimation of stream weights for multi-streams classification and recognition problems. The proposed method achieved comparable performance with supervised minimum error estimation of the weights. In future work, the problem of unsupervised weight estimation for statistical recognition tasks will be addressed, as well instantaneous stream weight estimation.

7. REFERENCES

