A Survey on Recommender Systems (BR4CP 2012)

F. Koriche and J. Mengin

Merely based on the book of Jannach et al. [6]
Plan

1 Introduction

2 Collaborative Recommendation
 - User-Based Nearest Neighbor Recommendation
 - Item-Based Nearest Neighbor Recommendation
 - Limitations
 - Recent Approaches

3 Content-Based Recommendation
 - Linear Predictors
 - Linear Features
 - Limitations

4 Hybrid Recommendation
 - Voting Systems
 - Collaborative Features

5 Conclusions
Recommender System
Online decision maker that predicts which items should be shown to a specific person
Recommender System
Online decision maker that predicts which items should be shown to a specific person
Recommender System
Online decision maker that predicts which items should be shown to a specific person
Recommender System
Online decision maker that predicts which items should be shown to a specific person
Recommendation Problem (General)
Given
- a set $U = \{u_1, \cdots, u_n\}$ of users
- a set $P = \{p_1, \cdots, p_m\}$ of items
Find a ranking $\text{rank} : U \rightarrow \mathbb{S}(P)$, where $\mathbb{S}(P)$ is the symmetric group of all permutations over P

The problem can be generalized further using top k permutations

Recommendation Problem (Standard)
Given
- a set $U = \{u_1, \cdots, u_n\}$ of users
- a set $P = \{p_1, \cdots, p_m\}$ of items
Find a utility function $\text{pred} : U \times P \rightarrow [0, 1]$
Recommendation Problem (General)

Given
- a set \(U = \{u_1, \cdots, u_n\} \) of users
- a set \(P = \{p_1, \cdots, p_m\} \) of items

Find a ranking \(\text{rank} : U \rightarrow \mathbb{S}(P) \), where \(\mathbb{S}(P) \) is the symmetric group of all permutations over \(P \)

The problem can be generalized further using top \(k \) permutations

Recommendation Problem (Standard)

Given
- a set \(U = \{u_1, \cdots, u_n\} \) of users
- a set \(P = \{p_1, \cdots, p_m\} \) of items

Find a utility function \(\text{pred} : U \times P \rightarrow [0, 1] \)
Plan

1 Introduction

2 Collaborative Recommendation
 - User-Based Nearest Neighbor Recommendation
 - Item-Based Nearest Neighbor Recommendation
 - Limitations
 - Recent Approaches

3 Content-Based Recommendation
 - Linear Predictors
 - Linear Features
 - Limitations

4 Hybrid Recommendation
 - Voting Systems
 - Collaborative Features

5 Conclusions
Collaborative Recommendation

Matrix representation of items rated by users

- Assumes a large community of users who rate most of the items
- Does not assume any information about users or items
Collaborative Recommendation

Matrix representation of items rated by users

- **Assumes** a large community of users who rate most of the items
- Does not assume any information about users or items
Collaborative Recommendation

Matrix representation of items rated by users

- **Assumes** a large community of users who rate most of the items
- **Does not assume** any information about users or items
User-Based Nearest Neighbor Recommendation (early 1990s)

Given a rating matrix, a target user \(u \) and a target item \(p \)

- Identify the neighbors of \(u \)
- Predict the rating for \(p \) by \(u \) using the ratings for \(p \) made by the neighbors.

<table>
<thead>
<tr>
<th></th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
User-Based Nearest Neighbor Recommendation (early 1990s)

Given a rating matrix, a target user u and a target item p

- Identify the neighbors of u
- Predict the rating for p by u using the ratings for p made by the neighbors.

Rating Matrix

<table>
<thead>
<tr>
<th></th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
User-Based Nearest Neighbor Recommendation (early 1990s)

Given a rating matrix, a target user u and a target item p

- Identify the **neighbors** of u
- Predict the rating for p by u using the ratings for p made by the neighbors.

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
Collaborative Recommendation
User-Based Nearest Neighbor Recommendation

<table>
<thead>
<tr>
<th></th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Notation

- Set of users: $U = \{u_1, \cdots, u_n\}$
- Set of items: $P = \{p_1, \cdots, p_m\}$
- Rating matrix: $R = [r_{ij}]$, where $i \in U$ and $j \in P$.
Collaborative Recommendation

User-Based Nearest Neighbor Recommendation

<table>
<thead>
<tr>
<th></th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1.00</td>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>+0.85</td>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>+0.70</td>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>+0.00</td>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>−0.79</td>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

User Similarity (Pearson’s correlation coefficient)

\[
sim(u, v) = \frac{\sum_{p \in P} (r_{u,p} - \bar{r}_u)(r_{v,p} - \bar{r}_v)}{\sqrt{\sum_{p \in P} (r_{u,p} - \bar{r}_u)^2} \sqrt{\sum_{p \in P} (r_{v,p} - \bar{r}_v)^2}}
\]

where \(\bar{r}_u \) is the average rating of user \(u \)
Collaborative Recommendation

User-Based Nearest Neighbor Recommendation

<table>
<thead>
<tr>
<th></th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4.87</td>
</tr>
<tr>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Predicted Rating

\[
pred(u, p) = \bar{r}_u + \frac{\sum_{v \in N(u)} sim(u, v)(r_{v,p} - \bar{r}_v)}{\sum_{v \in N(u)} sim(u, v)}
\]

where \(N(u)\) is the set of \(u\)’s neighbors
Collaborative Recommendation

User-Based Nearest Neighbor Recommendation

<table>
<thead>
<tr>
<th></th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1.00</td>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4.87</td>
</tr>
<tr>
<td>+0.85</td>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>+0.70</td>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>+0.00</td>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>−0.79</td>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Predicted Rating

\[
pred(u, p) = \bar{r}_u + \frac{\sum_{v \in N(u)} \text{sim}(u, v)(r_{v,p} - \bar{r}_v)}{\sum_{v \in N(u)} \text{sim}(u, v)}
\]

where \(N(u)\) is the set of \(u\)'s neighbors

Choosing the size of the neighborhood is a key problem
Item-Based Nearest Neighbor Recommendation (early 2000s)

Given a rating matrix, a target user u and a target item p

- Identify the neighbors of p
- Predict the rating for p by u using the ratings for the neighbors of p made by u.

<table>
<thead>
<tr>
<th></th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Item-Based Nearest Neighbor Recommendation (early 2000s)

Given a rating matrix, a target user u and a target item p

- Identify the neighbors of p
- Predict the rating for p by u using the ratings for the neighbors of p made by u.

Table

<table>
<thead>
<tr>
<th></th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>?</td>
</tr>
<tr>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Item-Based Nearest Neighbor Recommendation (early 2000s)

Given a rating matrix, a target user u and a target item p

- Identify the neighbors of p
- Predict the rating for p by u using the ratings for the neighbors of p made by u.

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>User 1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>User 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>User 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>User 4</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
User Similarity (Cosine Similarity)

\[\text{sim}(p, q) = \frac{\langle p, q \rangle}{\|p\| \|q\|} \]

where \(\| \cdot \| \) is the Euclidean norm. The cosine measure can be adjusted using average ratings.
Predicted Rating

\[
pred(u, p) = \frac{\sum_{q \in N(p)} sim(p, q) r_{u,q}}{\sum_{q \in N(p)} sim(p, q)}
\]

where \(N(p) \) is the set of \(p \)'s neighbors
Sparsity and Cold-Start

In most applications the rating matrix is **sparse** (many missing values)

- Extend item ratings to paths of length k [5].
- Use default values [2].
Sparsity and Cold-Start

In most applications the rating matrix is sparse (many missing values)

- Extend item ratings to paths of length k [5].
- Use default values [2].
Sparsity and Cold-Start

In most applications the rating matrix is sparse (many missing values)

- Extend item ratings to paths of length k [5].
- Use default values [2].

\[
P(Y \mid X) = \frac{\prod_{i=1}^{m} P(X_i \mid Y) \times P(Y)}{P(X)}
\]

where \(Y \) is the event "\(p \) is classified to \(r \), and \(X_i \) is the event "\(x_i \) is classified to \(r \)."

Slope One Predictors [7]

\[
dev(p, q) = \sum_{u \in S(p, q)} \frac{r_{u,p} - r_{u,q}}{|S(p, q)|}
\]

where \(S(p, q) \) is the set of rows containing entries for both \(p \) and \(q \)

\[
pred(u, p) = \sum_{q \in T(u, p)} \frac{dev(p, q) + r_{u,q}}{|T(u, p)|}
\]

where \(T(u, p) = \{ q \in P : r_{u,q} \neq *, |S(p, q)| > 0 \} \)

\[P(Y \mid X) = \frac{\prod_{i=1}^{m} P(X_i \mid Y) \times P(Y)}{P(X)} \]

where \(Y \) is the event "\(p \) is classified to \(r \), and \(X_i \) is the event "\(x_i \) is classified to \(r \)."

Slope One Predictors [7]

\[dev(p, q) = \sum_{u \in S(p, q)} \frac{r_{u,p} - r_{u,q}}{|S(p, q)|} \]

where \(S(p, q) \) is the set of rows containing entries for both \(p \) and \(q \)

\[pred(u, p) = \sum_{q \in T(u, p)} \frac{dev(p, q) + r_{u,q}}{|T(u, p)|} \]

where \(T(u, p) = \{ q \in P : r_{u,q} \neq *, |S(p, q)| > 0 \} \)
Plan

1 Introduction

2 Collaborative Recommendation
 - User-Based Nearest Neighbor Recommendation
 - Item-Based Nearest Neighbor Recommendation
 - Limitations
 - Recent Approaches

3 Content-Based Recommendation
 - Linear Predictors
 - Linear Features
 - Limitations

4 Hybrid Recommendation
 - Voting Systems
 - Collaborative Features

5 Conclusions
Content-Based Recommendation

Items are rated by users using linear functions

- Assumes information (features) about items and users
- Does not assume a large number of users
Content-Based Recommendation

Items are rated by users using linear functions

- Assumes information (features) about items and users
- Does not assume a large number of users
Content-Based Recommendation

Items are rated by users using linear functions

- Assumes information (features) about items and users
- Does not assume a large number of users
Linear Prediction

The utility function is a linear function (additive independence principle)

\[
pred(u, p) = \langle w, x \rangle = \sum_{i=1}^{m+n} w_i x_i
\]

where \(x = u + p \)
Content-Based Recommendation as Convex Optimization

Let \(\{(x_t, x'_t)\}_{t=1}^T \) be a set of pairs of instances such that \(x_t \) is preferred to \(x'_t \).

Let \(f : \mathbb{R}^{m+n} \to \mathbb{R}_+ \) be a convex regularization function.

\[
\begin{align*}
\text{Minimize} & \quad f(w) \\
\text{Subject to} & \quad \langle w, x_t - x'_t \rangle > \zeta_i \text{ for all } t \in [T]
\end{align*}
\]

Various Learning Algorithms [10]

- Ordinal SVMs
- Boosting Algorithms
- Perceptron-Like Algorithms

Most algorithms can be extended to nonlinear functions using the kernel trick
Content-Based Recommendation as Convex Optimization

Let \(\{(x_t, x'_t)\}_{t=1}^{T} \) be a set of pairs of instances such that \(x_t \) is preferred to \(x'_t \).

Let \(f : \mathbb{R}^{m+n} \rightarrow \mathbb{R}_+ \) be a convex regularization function.

Minimize \(f(w) \)
Subject to \(\langle w, x_t - x'_t \rangle > \zeta_i \) for all \(t \in [T] \)

Various Learning Algorithms [10]

- Ordinal SVMs
- Boosting Algorithms
- Perceptron-Like Algorithms

Most algorithms can be extended to nonlinear functions using the kernel trick
Text Features

TF-IDF format [9]: for a word \(i \) in a document \(j \),

\[
x_i = \text{TF}(i, j) \cdot \text{IDF}(i) = \frac{\text{occ}(i, j)}{\max_{i'} \text{occ}(i', j)} \quad \text{and} \quad \text{IDF}(i) = \log \frac{m}{m(i)}
\]

and \(m(i) \) is the number of documents \(j \) that include \(i \).

The feature description is improved using [1]:

- Stop words and stemming
- Top \(k \) most informative words
- Context filters
Text Features
TF-IDF format [9]: for a word i in a document j,

$$x_i = \text{TF}(i, j) \times \text{IDF}(i)$$

where $\text{TF}(i, j) = \frac{\text{occ}(i, j)}{\max_i \text{occ}(i', j)}$ and $\text{IDF}(i) = \log \frac{m}{m(i)}$

and $m(i)$ is the number of documents j that include i.

The feature description is improved using [1]:

- Stop words and stemming
- Top k most informative words
- Context filters

Tag Features (Web 2.0)
In addition to their rating, items can be annotated using tags or keywords (folksonomies). Tags can be encoded using different schemes:

- Term: TF-IDF format.
- Opinion: the weight $x_i(u, r)$ of a tag i is given by the frequency of i assigned to items which user u has rated with rating value r.
Relevance
Many features in the instance vector are irrelevant.
- Model selection techniques
- ℓ_1-regularization techniques

Cold-Start
By sample complexity, as the number of features increases, the number of rated instances must also increase in order to yield accurate recommendations.
Plan

1 Introduction

2 Collaborative Recommendation
 - User-Based Nearest Neighbor Recommendation
 - Item-Based Nearest Neighbor Recommendation
 - Limitations
 - Recent Approaches

3 Content-Based Recommendation
 - Linear Predictors
 - Linear Features
 - Limitations

4 Hybrid Recommendation
 - Voting Systems
 - Collaborative Features

5 Conclusions
Hybrid Recommendation
Making recommendation by combining content-based and collaborative approaches
Hybrid Recommendation

Voting Systems

User profile

Item features

Community data

Hybrid Recommender

Recommendation List

\[
pred(u, p) = \sum_{i=1}^{k} w_i \times pred_i(u, p)
\]
<table>
<thead>
<tr>
<th>User</th>
<th>$R_{u,p}$</th>
<th>$P_{Alice,u}$</th>
<th>$C_{Alice,u}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>?</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>User 1</td>
<td>4</td>
<td>0.8</td>
<td>0.15</td>
</tr>
<tr>
<td>User 2</td>
<td>2.2</td>
<td>0.7</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Collaborative Features [8]

- $R_{u,p}$ is the rating of item p by user u
- $P_{Alice,u}$ is the Pearson’s correlation coefficient between Alice and u
- $C_{Alice,u}$ is ratio of overlapping ratings between Alice and u

$$C_{Alice,u} = \frac{|\{q : (R_{Alice,q} \neq *) \land (R_{u,q} \neq *)\}|}{|\{q : R_{Alice,q} \neq *\}|}$$

$$pred(Alice, p) = \langle w, x \rangle + \sum_{u=1}^{n} w_u \times C_{Alice,u} P_{Alice,u} R_{u,p}$$
Collaborative Features [8]

- $R_{u,p}$ is the rating of item p by user u
- $P_{Alice,u}$ is the Pearson’s correlation coefficient between Alice and u
- $C_{Alice,u}$ is ratio of overlapping ratings between Alice and u

$$C_{Alice,u} = \frac{|\{q : (R_{Alice,q} \neq *) \land (R_{u,q} \neq *)\}|}{|\{q : R_{Alice,q} \neq *\}|}$$

$$pred(Alice, p) = \langle w, x \rangle + \sum_{u=1}^{n} w_u \times C_{Alice,u} P_{Alice,u} R_{u,p}$$
Plan

1 Introduction

2 Collaborative Recommendation
 - User-Based Nearest Neighbor Recommendation
 - Item-Based Nearest Neighbor Recommendation
 - Limitations
 - Recent Approaches

3 Content-Based Recommendation
 - Linear Predictors
 - Linear Features
 - Limitations

4 Hybrid Recommendation
 - Voting Systems
 - Collaborative Features

5 Conclusions
Other Approaches

- Pairwise Preference Recommendation [4].
- Constraint-Based Recommendation [12].
- ...
Recommendation Systems vs Configuration Systems

Recommendation Systems

- Items are atomic objects \((m\) is part of the input dimension)\)
- Items are rated by many users, and users rate many items

Configuration Systems

- Items are combinatorial objects \((m\) is exponential in the number of components)\)
- Items are rated by very few users, and users rate very few items
Recommendation Systems vs Configuration Systems

Recommendation Systems

- Items are atomic objects (m is part of the input dimension)
- Items are rated by many users, and users rate many items

Configuration Systems

- Items are combinatorial objects (m is exponential in the number of components)
- Items are rated by very few users, and users rate very few items
M. Balabanovic and Y. Shoham.
Content-based, collaborative recommendation.

J. S. Breese, D. Heckerman, and C. M. Kadie.
Empirical analysis of predictive algorithms for collaborative filtering.

Combining content-based and collaborative filters in an online newspaper.

Learning to order things.

Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering.

Recommender Systems: An Introduction.

D. Lemire and A. Maclachlan.
Slope one predictors for online rating-based collaborative filtering.
In *Proceedings of the 5th SIAM International Conference on Data Mining (SDM’05)*, 2005.

P. Melville, R. J. Mooney, and R. Nagarajan.
Content-boosted collaborative filtering for improved recommendations.

G. Salton, A. Wong, and C. S. Yang.
A vector space model for information retrieval.
A. J. Smola and P. J. Barlett (editors).
Advances in Large Margin Classifiers.

P. N. Tan, M. Steinbach, and V. Kumar.
Introduction to Data Mining.
Addison Wesley, 2006.

M. Zanker, M. Jessenitschnig, and W. Schmid.
Preference reasoning with soft constraints in constraint-based recommender systems.