

The MEFISTO Project
 ESPRIT Reactive LTR 24963 Project

Title of Document: Formal definition of Interactive

Cooperative Objects

Author(s): Ousmane Sy, David Navarre, Le Duc Hoa

, Philippe Palanque, Rémi Bastide,

Affiliation(s): L.I.H.S. – University of Toulouse 1

Date of Document: 4th October 1999

Mefisto Project Document: WP 2.6

Distribution: INTERNAL

Keyword List: Interactive cooperative object, formal

specification technique, Interactive

systems formal specification

Version: Draft

MEFISTO Partners:

CNUCE, Pisa, Italy

Alenia, Rome, Italy

Dept. of Computer Science, University of York, United
Kingdom

DRA, Malvern, United Kingdom

Université Toulouse 1, Toulouse, France

CENA/Sofréavia, Toulouse, France

Associates Partners: University of Siena, Italy — ENAV, Rome, Italy

Title: Formal definition of

Interactive Cooperative Objects.

Id Number: WP 2.6

 2

Abstract

This document presents the exhaustive formal definition of the Interactive

Cooperative Objects (ICO) formal specification technique. It encompasses the

presentation of several formal specification techniques grounding the ICO

formalism. As ICOs can be seen as being at the top of a pyramid of formal

specification techniques, we represent here the evolution from basic Petri nets to

ICOs through the presentation of Object Petri nets and Cooperative Objects.

A small but complete application is then used for exemplifying the various

concepts and notations used in the first parts of the document.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 1

Table of Contents

1 INTRODUCTION ... 3

2 PLACE/TRANSITION PETRI NETS .. 4

2.1 INFORMAL DEFINITION .. 4

2.1.1 Syntax ... 4

2.1.2 Semantics .. 5

2.2 FORMAL DEFINITION ... 5

2.2.1 Syntax ... 5

2.2.2 Semantics .. 6

3 OBJECT PETRI NETS .. 8

3.1 INFORMAL DEFINITION .. 8

3.1.1 Structuring. ... 8

3.1.2 Expressiveness .. 9

3.2 FORMAL DEFINITION ... 10

3.2.1 Preliminaries ... 10

3.2.2 Syntax ... 12

3.2.3 Semantics .. 13

4 COOPERATIVE OBJECTS .. 15

4.1 INFORMAL DEFINITION .. 15

4.2 FORMAL DEFINITION ... 17

4.2.1 Declarative part ... 17

4.2.2 ObCS ... 17

4.2.3 Mapping for parameter-passing modes ... 18

4.2.4 Semantics of communication .. 19

4.2.5 Handling exceptions .. 22

5 THE INTERACTIVE COOPERATIVE OBJECTS FORMALISM 25

5.1 COOPERATIVE OBJECTS ADD-ONS ... 25

5.1.1 User Services .. 25

5.1.2 Availability function: .. 25

5.1.3 Associated event ... 27

5.1.4 Substitutions .. 27

5.1.5 A graphical representation for general services .. 28

5.1.6 A representation for inheritance .. 29

5.2 WIDGETS ... 30

5.2.1 Listening to a service .. 30

5.3 EVENTS ... 31

5.4 ACTIVATION FUNCTION ... 32

5.4.1 Informal description .. 32

5.4.2 Activation function ... 32

5.4.3 Illustration ... 33

5.5 RENDERING FUNCTION .. 33

5.5.1 Rendering .. 33

5.5.2 Rendering in places ... 34

5.5.3 Rendering in transitions .. 35

6 A FULL EXAMPLE ... 36

6.1 GENERAL PRESENTATION OF AN ICO SPECIFICATION .. 36

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 2

6.1.1 Object structure ... 36

6.1.2 Graphical structure .. 37

6.1.3 IDL Interfaces ... 37

6.1.4 Set of ICOs .. 38

6.1.5 Additional classes ... 40

7 CONCLUSIONS AND FUTURE WORKS .. 42

8 REFERENCES .. 43

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 3

1 Introduction

This document presents the exhaustive formal definition of the Interactive

Cooperative Objects (ICO) formal specification technique. It encompasses the

presentation of several formal specification techniques at the basis of the ICO

formalism. As ICOs can be seen as being at the top of a pyramid of formal

specification techniques, we represent here the evolution from basic Petri nets to

ICOs.

This document can be used in different ways:

• As a reference document for the formalism by every person interested in the

use of the formalism for the specification of interactive applications,

• As a reference document for people knowledgeable in the field of Petri nets

and that would like to understand the underpinning semantics of the ICO

formalism.

All the sections of this document follow the same structure. First we present and

informal definition of the notation used, then the formal definition is given. This

structuring aims at allowing people without a strong background in formal

methods to understand the concepts.

The document is structured as follows. Section 2 introduces the basic notions of

Petri nets. First the syntax is presented, the its associated semantics is introduced.

Section 3 presents the concepts of Objects Petri nets. These concepts are

introduced making references to basic Petri nets introduced in the section 2.

Section 4 introduces the Cooperative Objects formalism that is based on the

Objects Petri nets. Section 5 presents the ICO formalism dedicated to the formal

specification of interactive applications. Lastly, section 6 presents a complete

example of the use of the ICO formalism on a simple application.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 4

2 Place/Transition Petri nets

This section presents one of the basic Petri net formalisms (initially introduced by

C. A. Petri in 1962) called Place/Transition nets (P/T nets) (cf. [2], [5],[7]). P/T

nets are used for modelling discrete events systems. P/T nets are one the only

formalisms that feature a complete equivalence between the graphical and the

textual (algebraic) representation.

2.1 Informal definition

Figure 1 presents a P/T net that describes the mutual exclusion of two processes

(A and B). In this Figure only the graphical representation is shown and it can be

easily seen that it is very close to the graphical representation of automata.

idleA

askA

idleB

resource
askB

workingA

releaseBreleaseA

workingB

Figure 1. The graphical representation of a P/T net.

The informal definition of the syntax is given in the next section.

2.1.1 Syntax

A P/T net is an oriented graph composed of two disjoint sets of nodes and arcs:

• places (represented by ellipses) symbolise states,

• transitions (represented by rectangles) symbolise actions,

• arcs link exclusively places to transitions and transitions to places. Arcs are

divided in two basic categories: input arcs, that go from places to transitions

and output arcs that go from transitions to places. Positive integer

inscriptions, called the weight of the arc, decorate arcs. By convention a

weight of 1 is not represented.

Following these basic definitions, output and input places of a transition t are

defined as:

• input places of a transition t are the set of places linked to the transition t by an

input arc,

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 5

• output places of a transition t are the set of places linked to the transition t by

output arcs.

The state of the system is defined by a distribution of tokens in each place of the

P/T net. A distribution of token in a place is called the current marking of the

place. The current marking of the net is defined by the marking of each place of

the P/T net. Graphically, a black circle inside the place (see for instance place

idleA in Figure 1 that holds one token) represents a token in a place.

2.1.2 Semantics

While the syntax part defines the structure of a net, the semantics defines the

behaviour of the net i.e. its evolution over time. Given a marked P/T net, its

behaviour is expressed in terms of a token game. The token game specifies two

rules: the enabling rule and the firing rule.

2.1.2.1 Transition enabling rule

The enabling rule involves only input arcs of a transition. For a given marking, M,

a transition t is enabled if each input place p is marked with at least as many

tokens as the weight of its input arc.

For instance, in Figure 1, transition askA is enabled as it features two input places

(idleA and ressource) that both hold one token.

2.1.2.2 Transition firing rule

The effects of firing an enabled transition t (also called the occurrence of a

transition t) at a given marking M are:

1. remove from each input place as many tokens as the weight of the input arcs,

2. deposit in each output place as many token as the weight of the output arcs.

These rules illustrate the locality of the enabling and firing of a transition.

Example. In Figure 1 two clients A and B share one resource to perform some

activity. In this system, each client, for instance client A, starts in the idle state

(place idleA is marked with one token). It must then first asks (transition askA) for

the resource (place ressource). When it grabs the resource the client is in working

state. When it finishes working the client releases the resource (transition

releaseA) and goes back to idle state (one token in place idelA and one token in

place ressource).

2.2 Formal definition

2.2.1 Syntax

A P/T net is a 4-tuple N=(P, T, Pre, Post) where:

• P is a finite set of places and T is a finite set of transitions such as PT=;

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 6

• Pre is the pre-incidence application and Post is the post-incidence application:

P x T→ .

The incidence matrix C is defined as C = Post – Pre.

The set of input places of a transition t is noted •t={pP• Pre(p,t) 0}.

The set of output places of t is denoted t•={pP• Post(p,t) 0}.

A marked P/T net is any couple (N,M) formed by a P/T net N and a marking

application M: P→ . M(p) is the marking of the place p.

2.2.2 Semantics

2.2.2.1 Transition enabling rule

At a given marking M, a transition t is enabled iff.

)t,p(ePr)p(M;Pp  . It is denoted M[t>. At a given marking M, the set of

enabled transitions is called enabled(M).

Two transitions t1 and t2 are concurrently enabled iff.

t2)Pre(p,t1)Pre(p,pMPp +)(; .

The result can be generalised for n transitions t1,…tn are concurrently enabled if:

tn)Pre(p,t1)Pre(p,pMPp ++ )(;

A sequence =t1.t2.….tn of transitions is enabled at a given marking M1 if the

sequence M1[t1>; M2[t2>; Mn-1[tn-1> is verified where Mi+1 is the marking reached by

the firing of transition ti.

Two transitions t1 and t2 are in structural conflict if •t1•t2. At a given

marking M, the transitions t1, t2 enabled(M) are in effective conflict if they are

in structural conflict, and t1 and t2 are not concurrently enabled.

2.2.2.2 Transition firing rule

At a given marking M, the firing of an enabled transition t leads to a new marking

'M and is denoted 'MM t⎯→⎯ . The effect of firing transition t is given by:

),()(),(),(Pr)()('; tpCpMtpPosttpepMpMPp +=+−= .

Example. In the example of Figure 1, the initial marking is

)10101(=0M relative to P={idleA, workingA, idleB, workingB,

resource}. Figure 2 gives the following matrixes: pre-incidence, post-incidence

and incidence applications. At the marking M0, the set of enabled transitions is

enabled(M)={askA, askB}. The occurrence of the transition askA leads to the new

marking)00110(=M . In the example of Figure 1, the transitions askA

and askB are in effective conflict at the marking M0, which results in a mutual

exclusion, as only one client can access the resource at a time.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 7























=

0101

1000

0100

0010

0001

Pre























=

1010

0100

1000

0001

0010

Post























−−

−

−

−

−

=

1111

1100

1100

0011

0011

C

Figure 2 Pre, Post and incidence (C) matrixes.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 8

3 Object Petri nets

P/T nets do not allow for an easy an efficient representation of data. Indeed, the

marking of a net is only a set of integer values corresponding to a number of

tokens in places. Another inconvenient of these token is the impossibility to

identify then and thus to represent and track their evolution in the nets.

Objects Petri nets (OPN) ([12], [1], [3], [13]) extend P/T nets and introduce

enhancements that increase their modelling power (by using differentiated tokens)

and allow structuring of nets by a mechanism called folding.

3.1 Informal definition

3.1.1 Structuring.

(1) Imagine modifying the example of section 2 in order to add another client C.

The net will increase because it needs three new places, two new transitions

and six new arcs. Clearly this is not very efficient as it increases significantly

the size and thus the complexity of the net.

(2) Imagine modifying the action done by the clients once they have grabbed the

resource. Extending the net (adding places and transitions) and giving a new

marking might represent this. But such an operation increases the complexity

of the net and does not improve its readability.

The OPN formalism solves problem (1) by attributing a type to each place of the

net. Tokens are tuples of values. The formalism allows the use of classes as types

and object references as values. Using objects allow the structuring of a system

using object-oriented techniques. Various kinds of OPNs differ from each other

by their use of structuring mechanisms. The OPN formalism also allows

transitions to have actions that are executed when a transition is fired. Using

classes as types and invoking methods on references born by tokens solves

problem (2).

Example. Figure 3 shows an OPN model of the system described in section 2.

Typing the place idle with the type <long> allows distinguishing client entities.

The initial marking of the place idle is {<1> + <2>} indicating that it holds two

tokens of long value 1 and 2 which are numeric identificators of the clients. To

add more clients, one only needs to increase the marking of place idle. The place

resource is typed using a class type <Printer> which has an operation void

print(long value) that prints some information. The place resource is initially

marked {<new Printer(”laserPrinter”)>} which is indicates that there is only one

resource available of type Printer. The place working is typed <long, Printer>

which allows to know which client is using the resource. The input arc relating

place idle to transition ask is labelled with the inscription <x>. The input arc

linking place resource has the inscription <r>. Transition ask is enabled if it is

possible to find a substitution (a set of values) for all its input formal parameters

(x and r). The output arc of transition ask, is labelled <x, r>, which means that

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 9

firing transition ask deposits in place working one token that holds a couple of

values. These values are the same as the ones substituted to the variables x and r

that enabled the transition ask. Transition release has an action r.print(x) which

means that the operation print of the object referred to by the variable r is invoked

with the parameter x. This invocation may or may not be represented in the net

according to the level of abstraction that is required by the system modeller.

idle

ask

resourceworking

r.print(x)

<x>

<r>

<x, r>

<x, r>

<r>

<x>

release

p1 p3p2

 T2

2*<a,b>

p4

b>0

 T1

Figure 3. Structuring using object Petri

net
Figure 4. Excerpts of an OPN net

illustrating the use of precondition,

inhibitor and test arcs

3.1.2 Expressiveness

(1) Imagine you want a transition to be enabled only if an input place has no

tokens.

(2) Imagine you want a transition to be enabled only if an input place has at least

a certain number of tokens but you do not want the tokens of this place to be

removed by the transition firing.

(3) Imagine you want a transition to be enabled only if the values born by the

tokens satisfy a predicate.

The OPN formalism introduces two new kinds of arcs: inhibitor arcs that solve

problem (1) and test arcs that solve problem (2). The formalism allows transitions

to have a predicate, called a precondition, expressed using the input variables of

the transition that solves problem (3).

Example. The OPN of Figure 4 only serves the purpose of illustrating the use of

these new constructs. An inhibitor arc links place p2 and transition T2 and is

labelled . A test arc links place p2 and transition T1 and also has the

inscription . A precondition b>0 appears on top of transition T2, which is a

predicate on the variables inscribed on the input and inhibitor arc of transition T2.

The place p1 is typed <string, long> and marked {3*<”hello”,1>}, which means

that it holds three identical tokens. The places p2, p3 and p4 are typed <long>.

The place p2 is marked {<1>+<3>}, which means that it holds two distinct tokens

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 10

of value 1 and 3. The place p3 is marked {<2>+<3>+<-5>} and the place p4 holds

no token, it said to be empty which is marked 0IN. We have thus defined the

current marking M such as:

M=(3*<”hello”,1>, <1>+<3>, <2>+<3>+<-5>, 0IN) relative to P={p1, p2, p3, p4}.

At the current marking M, the substitution S1={a=> “hello”, b=>1} enables

transition T1 because there are at least two tokens <”hello”,1> in place p1 and at

least one token <1> in place p2. The firing of transition T1 with the substitution

S1 removes two tokens <”hello”,1> from place p1 because of the input arc and

leaves the marking of place p2 unchanged because a test arc does not remove

tokens during firing; and deposits one token <1> in the place p4 because of the

output arc. The new marking reached 1MM ST ⎯⎯ →⎯)1,1(
 is:

M1=(<”hello”,1>, <1>+<3>, <2>+<3>+<-5>, <1>)

At the current marking M, the substitution S2={b=>2} enables the transition T2

because there is a token <2> in place p3 and also because the precondition is true

and there is no token <2> in place p2. The firing of transition T2 with the

substitution S2 removes the token <2> from place p3 but leaves the marking of

place p2 unchanged because an inhibitor arc does not remove tokens during firing;

and deposits one token <2> in the place p4. The new marking reached

2
)2,2(

MM
ST
⎯⎯⎯ →⎯ is:

M2=(3*<”hello”,1>, <1>+<3>, <3>+<-5>, <2>)

Also, as test and inhibitor arcs do not change the marking of the place p2,

transition T1 and T2 are concurrently enabled by the substitutions S1 and S2.

3.2 Formal definition

This section aims at presenting formally all the concepts of Object Petri nets. This

presentation builds upon previous section on basic Petri nets and details the notion

of objects used in the Object Petri nets formalism. First, several preliminaries

necessary for understanding the following, are introduced. Then sequentially the

syntax and the semantic of the formalism are fully presented.

3.2.1 Preliminaries

Definition 1. A basic set A is a set in which each element appears once.

Definition 2. Let A be a non-empty basic set. (A) is the set of all subsets of A.

Definition 3. Let A be a non-empty basic set. A* is the set of all finite sequences

built over A:

A*={ •nINaiA=a1a2…anlength()=nsupport()=  
ni

ia
..1=

}

Definition 4. Let A be a non-empty basic set. A is the set of all multisets built

over A:

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 11

A={B•B:A→INsupport (B)=  
Aa

aBa


• 0)(}.

For any element a of A, B(a) denotes the multiplicity of a in B.

The relation  is a partial order on AxA:

B1B2  aA, B1(a)B2(a).

The operations + and – on A are defined by:

(B1+B2)(a)=B1(a)+B2(a)

if B1B2 then (B2-B1)(a)=B2(a)-B1(a)

Definition 5. Let A be a non-empty basic set. A* is the set of finite multisets

over A*:

A*={B•B:A*→INsupport (B) is finitesupport(B)=  
)(support

)(support
B




}

Definition 6. There are two distinct sets of types: Cs, the set of simple types

(short, long, float, string, …) and Cc, the set of classes:

CsCc=

Definition 7. The domain application, dom, determines the possible values of a

type t:













=

Cctiftofinstancesofset

Cstifconstantsofset

)t(dom

Definition 8. The universe of values for a given set of types COUL is noted

UCOUL:

UCOUL= 
COUL

)(
t

tdom .

The type application determines the type of values of UCOUL:

type: UCOUL →COUL

tv such as vdom(t).

The type application can be extended to sequences:

type: (UCOUL)*→COUL*

nnvvv t...tt*...* 11 ==  such as i1..n

vidom(ti).

Definition 9. The compatibility relationship compat is a partial order on types:

t1 compat t2dom(t1)  dom(t2).

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 12

An example for simple types is: short compat long compat float. For class types,

class1 compat class2 means that class2 is a super class of class1.

3.2.2 Syntax

An OPN is a tuple N=(P, T, V, COUL, type, placeType, Pre, Post, Inhib, Test,

Precond) where:

• P is the set of places, T is the set of transitions and PT=;

• placeType:P→COUL* is the typing application for places and arity:P→IN is

the arity application derived from placeType:

placeType: P→COUL*

*tp such as

length(placeType(p))=arity(p).

If the arity of a place is zero, then the type of the place is an ordinary type,

meaning that tokens it holds are those of a P/T net;

• V is the set of variables used in the net vV, type(v) COUL. V(t) is the set

of local variables for a transition t.

• the application type is localised for each transition t with the applications

typet: ((V(t)UCOUL)*)→COUL*, which allows to extend the application

type: ((VUCOUL)*)→COUL*.

• each transition t has an action that may use operations allowed on the

variables V(t) of the transition and constants of UCOUL. Example of actions are

addition on elements of type long, assignment, and method invocation for

class types;

• Pre, the pre-incidence application, Post, the post-incidence application, Inhib,

the inhibition application, Test, the test application are such that:

PxT→((UCOULV)*)

(p, t)  
=

=

=
ni

i

ii wmB
1

*. , miIN and wisupport (B)

respecting the following constraints:

(1) length(wi)=arity(p);

(2) typet(wi)=placeType(p);

(3) (support(B)V)V(t), locality of variables

• tT, the set of variables V(t) is made of two, non necessarily distinct sets

Vin(t), the set of input variables of the transition, and Vout(t) the set of output

variables:

Vin(t)=(
P


p

(support(Inhib(p, t))V(t)))

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 13

 (
P


p

 (support(Pre(p ,t))V(t)))

(
P


p

(support(Test(p, t))V(t)))

Vout(t)=
P


p

(support(Post(p, t))V(t))

• tT, Precond(t) is a predicate on the elements of Vin(t).

Definition 10. A substitution S for a transition t is an application giving a value in

UCOULto each variable of V(t). Subst(t) is the set of substitutions for a transition t:

Subst(t)={S:V(t)→UCOUL•vV(t)type(S(v))COUL}.

A marked OPN is a tuple (N,M), where N is an OPN and M is an application

P→(UCOUL*) such as:

p→ 
=

=

=
ni

i

ii wmpM
1

*.)(, miIN and the

following constraints:

(1) length(wi)=arity(p) ; wi is a token. Ordinary tokens

are tokens of length zero.

(2) type(wi) compat placeType(p);

3.2.3 Semantics

This section presents successively the evolution of the enabling rule (i.e. what aer

the sufficient and necessary conditions for a transition in a Object Petri nets to be

enabled) and the firing rule (i.e. the impact on the net of the firnig of a transition).

3.2.3.1 Transition enabling rule

The enabling rule involves the inhibitor, input and test arcs of a transition along

with the precondition of the transition. At a given marking, M, a transition t is

enabled for a substitution S of its input variables if the following three conditions

hold [4]:

1. S(Pre(p, t))M(p))

2. S(Test(p, t))M(p)

3. S(Precond(t))(S(Inhib(p,t))M(p))

Example. At the current marking M, the transition T2 of Figure 4 is enabled by

the substitution S3={b=>-5} because:

(1) the substitution applied to the input arc linking the place p3 is S3(b)=<-5>

satisfies {<-5>}M(p3)={<2>+<3>+<-5>} and

(2) the substitution applied to the implication is true as its first part is

S3(Precond(T2))=(-5>0)=false. (Recall falseprop is valued true).

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 14

At the current marking M, the transition T2 of Figure 4 is not enabled by the

substitution S4={b=>3} because:

(1) althought the substitution applied to the input arc linking the place p3 is

S4(b)=<3> satisfies {<3>}M(p3)={<2>+<3>+<-5>}

(2) however, the substitution applied to the implication is false:

S4(Precond(T2))=(3>0)=true  ({<3>}M(p2)={<1>+<3>}).

Definition. At a given marking M, two transitions, t1 and t2 are concurrently

enabled by the substitutions S1 and S2 if the three following conditions hold:

1. S1(Pre(p,t))+S2(Pre(p,t))M(p);

2. S1(Test(p,t))M(p)S2(Test(p,t))M(p);

3. S1(Precond(t1))(S1(Inhib(p,t1))M(p))

S2(Precond(t2))(S2(Inhib(p,t2))M(p)).

3.2.3.2 Transition firing rule

At a given marking M, firing a transition t enabled with the substitution S results

in the following sequence:

1. remove tokens from input places;

2. execute actions of the transition. Assigning values to output variables in the

action of t defines an output substitution S’, however variables of

Vin(t)Vout(t) keep the same values: input variables are read-only;

3. deposit tokens in the output places.

The resulting marking M’ is:

pP, M’(p)=M(p)+S’S(Post(p,t))-S(Pre(p,t)); where S’ affects only the output

variables of t and  is the composition operator, meaning S' is applied to the

variables not substituted by S.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 15

4 Cooperative Objects

The Cooperative Objects formalism (CO) is a kind of Object Petri net (see above)

that defines a particular structuring of systems and the communication between

the parts of the system modelled using Object Petri nets.

4.1 Informal definition

The CO formalism allows the description of the system in terms of classes of

objects, CO classes, involved in a request/response protocol. A CO class specifies

a class of objects that satisfy an interface (describing operations and signatures)

and uses an OPN formalism to describe the behaviour. The behaviour part is

called the Object Control Structure (ObCS).

class Printer

specifies IPrinter {

 place readyToPrint < >={ < > };

 place printing < >;

 transition startPrint {

 action {

 System.out.print(x);

 }

 }

 transition endPrint {}

 }

startPrint SIP_print

SOP_printendPrint

<x>

readyToPrint
printing

}

Figure 5 CO class Printer

A CO class has two parts, a declarative part and the ObCS. Figure 5 shows the CO

class Printer. The declarative part indicates the interface that is specified using the

CO formalism and defines places and transitions of the ObCS. This view is

summarised by the following equation:

CO class=interfaces + behaviour

The CO formalism has three special features:

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 16

• Objects in Petri nets. As any OPN, a CO net contains tokens that are

references to objects. This feature allows to use object-oriented composition

and decomposition techniques to build a model of a system with CO

classes.

• Petri nets in objects. The behaviour of objects can be represented using a

predefined set of OPN nets. This allows a precise description of parts of the

behaviour of an object. CO adds the dynamic use of instances as objects

refer to classes instead of individual instances.

class SynchronousClient

specifies ISynchronousClient {

 place idle <long>={ <1>+<2> };

 place working <long>;

 place resource <Printer>={<new

Printer(”laserPrinter”)>};

 transition ask {}

 transition release {

 action {

 r.print(x);

 }

 }

 }

class AsynchronousClient

specifies IAsynchronousClient {

 place idle <long>={ <1>+<2> };

 place working <long>;

 place resource <Printer>={<new

Printer(”laserPrinter”)>};

 transition ask {}

 transition release {

 action {

 r.print(x);

 }

 }

 }

idle

ask

resourceworking

release

<x>

<r>

<x, r>

<x, r>

<r>

<x>

idle

ask

resourceworking

<r>

<x, r>

<x, r>

<x>

release

<r>

<x>

} }

Figure 6 CO class SynchronousClient Figure 7 CO class AsynchronousClient

• Client/Server relationship. The CO formalism defines a semantics of

communication between objects in terms of a Petri net. Thus a system may

be modelled as a set of objects that interact by invoking services to one

another. The invocations take place in the action part of invocation

transitions may be blocking or synchronous like the transition release of

Figure 6, or non-blocking or asynchronous like the transition release of

Figure 7.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 17

4.2 Formal definition

4.2.1 Declarative part

The CO formalism uses the interface definition language (IDL) proposed by the

Object Management Group (OMG) for its CORBA standard (Common Object

Request Broker Architecture). CORBA-IDL is independent from any

programming language (although closely patterned after C++) and object-

oriented, supporting specialisation of interfaces through inheritance. A CORBA-

IDL interface specifies at a syntactic level the services that a client object can

request from a server object that implements this interface. The interface details

the services supported and their signature: a list of parameters with their IDL type

and parameter-passing mode, the IDL type of the return value, the exceptions that

may possibly be raised during the processing of the service.

interface ISynchronousClient {}

interface IAsynchronousClient {}

interface IPrinter {

void print(in long x);

}

Fig. 8. CORBA IDL interfaces ISynchronousClient, IAsynchronousClient and IPrinter.

Fig. 8 illustrates the definition of an interface in CORBA IDL. This text defines

three interfaces: ISynchronousClient and IAsynchronousClient define no service,

they are used for tagging; IPrinter supports one service (print) that has an input

parameter of type long.

A CO class may specify one or several IDL interfaces. This is convenient since,

very often, several interfaces are given for the same entity to allow providing

different views of the same object, tailored for the needs of different clients. The

CO classes of Figure 5, Figure 6 and Figure 7 specify only one interface namely

IPrinter, ISynchronousClient and IAsynchronousClient . The keyword specifies is

followed by the list of CORBA-IDL interfaces specified by the CO class. The

system described using these CO classes consists in clients accessing a resource,

that is a Printer object.

4.2.2 ObCS

The ObCS is an OPN that maps services described in the IDL to special places.

Each service op defined in an IDL interface is mapped to two or three places in

the ObCS: a Service Input Port (SIP, labelled SIP_op), a Service Output Port

(SOP, labelled SOP_op) and a Service Exception port (SEP, labelled SEP_op),

only present if the service may raise an exception. These three places are derived

from the IDL, as follows:

• The token-type of the SIP is the concatenation of the IDL types of all in and

inout parameters of the service;

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 18

• The token-type of the SOP is the concatenation of:

• the IDL type of the result returned by the service (if any),

• the list of the IDL types of all out and inout parameters of the service.

• The token-type of the SEP is <Exception>, where Exception is the super-

type of all IDL exception types. The SEP is only used if the service is

defined to raise an exception.

According to the IDL of IPrinter in Fig. 8, the service print is mapped onto two

places of the ObCS of the CO class Printer (cf. Figure 5): SIP_print for the SIP

and SOP_print for the SOP; print has no SEP.

The invocation of the service op results in one token holding all in and inout

parameters being deposited in its SIP. The role of the ObCS net is to process this

parameter token in some way, and eventually deposit a result token (holding the

result of the service, plus all out or inout parameters) in the SOP, thus completing

the processing of the invocation. An invocation that raises an exception at some

point will instead result in an exception token being deposited in the SEP.

In order for the invocation to proceed in a sound way, the ObCS structure must

respect a set of constraints. To put it informally, we want to ensure the

behavioural property that an object will provide either a result or an exception for

each invocation, and will only provide results if it has been previously invoked.

With respect to the ObCS, the arrival of one token in the SIP will eventually result

later in exactly one token being deposited either in the SOP or in the SEP. We can

reuse well-known results from Petri nets theory to characterise proper net

structures where this property is verified. A Place Invariant (or P-Invariant) in a

Petri net is a set of places where the number of tokens remain constant throughout

the evolution of the net’s marking. Provided with this notion, we can state a set of

structural constraints that must be met to ensure the well-formedness of the ObCS

with respect to invocation semantics.

The necessary and sufficient structural constraints on the ObCS net are as follows:

• Constraint 1: The SIP can only have output arcs in the ObCS net;

• Constraint 2: The SOP can only have input arcs;

• Constraint 3: The SEP can only have input arcs, these arcs coming from

specific exception transitions (see §4.2.5).

The ObCS models an “open” server, where the environment (clients) can deposit

tokens in SIP and take tokens from SOP or SEP. As we are only considering the

server-side, we need to “close” the server system by modifying its ObCS, if we

want to investigate its behaviour in isolation.

4.2.3 Mapping for parameter-passing modes

The semantics for the three parameter-passing modes of CORBA-IDL is clear.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 19

• in parameters are values provided by the caller, that the service may use at its

own will;

• out parameters are values computed by the service, and returned to the caller;

• inout parameters are values transformed by the service, i.e. provided by the

caller and returned to it after being processed.

4.2.4 Semantics of communication

The client server protocol we use has been first presented in [8] for basic Petri

nets, extended to object-oriented high-level Petri nets in [1], and is presented with

its full theoretical details in [12]. The fact that not only the internal behaviour of

objects, but also their communication protocol is defined in terms of Petri nets

enables us to reason about systems of cooperating objects, and not only on

isolated instances.
place PA <long>;

place PB <Printer>;

place PC <long, Printer, float>;

transition TinvSynch {

 action { r=s.op1(p);}

}

 place PA <long>;

 place PB <Printer>;

 place PC <long, Printer>;

 transition TinvAsynch {

 action { s.op1(p);}

 }

PA PB

PC

r = s.op1 (p);

<p>

<p,s, r>

<s>

TinvSynch

PA PB

PC

s.op1 (p);

<p>

<p,s>

<s>

TinvAsynch

case: synchronous invocation case: asynchronous invocation

Figure 9 Semantics of invocations

In the above example of Figure 9, variable s is of type Printer, and we do as if the

interface IPrinter interface supported another service op1 that has the signature

float op1(in long pageCredits).

4.2.4.1 Synchronous communication

The client-server protocol provides semantics for synchronous invocation

transitions such as the one illustrated in Figure 6. An synchronous invocation

transition is a transition whose action is a blocking call of a service supported by

one of its input parameters.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 20

PA PB

Waiting

PC

Invocation

Parameter port

Invocation

Result port

Deposit token in invocation

result port for client object

<p>

<p, s, id>

<p, s, id>

<p,s, r>

<s>

<p, id>

<r, id>

Expanded

Invocation Transition

(a) client's side (b) server's side

Request

Transition

Complete

Transition

Deposit token in op1

input port for object s

OpCS for

op1

<p, id>

<r, id>

SIP_op1

SOP_op1

Figure 10 . Semantics of synchronous invocation transitions

The semantics of a synchronous invocation transition is illustrated in Figure 10.

This semantics requires an adaptation of the ObCS on the client side, and on the

server side.

On the client’s side the adaptation is as follows:

• The invocation transition is considered as a macro-transition extending from

the request transition to the complete transition. The request transition

constructs a parameter token, including the original parameters of the service

and a globally unique call-identifier. The call-identifier is of type CallID. This

token is deposited in the Invocation Parameter port.

• A waiting place is introduced between the request transition and the complete

transition. The presence of a token in this place indicates that a call is in

progress.

• The results from the service call will be returned to the client in its Invocation

Result Port. The arrival of a return token will enable the complete transition,

and terminate the service call on the client’s side. It is important to note that

the variable id is present on both input arcs of the complete transition: the

transition is only enabled if a substitution is possible between the token values

held in the Waiting and Return Port places, meaning that the same id is found

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 21

in both tokens. This construct is necessary to allow a client to issue

concurrently several invocations, and to enable the client to match the results

it receives with the parameters it has initially provided.

On the server’s side the adaptation is as follows:

The structure of the net is not altered, but only the definition of the places’ type

and the inscriptions on the arcs. The only requirement for the server is to transmit

the call-id within the service subnet, so that the results of the service can be

properly routed back to the caller. This part of the ObCS extending from the SIP

to the SOP and SEP transporting the CallID is called the Operation Control

Structure (OpCS) of the service.

• Constraint 4: An OpCS has a correct structure if it is not empty and

guarantees that the CallID will be returned and exactly once to the caller

through either the Ouput or the Exception port.

4.2.4.2 Asynchronous communication

PA PB

Waiting

PC

Invocation

Parameter port

Invocation

Result port

Deposit token in invocation

result port for client object

<p>

<p, s, id>

<p, s, id>

<s>

<p, id>

<r, id>

Expanded

Invocation Transition

(a) client's side (b) server's side

Request

Transition

Complete

Transition

Deposit token in op1

input port for object s

OpCS for

op1

<p, id>

<r, id>

SIP_op1

SOP_op1

<p, s>

Figure 11 Semantics of asynchronous invocation transitions

The client-server protocol also provides semantics for asynchronous invocation

transitions such as the one illustrated in Figure 7. An synchronous invocation

transition is a transition whose action is a non-blocking call of a service supported

by one of its input parameters. In such an invocation, the request/response

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 22

protocol is still executed but the client is not blocked during the execution of the

transition’s action.

The semantics of an asynchronous invocation transition is illustrated in Figure 11.

This semantics requires an adaptation of the ObCS on the client side, and on the

server side. The difference with the synchronous case is the adaptation on the

client side is modified to add output arcs from the request transition to the output

places of the invocation transition and to remove the arcs from the complete

transition to the output places of the invocation transition.

Asynchronous invocation can be used only when the client does not use the

returned values of the service.

4.2.5 Handling exceptions

CORBA-IDL allows specifying exceptions that may be raised during the

processing of an invocation. An exception is an object of a specific data-type, and

can hold information on the causes of its occurrence or other useful data.

When an exception is raised, the normal processing of the service is cancelled, the

result, out and inout parameters of the service are undefined, an exception object

is instantiated and only this object is transmitted to the client of the invocation.

 transition raise {

 precondition {x<3}

 action { e=new PolicyException();}

 }

 transition requeue {

 precondition { x>=3 }

 }

requeue

SIP_op2

SOP_op2

SEP_op2

<x>

PolicyException

<x>

raise

<e>

Figure 12 Exception transition

In the above example of Figure 12, variable s is of type Printer, and we do as if

the interface IPrinter interface supported another service op2 that has the signature

void op2(in long reQueueNumber) raises PolicyException. Of course this is a

contrived example and returning a boolean would give the same functionality.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 23

In order to specify properly the behaviour of a system, our formalism needs to

address two concerns:

• define under which conditions an exception may be raised during the

processing of an invocation, and what corrective actions are eventually needed

in the server object to restore a consistent state.

• define what action a client object needs to take if a service invocation results

in an exception instead of providing the expected result.

PD PE

PG

s.op2 (q, r);

<q>

<q, s, r>

<s>

Exception else

PF

<q, s, x>

PD PE

Waiting

PG

Invocation

Parameter port

Invocation

Result port

<q>

<q, s, id>

<q, s, id>

<q ,s, r>

<s>

<q, id>

<r, id>

PF

<q, s, x>

<q, s, id>

Invocation

Exception port

<x, id>

Fig. 13. Invocation transition with exception handling

The first point is tackled by exception transitions:

Constraint 5: exception transitions are labelled by the name of the exception

data-type that is raised. They can have input and output arcs from any place of the

OpCS of one service, but necessarily have exactly one output arc connected to the

SEP of this service. The occurrence of an exception transition models the fact that

an exceptional condition has occurred during the processing of an invocation, and

that this processing cannot be carried any further.

The raise transition in Figure 12 is an exception transition. It models the fact that

the x parameter of the op2 service needs to respect some constraints in order to be

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 24

properly processed by the service. In the figure, the reQueue and raise transitions

are in structural conflict, but this conflict is solved deterministically since the

preconditions of these two transitions are mutually exclusive.

The second point is tackled by:

• a simple syntactic extension of the graphic syntax of invocation transitions

(called emission rules),

• a straightforward extension of the client-server protocol described in §4.2.4,

acknowledging the fact that an invocation can have two different outcomes: a

normal outcome, providing the expected results, or an exception outcome,

providing no result other than the exception raised by the server.

Fig. 13 illustrates the graphic syntax of an invocation transition with exception

handling (left side) and the associated semantics expressed as a macro-transition

(right side). An invocation transition may feature an exception outcome (labelled

Exception) and a normal outcome (labelled else). An outgoing arc can only be

connected to one outcome. Arcs connected to the exception outcome are labelled

by the input variables of the transition, plus a variable to denote the exception

object received; they cannot refer to the result of the invocation neither to out nor

inout parameters.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 25

5 The Interactive Cooperative Objects formalism

ICO formalism aims at specifying interactive applications. As Human Computer

Interaction is event-driven, ICO adds the notion of events and of user/system

relationship (Activation, Widgets and Rendering) to the Cooperative Objects

formalism.

Definition. An ICO is a 6-tuple <CO, Su, Wid, Event, Act, Rend>:

• CO is the set of Cooperative Objects,

• Su is the set of user services,

• Wid is the set of widgets,

• Event is the set of predefined user events,

• Act is the activation function,

• Rend is the rendering function.

5.1 Cooperative Objects add-ons

The main feature added to cooperative objects is the user service. We also

introduce notations for other services and inheritance.

5.1.1 User Services

User services describe actions offered to user and are modelled as sets of

transitions (we talk of the transition set of a user service). These user services are

performed when they received the correct signal (called event).

5.1.2 Availability function:

The availability function Avail relates a user service to its transitions.

5.1.2.1 Naming convention and examples:

s Avail(s) = {s}

Figure 14 - Service s is defined with one transition

If the transition set of a user service is a singleton (Figure 14), the name of the

transition is the same as the service’s one.

s sT1 T2 Avail(s) = {s#T1, s#T2}

Figure 15 - Service s is defined with more than one transition

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 26

If the transition set of a user service has at least two transitions (Figure 15), the

name of the transitions is the name of the user service followed by ‘#’ and another

name (usually ‘T’ followed by a number).

s sT1 T2

P1

{if there is a token in P1 s#T1 is enabled

if there is no token in P1 s#T2 is enabled

Figure 16 – A user service with two transitions

Among the transition set of a user service, at most one transition can be enabled at

anytime (see the example from Figure 16).

5.1.2.2 Formal definition:

 Let Su the set of user services.

 Let Sua the set of available user services.

 Let T the set of transitions.

 Let Te the set of enabled transitions.

 Let (T) the power set of T.

Avail : Su → (T) is the availability function.

5.1.2.2.1 Properties

1. There is at least one transition in the set of transitions of a user service:

)(, sAvailSs u

2. Two different user services cannot share a same transition:

=)'()(,', sAvailsAvailSss u

3. For a same user service, two transitions cannot be enabled at the same time:

ee

u

TtTt

sAvailttSs





'

),(',

5.1.2.2.2 Syntax:

The relationship between an available user service and enabled transitions is

defined as follow:

1. When a transition from a user service is enabled, the service is available:

uae

u

SsTt

sAvailtSs



),(,

2. When a user service is available, one of its transition is enabled:

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 27

eua TsAvailtSs )(!,

In other words, these two definitions can be merge into the following one:

)(1
eua TAvailS −=

5.1.3 Associated event

There is one and only one event associated to a user service. This event is the

signal that triggers the user service. Figure 17 gives an example of event.

select

clic

event service

clic select

Figure 17 - Example of a service and its event

When an available user service receives the correct event, this user service is

performed.

5.1.3.1 Formal definition

5.1.3.1.1 Syntax

e : Su → Event is the function that relates an event to a user service.

E : Su is the first order predicate that relates the occurrence of an event to a user

service:






otherwise ,

occurs if ,
)(,

false

e(s)true
sESs u

5.1.3.1.2 Semantics

Performing a user service. When a service is available and when the associated

event occurs, the only enabled transition from the transition set of the user service

is fired ( s is performed):

)()(

,)(,

tfiresE

TsAvailtSs eua





We then define function perform as:

)()(

,)(,

tfiresperform

TsAvailtSs eua





5.1.4 Substitutions

As a user service is a set of transitions, we need to define the substitutions for user

services.

5.1.4.1 Formal definition:

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 28

Subst : Sua → (Substitution) is the function that relates an available user service

to the substitutions that enable it.


eTsAvailt

ua tSubstsSubstSs



)(

)()(,

As defined in property 3 from paragraph 5.1.2.2.1, only one transition may be

enabled at anytime. Therefore, function Subst is defined as follow:

)()(and

)(!,

e

eeua

tSubstsSubst

TsAvailtSs





5.1.5 A graphical representation for general services

Service 1

<x>

<y>

S1Tin
<x, id>

<y, id>

SIP_Service1

SOP_Service1S1Tout

<z, id>

<z, id>

SEP_Service1

Figure 18 – Example of a service

Figure 18 shows the graphical representation of a service called Service 1 that has

an input parameter x and an output parameter y (it could be described as typey

service1(typex x)).

Service 2

<x>

Service 3

<y>

Figure 19 – Other examples of services

Figure 19 shows services for which one of the output or input parameter is absent

(they could be described as void service2(typex x) {} and typey service3() {return

y;}).

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 29

Service 1

<x>

Service 1

<x>

<y> <y>

T1 T2

Figure 20 - A service with several input transitions

When a service is made with several transitions (in mutual exclusion of enabling),

it is represented as shown in Figure 20. Then, in the descriptive part of the ObCS,

the transitions are referred by the name of the service followed by ‘#’ and the

name of the transition (for Figure 20, it would be Service1#T1 and Service1#T2)

5.1.6 A representation for inheritance

As the ICO formalism is object-oriented, it is possible to use the inheritance

mechanism to structure a specification. To this aim, we represent inherited parts in

light grey colour. This allows us to make the difference between parts that are

inherited and parts that are particular to the class described. Figure 21 shows an

example of this notation.
class Cancellable {

 place Opened < >;

 transition Open {}

 transition Close

{}

 transition Cancel

{}

class Menu

inherits Cancellable{

 place Values <Value> = {…};

 place CurrentValue <Value> = {…};

 transition Open {

 self.showValues();

 }

 transition Close {

 self.hideValues

 }

 transition Cancel {

 self.hideValues()

 }

 transition Choose{}

Opened

Open

CancelClose

Opened

Open

CancelClose

Values

Current Value

Choose

<x> <y>

<x> <y>

Select <x>

} }

Figure 21 – Inheritance

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 30

5.2 Widgets

The Presentation of an object states its external look and is a structured set of

widgets organised in a set of windows. Widgets could be both graphical

representations and ways to interact with a user interface:

 graphical representation (as a text area Figure 22),

Figure 22 - Example of a text area

 ways to interact (as a button Figure 23).

Figure 23 - Example of a button

In an ICO specification widgets may be named in two ways:

Place Widget

None The Widget’s Name

Figure 24 - Naming a widget statically defined

1. widgets statically defined (Figure 24),

Place Widget

Name of the Place Type of the Widget

Figure 25 - Naming a widget dynamically instantiated

2. dynamic instantiation of widgets (Figure 25). Widgets are then referred in

the ObCS.

5.2.1 Listening to a service

The listening relationship relates a set of widgets to a user service. At runtime,

widgets are informed of a service’ state.

Notation. The listening relationship is described as an array (see Figure 26).

Widget Service

The widget The service

Figure 26 - Example of an association widget/service

Definition:

List : Su → (Wid) is the function that relates a service to widgets that listen to

it.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 31

5.3 Events

User Interface toolkits are event based. The signals coming from the input devices

are converted by the device drivers into events. These events are transferred to the

window manager whose task is to store them in an event queue before dispatching

them to applications that have expressed interest in them. The window manager

also has to transform elementary events into more abstract and high-level ones.

Examples. We give here some examples of transformation of events:

• transforming a series of mouse-up and mouse-down events into a double-

click event,

• transforming a mouse-click at absolute position x,y into an event informing

that a particular button in a given window has been clicked,

• transforming the sequence of actions that permits to choose a value x in a

menu, into an event called Select x,

• …

Towards widget-level event. We introduce here the notion of criteria:

Low-level events are handled by several managers and then dispatched to widgets.

Widgets then handle these events in order to specialise them.

Criteria. Criteria are restrictions on a substitution. Substitutions, as defined

below, hold values for tokens that make a user service available. From these

substitutions, choices must be made in order to choose which tokens will be

removed from the input places of a user service. Choices are made by widgets that

listen to user services according to their criteria (see illustration in paragraph

5.4.3).

Criteria are represented on the ObCS. Figure 27 shows an example where event

MouseMove perform service UserService1 if the coordinates of the mouse are in

the right zone.

User Service 1

Mouse Move

<x,y>

InZone1(x,y)

Figure 27 - A user service with a criterion

Formal definition of criteria:

Criteria : Wid  Subst is the first order predicate that relates a substitution and

widgets.









otherwise ,

criteria s' matches if ,
),(

)(,,

false

wsubsttrue
substwCriteria

sSubstsubstSsWidw ua

Extracted substitution.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 32

Subst : (Substitution)  Wid → Substitution is the function that provides (if

possible) one of the substitutions from a set of substitutions that verifies the

criteria imposed by a widget.

 Formal definition of the extracted substitution:

substwsSubstSubstsubstwCriteriasSubstsubst

WidwSs ua





)),((),()(

,,

5.4 Activation function

Activation aims at displaying the interaction space of the user. In an ICO based

specification, the interaction space may be deduced from the current marking of

the ObCS net. To this end, our specification exploits the availability function

(relating user services to transitions), the listening mechanism (relating widgets to

user services), the notion of criteria (relating widgets to substitutions) and the

activation function (relating widgets and user events to user services).

5.4.1 Informal description

An informal description of the activation mechanism could be given as follow:

 Let s be a user service and w, a widget that listens to s,

 (when s is available for the set of substitutions Sub)

 and (w and Sub verify a certain criterion), w is activated.

5.4.2 Activation function

The user → system interaction will only take place through widgets. Each user

action on a widget may trigger one of the ICO's user services. The relation

between user services and widgets is fully stated by the activation function.

Notation.

Place Widget’s type Event Service

None A statically defined widget event1 service1

A widget place Dynamically instantiated widgets event2 service2

The activation function Act relates a couple (Widget, Action) to a user service

according to criteria. At any moment, the set of activated widgets is therefore

defined as:

ProjWid(Act-1(Sua))

The activation function is defined as follow:

() uSEventWidAct →:

according to two properties:

()
()))),((,())(,()(.2

))(,(.1

)(,

wsSubSubsperformsSubstwCriteriasEactivatedisw

activatediswsSubwCriteria

sListwSs ua







Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 33

It is thus possible to compute, according to the current marking of an ObCS net,

the set of enabled (and disabled) widgets at any moment in the interaction. It is

important to note that no specific rendering information needs to be added to the

ObCS nets to perform activation rendering because the net structure itself, along

with the activation function, are sufficient to perform activation rendering

automatically.

5.4.3 Illustration

The ObCS in Figure 28 presents an example of dynamic instantiation of widgets.

The transition Init, when fired, produces object tokens that hold references to

widgets. Initially, all widgets produced by this transition are listeners to services

s1and s2. We assume that there are two widgets (called w1 and w2) produced by

Init and put in place P1.

User services s1 and s2 are then available for the following substitutions:








=

2

1
)1(

wx

wx
sSub and








=

2

1
)2(

wx

wx
sSub

Widgets w1 and w2, as they are listeners of s1 and s2, knows these substitutions.

Their criteria are the same, that is “x == self”. So, widgets w1 and w2 are both

activated (because from Sub(s1) w1 can extract the substitution xw1, w2,

xw2, and the same from Sub(s2)). These two activated widgets are now waiting

for a user action (Clic to perform s1 and DClic to perform s2).

P1

S1

Init

S2

Clic <x> DClic <x>

<x>

<x> <x>

Figure 28 – Example of dynamic instantiation of widgets

For instance, when the event DClic occurs for w1, service s1 is fired with the

substitution  1)1,1(wxwsSub = . Token that holds the reference to w1 is then

removed from P1.

5.5 Rendering function

5.5.1 Rendering

The system → user interaction is fully specified by the rendering function that

relates to each node (places or transitions) of the ObCS a set of Widgets that can

be used by the node to render information to the user.

Rend : PT → (Wid) where (Wid) is the power set of Wid.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 34

The ICO formalism relies upon high-level Petri nets for specifying dialogue and

interaction. One could imagine associating rendering specifications to any part of

the Petri net (i.e. places, transitions or arcs).

Recall that in Petri nets, the places are the state variables of the system (the state

being a distribution of tokens in the places) and the transitions are the state-

changing operators. The arcs model the causality structure of the system, stating

the preconditions of state changes, and their effect on the system’s state.

We consider that rendering deals with state: the very purpose of rendering is to

make the inner state of the application visible to the user. It is therefore logical to

associate rendering specification with the places of the Petri net.

However, a closer examination of the various types of rendering reveals the need

to associate rendering specification to the transition of the net also: in the ICO

formalism, transitions model the atomic (non-interruptible) actions of the system.

Transitions will often feature function calls to the non-interactive kernel of the

application, and these function calls may take an arbitrary time to complete. It will

often be necessary to inform the user that a lengthy operation is going on (e.g. by

changing the form of the mouse cursor) or to show the progression of the

operation (e.g. by displaying a progress bar). We could imagine going to a finer

grained model of dialogue, and associate various sub-states (modelled as places)

to the performance of the operation but this would lose the non-interruptible

nature of the operation. The non-interruptibility could be restored only by a much

more complex structure of the ObCS net. This reason led us to allow associating

rendering specifications to the transitions as well as to the places of the ObCS.

5.5.2 Rendering in places

Any place in an ObCS may be associated with up to three rendering methods:

• A token_entered method, that will be triggered each time a token is added to

the place by the occurrence of a transition,

• A token_removed method, triggered each time a token is removed from the

place,

• A token_reset method, triggered each time a token stored in the place is

accessed or changed by a transition connected to the place by a bi-directional

arc.

Notation.

ObCS element
Rendering method

Name Feature

Place APlace Token entered render1()

Token removed render2()

Token reset render3()

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 35

The rendering methods are associated to the places of the net, and may access all

the tokens contained in the place.

5.5.3 Rendering in transitions

Any transition in an ObCS may be associated with an action, expressed as a

function taking as input (resp. output) parameters the variables on the input (resp.

output) arcs of the transition. This action is allowed to perform any kind of

rendering on the widgets associated to the transition by the rendering function.

Most often, a rendering will be performed when the action starts executing (e.g.

changing the cursor shape), at several stages of the execution (e.g. updating a

progress bar), and when the action completes (e.g. reverting the cursor to its

original shape).

Notation.

ObCS element
Rendering method

Name Feature

Transition ATransition Start render1()

During render2()

Done render3()

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 36

6 A full example

We present here a simple but complete example to illustrate an ICO specification

and to present the general shape of such a document.

6.1 General presentation of an ICO specification

A document that describes an ICO specification is made up of successive parts. In

particular, there is the description of a cooperative objet followed by the

description of the associated activation and rendering function.

Figure 29 – Graphical representation of the window

Example. To illustrate ICO specification we will use the following example

(Figure 29) extracted from [6]. This very simple example is made of a window

and four buttons and behaves as follow:

• at the beginning, only the first button is available (the three other ones are

deactivated),

• clicking on the available button numbered (i) deactivates it (shown as greyed

out) and activates the next one (i+1),

• each time a button is triggered by the user, a page must be sent to the printer

and a message must be displayed in a text area. We take as given that the

function Print(x) prints the page numbered x of a given document. The

specification will thus only show how this operation held by the functional core

can be triggered by the user, using the presentation shown in Figure 29.

6.1.1 Object structure

As the ICO formalism is object-oriented, it is necessary to describe precisely the

application’s object structure. To do this, we use UML graphic language

[9;10;11].

A classical presentation is to draw three different graphs:

• an inheritance graph that describes the inheritance relationship between

classes,

• a composition graph that describes classes by the composition of other

classes,

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 37

• a use relationship graph that describes communication between objects.

Example. Using the ICO formalism, this simple application is modelled using

four different classes:

• a non interactive class corresponding to the functional core of the application

named NFObject

• an ICO class related to the user named Window-buttons

• a widget named PushButton (let B1, B2, B3 and B4 four instances of class

PushButton)

• a non-interactive widget named TextArea (let T an object of this class).

Window-buttonsNFObject PushButton TextArea

Figure 30 – Inheritance graph

Window-buttons

PushButtonNFObject

1

4

TextArea

Figure 31 – Composition graph

NFObject Window-buttons

Figure 32 – Use relationship

Figure 30, Figure 31 and Figure 32 present the three associated graphs.

The light grey part corresponds to a composed object (note that objects that

compose it are not represented).

6.1.2 Graphical structure

This facultative part aims at describing the general graphical organisation of the

interactive application to model.

Example. Window-buttons is graphically designed as shown by Figure 29.

6.1.3 IDL Interfaces

Interface Description Language is used to describe signatures of all services.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 38

Example. We present here the four IDL interfaces that describe the four classes

used in the example:

Interface IWindow-buttons {

 //User’s services

 void print1();

 void print2();

 void print3();

 void print4();

};

Figure 33 - IDL Interface of class Window-buttons

Interface INFObject {

 void print1();

 void print2();

 void print3();

 void print4();

};

Figure 34 - IDL Interface of class NFObjects

Interface IPushButton{};

Figure 35 - IDL Interface of class PushButton

Interface ITextArea{};

Figure 36 - IDL Interface of class TextArea

IDL interfaces presented by Figure 33, Figure 34, Figure 35 and Figure 36

represent the four classes needed by the example. As we do not expect particular

service from PushButton and TextArea, their interfaces are empty (that does not

mean that these classes are empty).

6.1.4 Set of ICOs

To each class described in the object structure, we associate (if this object is

interactive) an ICO. To fully describe such classes, we need to describe all parts

of their ICO specification:

• a cooperative object,

• an activation function,

• a rendering function.

6.1.4.1 Cooperative object

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 39

The Cooperative Object formalism describes a class by its behaviour. We add to

the description a set of rendering methods called by the activation and rendering

function.

Example. Figure 37 presents the cooperative object class associated to the class

Window-buttons.
class Window-buttons

specifies IWindow-buttons {

 place P1 <NFObject> = { <new NFObject()> };

 place P2 <NFObject>;

 place P3 <NFObject>;

 place P4 <NFObject>;

 transition Print1 {

 action {

 x.print1();

 }

 }

 transition Print2 {

 action {

 x.print2();

 }

 }

 transition Print3 {

 action {

 x.print3();

 }

 }

 transition Print4 {

 action {

 x.print4();

 }

 }

P1

P4 P3

P2print1

print4

print3

print2

<x>

<x>

<x>

<x> <x>

<x>

<x>

<x>

Clic

Clic

Clic

Clic

 Rendering methods {

 void display(String s){

 //Shows the message s in the text area T.

 }

 }

}

Figure 37 - Cooperative object specification and rendering methods of class

Window-buttons

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 40

6.1.4.2 Activation function

Recall that the activation function must describe the (widget, event, service)

relationship. To this end, we present the relationship with a table, in which

widgets can be described by the place they are in (in the case of dynamic

instantiation of widgets) or only by their name (in the case of static instantiation

of widgets).

Place Widget’s type Event Service

None B1 Clic Print1

None B2 Clic Print2

None B3 Clic Print3

None B4 Clic Print4

Figure 38 - Activation function of class Window-buttons

Example. Figure 38 presents the activation function associated to the class

Window-buttons.

6.1.4.3 Rendering function

The rendering function must relate the call of a rendering method to an event that

occurs in the ObCS. To this end, we present this with a table, in which ObCS

events are described by the name of the addressed item and by the king of event

that can occur (as presented in 5.5.2 and 5.5.3).

ObCS element
Rendering method

Name Feature

Place P1 Token entered display(“Print page 1”)

Place P2 Token entered display(“Print page 2”)

Place P3 Token entered display(“Print page 3”)

Place P4 Token entered display(“Print page 4”)

Figure 39 - Rendering function of class Window-buttons

Example. Figure 39 presents the rendering function associated to the class

Window-buttons.

6.1.5 Additional classes

In this section of the specification document, we put a description of all classes

that are not interactive, but that are needed to describe the behaviour of an

interactive application. Generally these are classes that describe particular data

types that handle some values or that model parts of the functional core.

Example. We describe here the three classes (NFObject, PushButton, and

TextArea) that are used in the construction of the application.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 41

• The class NFObject (Figure 40) features one internal operation (it cannot be

requested by other classes) print(n) which corresponds to the functional core

operation. It offers four services (they can be requested by other classes) to the

environment, each of these being able to print a given page on the document

(print1 is able to print the page 1 of the document). The ObCS is trivial as it

consists only in the mutual exclusion of the four services. As this object is not

aimed at being triggered by the user, it does not feature a Presentation part.
class NFObject

specifies INFObject {

 place P1 < > = { < > };

 transition print1 {

 action {

 print(1);

 }

 }

 transition print2 {

 action {

 print(2);

 }

 }

 transition print3 {

 action {

 print(3);

 }

 }

 transition print4 {

 action {

 print(4);

 }

 }

P1

print1

print4

print3

print2

}

Figure 40 – Cooperative Object class specification of NFObject

• The class PushButton describes a classical widget button that could be found in

every graphical toolkit.

• The class TextArea describes a classical widget text area that could be found in

every graphical toolkit.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 42

7 Conclusions and future works

In this working paper, we have presented the ICO formalism by describing its

three parts (Cooperative Objects, Activation and Rendering function). We have

then presented special representations and notions that aim at improving the

readability of a specification based on this formalism.

To increase usability of such formalism, we now focus on developing a tool that

supports it and that provides a way to execute an ICO specification.

Title: Formal definition of

Interactive Cooperative Objects

Id Number: WP2.6

 43

8 References

[1]. R. Bastide. Objets Coopératifs : un formalisme pour la modélisation des

systèmes concurrents. Ph.D. thesis, Université Toulouse III, 1992.

[2]. R. David and H. Alla. Du Grafcet Aux Réseaux De Petri Hermès, Paris

1992.

[3]. C. Lakos. Language for Object-Oriented Petri Nets. #91-1. Department of

Computer Science, University of Tasmania, 1991.

[4]. C. Lakos. A General Systematic Approach to Arc Extensions for Coloured

Petri Nets. 15th International Conference on Application and Theory of

Petri Nets, ICATPN'94, June 1994, pages 338-57. Lecture Notes in

Computer Science, no. 815. Springer, 1994.

[5]. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceeding

of the IEEE 77 , no. 4, 1989.

[6]. P. Palanque, F. Paternò, R. Bastide and M. Mezzanotte. Towards an

Integrated Proposal for Interactive Systems, Based on LOTOS and Object

Petri Nets. Design, Specification and Verification of Interactive

Systems'96, Proceedings of the Eurographics Workshop, Université Notre-

Dame de la Paix, Namur (Belgium) , 5 June 1996-7 June 1996, pages 162-

87. François Bodart, and Jean Vanderdonckt, editors.Wien, Springer-

Verlag, 1996.

[7]. J.-M. Proth and X. Xie. Les Réseaux De Petri Pour La Conception Et La

Gestion Des Systèmes De Production. Masson, Paris 1995.

[8]. C. V. Ramamoorthy and G. S. Ho. Performance Evaluation of

Asynchronous Concurrent Systems. IEEE Transactions of Software

Enginnering 6, no. 5, pages 440-9, 1980.

[9]. Rational Software Corporation. UML Notation Guide. 1.1 ed.1997.

[10]. ———. UML Semantics. 1.1 ed.1997.

[11]. ———. UML Summary. 1.1 ed.1997.

[12]. C. Sibertin-Blanc. Cooperative Nets. 15th International Conference on

Application and Theory of Petri Nets, ICATPN'94, June 1994, pages 471-

90. Lecture Notes in Computer Science, no. 815. Springer, 1994.

[13]. R. Valk. Petri Nets As Token Objects: an Introduction to Elementary

Object Nets. 19th International Conference on Application and Theory of

Petri Nets, ICATPN'98, Lissabon, Portugal, June 1998. Springer, 1998.

