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Abstract 
 
This paper presents a new interpretation of the general 
definition of the binary blending operator of implicit 
modeling. Instead of considering the operator as a 
composition of potential functions or as a function defined 
in the combined primitives metric, we propose to consider 
it as an implicit curve extruded in an implicit extrusion 
field. An implicit extrusion field is a 2D space for which 
each coordinate is a potential field.  
The study of general concepts around implicit extrusion 
field allows us to introduce theoretical notion of free-form 
blending controlled point-by-point by the user. Through 
the use of functional interpolation functions, we propose 
modeling tools to create, sculpt or combine implicit 
primitives by extrusion of a profile in an implicit extrusion 
field. 
 
 
1. Introduction 
 
Among 3D interactive modeling constraints, such as a fast 
and interactive visualization process or a clear and 
intuitive interface, the easy and precise control of a wide 
variety of shapes is one of the most important. The way to 
solve this last constraint is directly linked to the model 
used to define the surface. Direct manipulation of meshes 
and parametric shape representations are common and 
useful solutions. They allow the interactive creation of 
free-form shapes and are widely used in commercial 3D 
software. These models produce a surface representation 
of the objects in 3D space. On the other hand, implicit 
modeling based on potential functions involves volumetric 
object representation. The latest evolutions of graphic 
hardware and of the volumetric visualization  algorithms 
now allow us to directly and interactively render iso-
surfaces from a 3D potential field without using the  
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expensive task of iso-surface polygonalization. Implicit 
surfaces have the following properties: 
•  They define solid objects, 
•  an object is defined by a single equation, 
•  easy detection of the collision between objects, 
•  automatic blending between combined primitives, 
in addition they allow us to model both the iso-surface and 
the potential field (which defines the volume). 
Implicit interactive modeling is based on the combination 
of various implicit primitives with operators either 
integrating the blend or not [1,2]. The blending notion is 
usually seen and computed as a smooth and regular curved 
or inflated transition. Though many easily controlled 
primitives have been proposed, their blending suffers from 
a lack of precision.  
Early works proposed blobs [3], soft objects [4] and 
metaballs [5], where spheres are blended by the sum of 
their potential fields. More recently many models have 
been proposed to define new implicit primitives. Skeletons 
are the extension of spheres to a wider family. A skeleton 
is a simple geometric object [6,7,8] (like a point, line 
segment, free-form curve or polygon) and the shape is set 
of points located at a fixed distance from the skeleton. 
Distance can be Euclidean or anisotropic [9,10,11,12]. 
Other primitive families have been proposed. 
Superquadrics [13,14] are algebraic functions controlled 
by parameters in their equations. Directly adapted from 
parametric sweep objects, implicit sweep primitives 
[12,15] are controlled by geometric parameters like 
trajectory and key profiles (interpolated along or around 
the trajectory). They greatly extend the range of shapes 
produced. Improvement of intuitive shape control through 
the development of new primitives  has been an important 
area of investigation but only a few blending models exist 
and transition is approximately controlled by parameters 
that are merged in the surface equation. Our goal is to 
increase shape control precision at blend level. The 
solution proposed is based on a novel interpretation of 
fundamental blending theory [16,17].  
After a short overview of different blending models, a new 
interpretation of binary combination operators allows us to 
introduce implicit extrusion fields. An implicit extrusion 
field can be seen as a 2D implicit space where the value of 
each coordinate is an iso-potential surface in a potential 
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field. Curves defined in an implicit extrusion field are 
represented by a surface in 3D user space. We indicate 
how surfaces can be precisely controlled by acting on 
curve properties and we deduce how free-form implicit 
curves defined point-by-point can be theoretically 
extruded in those fields to precisely combine, sculpt or 
model implicit primitives. We then present an 
implementation of implicit extrusion fields using curves 
defined by functions of R→R and a 2D elementary 
interface. Those functions do not exactly generate free-
form curves but they are well known and they allow us to 
easily validate our theory. 3D visualization with an octree 
[18] is used to validate the resulting object shape if 
necessary. 
 
2. Implicit surface 
 
Function f is of the type R3→R. Function f associates a 
potential value Cp∈ R at each point p∈ R3 of the 3D user 
space. Function f defines a potential field. The set of 
points p, for which f(p) associates the same potential 
Cp=C0, defines an iso-surface in the potential field. This 
iso-surface, called the C0 iso-surface, is an implicit surface 
S and function f is called potential function. 
 

RRf →3:  
        ( ) ( ) pCpfzyxp =→,,  

( ){ }03 / CpfRpS =∈=  where RC ∈0 . 
 

The potential function f splits space into two half spaces. 
One where f(p)>C0 and one where f(p)<C0. If f defines a 
closed object, the convention of inside/outside will, in this 
paper, be chosen as follows: 

•  If f(x,y,z) > C0, the point p(x,y,z) is outside the 
volume defined by the surface. 
•  If f(x,y,z) < C0, the point p(x,y,z) is inside the 
volume defined by the surface. 

The inverse convention (where point p is inside if f(p)>C0) 
could also be chosen, the choice depends on the implicit 
model that is used. 
 
3. Blending implicit models 
 
In its elementary form, blending is performed as follows: 
The potential function fi defining the primitive i is first 
composed with a blending function gi. The resulting 
function gi(fi) is a decreasing positive function with 
gi(fi)→0 when fi→+∞ (Figure 1). The blend of all the 
primitives is computed by summing the functions gi(fi ): 
 

( )∑=
i

ii fgF  

 
 
 

 
 
 
 
 
 
 
 
 

Figure 1: blending function gi representation. 
 
 

The blending function g was originally defined with an 
exponential function [3]. To increase computation speed 
and to localize a primitive influence, polynomial functions 
including an influence radius R have been proposed 
[4,5,11,18,19,20] (see [11,21] for an overview). The use of 
a blending function g as a first step and a sum as a second 
step generates a double abstraction level to control the 
transition precisely. For this reason we did not pursue our 
research in this direction beyond the results presented in 
[22].  
As specified first by C. Hoffmann and J. Hopcroft [16] and 
later by A.P. Rockwood [17], a binary blending operator G 
can be created in two steps. Operator G, called the 
blending function, is first defined as a function H of R2→R 
that creates a smooth transition between the two axes. The 
blend is then, in the second step, extended to primitives by 
composing H with f1: R3→R and f2: R3→R 
(G(x,y,z)=H(f1(x,y,z),f2(x,y,z))). The resulting surface is 
the zero iso-surface of the potential field defined by G: 
R3→R. G is then the curve H represented in the algebraic 
metrics defined by f1 and f2. Many blending functions have 
been proposed, especially functions allowing the control of 
the stating point of the blend on each blended surface and 
functions extending the blend to n primitives. One of the 
preoccupations of the author is to conserve the primitive’s 
metric through the function composition in the part of the 
field not affected by the blend. To conserve an intuitive 
control of the shape of the blend, the field of the composed 
primitives must stay regular, especially after some 
compositions. Such a blending function is called a 
displacement  function.  
Another approach consists in generalizing the blend as an 
operator on R-functions1. A classical union binary operator 
R is first defined by A. Pasko et al in [23]. Authors also 
care about proposing a composition operator having the 
displacement function property. One expression for R is 
then: 
 

( ) ( )2
2

2
12121, ffffffR +++= . 

 

Equation 1. 
                                                 
1 Implicit surfaces are defined by 0 iso-surface and the convention of 
inside/outside is : if f(p)>0, p is inside the volume, if f(p)<0, p is outside 
the volume. 

fi 

gi(fi) 

0 
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Blend operator G is obtained by adding matter at the 
transition [24]. The matter adding operator d is summed 
with the R operator to give a blend operator G: 
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Transition is controlled by acting on the parameters of the 
matter  adding operator d. These parameters (a0, a1, a2)  are 
embedded in the equation and their utilization is intuitive 
but they are not directly liked to geometric parameters 
(like control points, etc).  
Intersection and difference operators are also provided to 
model objects by composing the implicit primitives in 
CSG trees. 
Whatever the blending method used, transition creation is 
then an iterative succession of ‘adapting’ the value of 
parameters and visualization. 
The starting point of our approach is very close to that of 
C. Hoffmann et al. or A.P. Rockwood [16,17]. The main 
difference is to consider operator G as a 2D potential field 
defined in space where each coordinate (X and Y) is a 3D 
potential field (f1 and f2 respectively) instead of 
considering G as a composition of functions f1 and f2 or as 
a 2D potential field merged in function f1 and f2 metrics. 
This special space is called the implicit extrusion field. 
This difference can seem to be insignificant but we will 
see that it allows us to extend the blend to a theoretically 
free-form blend and, at the same time, to propose some 
tools for implicit modeling.  
 
4. Implicit extrusion fields: introduction and 
concepts 
 
4.1. Nomenclature and conventions 
 
•  Implicit surfaces are zero iso-surfaces and volumes 
are defined by f(p)≤0. 
•  An implicit extrusion field is a 2D implicit space 
denoted I2.  
•  Geometric entities defined in implicit extrusion fields 
are noted in capitals and entities defined in 3D Euclidean 
space are noted in small letters. 
•  I2 is a space where each coordinate is a potential field. 
To define an implicit extrusion field, each coordinate is 
instantiated with a selected potential function of  R3→R: 
X≡f1 and Y≡f2. 
•  POINT P(XP,YP) of I2 is defined by its two 
coordinates f1=XP and f2=YP. The abscissa is a set of 
points p(xp,yp,zp) of R3 for which f1(p)=XP. It is the XP iso-
surface S1 of the potential field defined by f1. The ordinate 
is a set of points p(xp,yp,zp) of R3 for which f2(p)=YP. The 
ordinate is the YP iso-surface S2 of the potential field 

defined by f2. POINT P is represented by the intersection 
between its two coordinates, which means that its 
representation is the intersection between the two surfaces 
S1 and S2. This intersection is a curve V (Figure 2) if it is 
not empty (or reduced to a single point). 
 
 
 

 
 

 
 

Figure 2: POINT P(1,2) defined in I2 and represented in 
R3 (I2 is instantiated with two spherical fields). 
 

21 SSV ∩=  where 

( ) ( ){ }PXpfRzyxpS =∈= 1
3

1 /,,  and 

( ) ( ){ }PYpfRzyxpS =∈= 2
3

2 /,, . 
 

Curve V is said to be the extrusion result of POINT P in 
the implicit extrusion field. 
•  Function G(X,Y) of I2→R defines a 2D potential 
field. The set of POINTS P(XP,YP) where G(P)=0 defines 
the zero ISO-CURVE. This CURVE is called the 
PROFILE and a continuous PROFILE can be seen as a 
succession of juxtaposed POINTS P. POINT P is 
represented by a curve in R3, PROFILE G is represented 
by a succession of curves juxtaposed in R3, which means 
that PROFILE G is represented by surface S in R3 (Figure 
3). This implicit surface S is given by the set of points 
p(x,y,z) ∈  R3 where G(f1(p),f2(p)) = 0. 
 

( ) ( ) ( )( ){ }0,/,, 21
3 =∈= pfpfGRzyxpS . 

 

 
 
 
 

Figure 3: PROFILE G defined in I2 and represented in 
R3 (I2 is instantiated with two spherical fields). 
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Surface S is said to be the extrusion result of PROFILE G 
in the implicit extrusion field. 
 
4.2. Links between implicit extrusion field I2 and 
3D modeling space R3 
 
We have seen that PROFILE, defined in an implicit 
extrusion field, is represented by an implicit surface in 
user modeling space R3. But different instantiations of 
implicit extrusion fields give different shapes for the same 
PROFILE. This is why the form and position of the 
generated surface are difficult to predict by the user. Our 
goal is to propose a precise modeling tool, so an intuitive 
link must be established between spaces R3 and I2.  
The user can easily select a point p(xp,yp,zp) of R3 in the 
modeling space (using an adapted modeling interface). 
Potential function f1 defines the potential value XP at this 
point: f1(p)=XP and potential function f2 defines the 
potential value YP at the same point: f2(p)=YP. POINT 
P(XP,YP) selected from point p(xp,yp,zp) has the following 
coordinates: XP iso-surface of potential field f1 as abscissa 
and YP iso-surface of potential field f2 as ordinate (Figure 
4). 
 

 
Figure 4: POINT P of I2 selected from point p of R3. 

It is important to note that point p belongs to the curve 
representing POINT P in R3. So, by selecting points in the 
modeling space, the user precisely and simply selects 
POINTS of I2. 
By selecting two points, p1(xp1,yp1,zp1) and p2(xp2,yp2,zp2), 
the user can choose vector u(xu,yu,zu) of R3. The initial 
point p1 defines POINT P1(XP1,YP1) of I2. From this 
POINT P1 and vector u, differential geometry equations 
allow the computation of VECTOR U(XU,YU) coordinates 
as follows: 
 

If A=(f1,f2) is an application from R3 to I2, and ∇ A is 
Jacobian matrix of A, 
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VECTOR U is represented by a family of directions in R3 
(Figure 5).  

 
 
 

 
 

Figure 5: VECTOR U of I2 selected from vector u of R3. 
 
Like points, vector u belongs to the family of directions 
representing U. This property allows the user to precisely 
select VECTORS of I2 from vectors of the modeling 
space. 
 
4.3. Correspondence between function G 
represented in I2 and the same function G in R3 

 
We recall that the normal N(P) at a POINT P to PROFILE 
G is given by the gradient vector ∇ G(P): 
 

( ) ( )
( )

( )
















∂
∂

∂
∂

=∇=

Y
YXG

X
YXG

PGPN
PP

PP

,

,
. 

We can deduce the tangent VECTOR:  

( )
( )

( )


















∂
∂−

∂
∂

=

X
YXG

Y
YXG

PT
PP

PP

,

,
. 

The user can control the resulting surface by controlling 
the POINTS and VECTORS defining the PROFILE from 
the points and vectors selected in the modeling space. So, 
POINTS and VECTORS must be control parameters of G 
PROFILE. Figure 6 shows an example of G PROFILE 
represented in I2 and figure 7 shows the same G PROFILE 
represented in a 2D section of R3. POINTS Pi (i=1..3) and 
TANGENTS Ti (i=1,3) are control parameters of 
PROFILE G. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Function G represented in I2. 
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Figure 7: Function G, defined in figure 6, represented 
in a 2D section of modeling space R3 (I2 is instantiated 
with two spherical fields). 
 
In figures 6 and 7, specific properties are revealed for 
implicit extrusion fields: 

1. For the regions of the PROFILE where POINTS P 
have a fixed abscissa (X=XP) as the ordinate Y varies: 
the associated points p of R3 are situated on the XP 
iso-surface of the potential field defined by f1. If in 
addition XP=0, these points of R3 are on the surface 
defined by f1. 
2.  For the regions of PROFILE where POINTS P 
have a fixed ordinate (Y=YP) as the abscissa X varies: 
the associated points p of R3 are situated on the YP 
iso-surface of the potential field defined by f2. If in 
addition YP=0, these points of R3 are on the surface 
defined by f2. 
3. If ( ) 0, =∂∂ XYXG PP : a null value of the 
differential in X at a POINT P(XP,YP) of I2 leads to 
the surface representing PROFILE G being tangential 
at P to the YP iso-surface defined by f2. If in addition 
YP=0, this surface is tangential to the implicit surface 
defined by f2. 
4. If ( ) 0, =∂∂ YYXG PP : a null value of the 
differential in Y at a POINT P(XP,YP) of I2 leads to 
that the surface representing PROFILE G being 
tangential at P to the XP iso-surface defined by f1. If in 
addition XP=0, this surface is tangential to the implicit 
surface defined by f1. 

We obtain a model which allows implicit surfaces defining 
implicit extrusion field coordinates to be partially or 

totally conserved in the final object (if desired). Continuity 
C0 or C1 at the junction between the surface representing 
PROFILE G and the one defined by one or other of the 
coordinates can be controlled by acting on partial 
differentials. In general, C1 continuity depends on the 
continuity of functions G, f1 and f2 (the final function is 
given by the composition of G: I2→I with functions f1: 
R3→R and f2: R3→R). 
In the example in figures 6 and 7, the final object is the 
result of the blend operator applied on two spheres. The 
transition is smooth, continuous and controlled point-by-
point.  
 
4.4. Extrusion models 
 
The above sections are presented in terms of blending. 
However, the same mechanism can be used to generate a 
variety of different effects, as described below. 
 
4.4.1. Extrusion objects      If the zero iso-surfaces  
defined by coordinates of the implicit extrusion field are 
not conserved in the final object, this object is an extrusion 
of the PROFILE in the implicit extrusion field (Figure 8).  
 
 

 
 

 
Figure 8: Extrusion of PROFILE G in an implicit 
extrusion field instantiated with two spherical fields. 
 
Extrusion trajectories are given by the intersection 
between iso-surfaces of each coordinate of the implicit 
extrusion field. This is an abstraction level which makes 
our extrusion model less general and more complicated to 
use than models of translational or rotational extrusion 
[12,15]. But if free-form PROFILES are defined (which is 
a future extension of this paper), they could be extruded 
with our approach, and this should greatly extend the 
variety of shapes produced. 
 
4.4.2. Sculpture      If only one of the zero iso-surfaces 
defined by the coordinates of the implicit extrusion field is 
conserved in the final object, PROFILE extrusion directly 
sculpts the conserved surface (Figure 9). Particular 
attention must be paid to the complexity of the sculpted 
surface. If its potential field is too irregular, the shape 
produced from the sculpting will be uncontrollable. 
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Figure 9: Spherical ordinate 0 iso-surface sculpted by 
PROFILE extrusion. 
 
4.4.3. Binary blending operator   If both zero iso-
surfaces defined by the coordinates of the implicit 
extrusion field are conserved, PROFILE extrusion 
performs the blending (as seen in figure 7). If free-form 
PROFILES are allowed, the classical notion of a smooth 
and regular curved transition will be extended to free-form 
blending. If in addition these PROFILES are defined 
point-by-point, the transition will be created simply and 
precisely. 
 
5. Applications using PROFILES defined by 
functions of R→→→→R 
 
To validate the theory presented, we propose to use 
PROFILES defined by functions of R→R. Indeed, these 
functions are well known whereas defining implicit curves 
represented by the G(X,Y)=0 equation and controlled 
point-by-point is a research topic in its own right. 
 
5.1. How to define a PROFILE G(X,Y) with a 
function H of R→→→→R 
 
A function H of R→R is defined by the following 
expression: Y=H(X). This expression can be written as:   
Y-H(X)=0. So, we can directly deduce a possible 
definition of PROFILE G: 
 

( )XHYG −= . 
 

The use of a functional definition generates a limitation in 
the form of the curves generated. Indeed curves defined by 
functions must be single valued in the abscissa direction 
(at a fixed X=X0, at most one Y value must exist such that 
Y=H(X0)). This implies a direct limitation: The zero iso-
surface of the abscissa field cannot be included in the final 
object (Figure 10). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 10: Form restriction of function curves. 
 
In spite of this restriction, these functions have the 
displacement function properties in the direction of the Y 
axis (Figure 11). This ensure that if primitives having 
regular field variations are used, their composition will 
produce a new object with a similar metric. These 
functions are then relevant for hierarchical combination 
structures (e.g. CSG trees). 
 
 
 
 
 
 
 
 
 
 
Figure 11: When function G is defined as Y-H(X), 
G(X,Y) reproduces the metric of the Y axis. 
 
PROFILE parameters are POINTS and VECTORS. This is 
why we propose to use interpolation functions. We have 
chosen 1D cubic polynomial splines [25] for their good 
smoothness and oscillation properties. 
 
5.2. 2D elementary interface of validation 
 
The 2D space visualized (Figure 12) is a plane section of 
the 3D working space. It is important to choose a plane 
which intersects the potential fields correctly. The plane is 
set where the outline of the final shape is to be controlled. 
A poor choice of the plane will considerably decrease the 
intuitive link between the 2D outline and the 3D shape. 
This condition obliges the user to have a working 
knowledge of potential functions and of the fields 
generated by implicit primitives. 
To allow the user to respect the function properties, the X 
axis must be visualized. The f1 potential field is visualized 
as a background picture using gray graduations (black 
when f1=0 and white when |f1| is max). To complete the 
field reference, outlines of f1 and f2 zero iso-surfaces are 
visualized. The user can act on the shape outline by 
moving, adding, or removing control points or by acting 
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on tangency at the first or the last point of the profile. 
Points and tangents are interactively selected in the 
interface with the mouse. 
A suitable 3D interface must allow the user to precisely 
position the plane with respect to the combined surfaces. A 
3D interactive visualization of both the f1 and f2 zero iso-
surfaces and the plane is then necessary. Further research 
is required on interactive implicit surface rendering to 
develop a useful interface. 
 
 

 
 
 

Figure 12: Our interface of validation. 
 
5.3. Control of the extrusion trajectories 
 
To create an object, an extruded PROFILE (section 5.1.) 
and extrusion trajectories have to be defined. Trajectories 
are defined by intersections between the iso-surfaces of the 
coordinates of the implicit extrusion field (section 4.1.). 
To control trajectories, we propose to use one of the 
potential fields to define the extrusion support. PROFILE 
is extruded ‘around’ the iso-surfaces of this potential field. 
The other potential field is used to define the direction of 
extrusion. PROFILE is extruded around the support and 
along the direction of extrusion (Figure 13). 
 

                
 

      

      
 
Figure 13: Examples of support (a,b,c) and direction 
(d,e,f,g) of extrusion. 
 
For example, directions can be simply defined by 
functions like: 
 

( )xlyx
l

=→
ℜ→ℜ:

     ( ) ( )xlyzyx
f

−→
ℜ→ℜ

,,
: 3

. 

Some functions used to create our directions are:  
 

( ) ( )xbayzyxf .cos.,, −=  

and  











−
=

22
arccos

zx
xα , ( ) ( )α.cos.,, bayzyxf −= , 

 
and surfaces shown in Figure 13 (e,f,g) are given by the 
following equations: 
 
e: ( ) 0cos =− xy , f: ( ) 0cos =− αy , g: ( ) 0.16cos =− αy . 
 
5.4. Modeling tools 
 
As seen section 5.1., due to the use of functional 
PROFILES, implicit surfaces defined in the abscissa of the 
implicit extrusion field cannot be included in the final 
object. Depending on the use of the abscissa or the 
ordinate as support and direction of extrusion, different 
modeling tools are obtained. Once the tool is selected and 
the extrusion fields instantiated, the PROFILE can be 
created using an adapted interface (see section 5.2. for an 
elementary validation interface). 
 
5.4.1. Sculpture on a surface     The sculpted implicit 
surface is selected as the ordinate of the implicit extrusion 
field (to be able to be included in the final object) and as 
direction of extrusion. It is the extrusion of the PROFILE 
around the support (selected as the abscissa) which sculpts 

(a) (b) (c) 

(d) 

(f) 

Y=0 G(X,Y)=0 X=0 

(e) 

(g) 
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the surface (Figure 14(a,b,c,d)). The abscissa field 
represents the sculpture tool. With the same PROFILE, a 
surface can be sculpted with different supports to generate 
various extrusion trajectories (Figure 14(e)). 
 

    
 
Figure 14: (a) The sphere (ordinate and direction) is 
sculpted around a cylindrical (abscissa and support) 
tool, (b) representation in our 2D interface ,(c) a profile 
is defined by the user, (d) resulting object, (e) the 
extrusion support is now a parallelepiped. 
 
5.4.2. Sculpture around a surface        The sculpted 
surface is again selected as the ordinate and as the support 
of extrusion. PROFILE is extruded around the sculpted 
object and along the direction of extrusion selected as the 
abscissa (Figure 15). With the same PROFILE, a surface 
can be sculpted with different direction to generate various 
extrusion trajectories (Figure 16). 
 

         

          
 
Figure 15: (a) The capsule (ordinate and support) is 
sculpted along a plane field (abscissa and direction), 
(b) representation in our 2D interface, (c) a profile is 
defined by the user, (d) resulting object. 
 

         

 
 

Figure 16: Different forms of direction and resulting 
objects. The direction used for object (c) is shown in 
figure 13(g). 
 
5.4.3. Extrusion objects       In this case, trajectories 
are controlled by acting on the support and the direction. 
An example of a extrusion object is given in figure 17. In 
this example, the PROFILE is extruded around cylinders 
(support) selected as the ordinate. A cylinder is an infinite 
surface and to be sure that part of the cylinder is not 
included in the final object, we use a cylindrical field 
without a zero iso-surface. The effects generated in 
changing the direction of extrusion are illustrated in figure 
18 and the effects generated in changing the support of 
extrusion are illustrated in figure 19. Precautions have to 
be taken when these two parameters are combined to 
obtain the desired trajectories. Indeed undesired and 
uncontrollable effects can be generated in the PROFILE 
extrusion trajectories (Figure 20). A good knowledge and 
understanding of the extrusion trajectories creation are 
necessary to nicely control complex field combinations.  
 

   

       
 

Figure 17: (a) The abscissa is defined by iso-value 
plane surfaces (direction) and the ordinate by 
cylindrical field (support), (b) representation in our 2D 
interface, (c) a profile is defined by the user, (d) 
resulting object. 

(a) (b) (c) 

(d) (e) 

(a) (b) 

(c) 

(a) (b) 

(c) (d) 

Y 

X 

Y 

X Y 

X 

(d) 

(a) 

(b) (c) 
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Figure 18: Different forms of direction (a,b,c) and 
resulting objects (d,e,f). 
 

             

   
 

Figure 19: Different forms of support and resulting 
objects. 
 

 
 
Figure 20: The plane used as the abscissa figure 19 is 
replaced by a waved field. The PROFILE extrusion 
become uncontrollable. 
 
5.5. Blending operator 
 
The zero iso-surface of the abscissa field can not be 
included in the final object (see section 5.1.). We are not 
able to create the blend operator as expected (see section 
4.4.3.). As suggested by D. Dekkers et al. [26], it is 
possible to include the two blended zero iso-surfaces in the 
ordinate field; they propose the following expression: 
 

( ) ( )nfffffFOO b ,,min: 212121 −−=∪ , 
 
where O1 and O2 are the primitive objects respectively 
defined by potential functions f1 and f2. Matter adding 
function fb is a function of R→R and n its softness control 
parameter. This expression has been done to be optimized 
for Lipschitz-based implicit surfaces but it can easily be 
adapted to our approach: 

•  Function F is our G operator. 
•  Ordinate Y is defined by min(f1,f2). 
•  Function fb is a function of R→R. It can be 
replaced by our H function. 
•  Abscissa X is defined by |f1-f2|. 

We then obtain: 
 

( ) ( )212121 ,min: ffHffGOO −−=∪  
 
At points where |f1-f2|=0 (where f1=f2), the min function 
generates a differential discontinuity in the ordinate field: 
f1 is selected on one side of the frontier (the set of points 
where |f1-f2|=0) and f2 is selected in the other. For each 
side a PROFILE has to be defined. The expression then 
become: 
 

( ) ( )212121 ,min: ffHffGOO i −−=∪    i=1,2  , 
 

where H1 is the PROFILE defined in the side where f1 is 
selected by the min function and H2 the PROFILE defined 
in the side where f2 is selected. 
 
 
 

 
 

 
Figure 21: Union of two spheres. At the frontier level, 
tangents t1 and t2 are computed from the selected 
vector T.   
 
As shown in [26], if functions f1 and f2 produce 
homogeneous fields, a first derivative value of Hi fixed at 
½ ensures the C1 continuity between the two PROFILES. 

X 
X 

X 

Y 

Y 

(a) (b) 
(c) 

(d) (e) (f) 

X X 

PROFILE H1 

f1=0 
Object 1 

f2=0 

PROFILE H2 

Object 2 

Frontier:  
|f1-f2|=0

H1’≠≠≠≠0 

H2’=0 

H1’(0)=t1 

H2’(0)=t2 

Vector ����
�
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But if the fields have different variations or if we want the 
user to be able to modify the tangent at this point, the 
tangents H1’(0)=t1 and H2’(0)=t2 of the PROFILES have to 
be controlled on each side of the frontier. The tangent is 
then computed for each PROFILE in its own field (see 
section 4.2. for the computation process) from the same 
vector direction T

�

 in R3. Figure 21 illustrates the different 
sections composing the final object and figure 22 shows 
the corresponding functions H1 and H2. 
 
 
 
 
 
 
 
 
 

Figure 22: PROFILES H1 and H2 used in figure 21. 
 
Thus, the C1 continuity is ensured if necessary and the 
model allows the creation of an operator of “almost” free-
form blending controlled point-by-point by the user 
(Figure 23(a,b)). We do not obtain free-form blending 
because of the limitation of functional profiles used to 
perform the transition. 
The blend operator can be seen as the union Boolean 
operator generated with a soft transition. Intersection and 
difference operators with point-by-point controlled soft 
transition can be directly deduced from the union operator2 
(Figure 23(c,d)) and there expressions are the following: 
 

( ) ( )212121 ,max: ffHffGOO i −+=∩    i=1,2   

( ) ( )212121 ,max:/ ffHffGOO i ++−=    i=1,2  . 
 
Properties shown in section 4.2 are adapted to our Boolean 
composition operators as follows: For the union and the 
intersection operators, coordinates of control points Pj and 
vectors Uk in spaces (X≡|f1-f2|, Y≡f1) for H1 and (X≡|f1-f2|, 
Y≡f2) for H2 can be directly computed from respectively 
points pE

j and vectors uE
k selected in the three-dimensional 

Euclidean modeling space as follows:  
•  At the selected point pE

j (xE
j, yE

j, zE
j) corresponds the 

control point Pj(|f1(pE
j)- f2(pE

j)|, f1(pE
j)) if the point pE

j 
is in the side of H1 or the control point Pj(|f1(pE

j)- 
f2(pE

j)|, f2(pE
j)) if it is in the side of H2. 

•  At a selected vector uE
k = 2k

E
k1

E pp  of coordinates 
(xE

k, yE
k, zE

k) corresponds the vector Uk=∇ A(pE
k1).uE

k 
where A=(|f1-f2|, f1) if point pE

k1is in the side of H1 or 

                                                 
2 Objects O1 and O2 are respectively defined by functions f1 and f2.  
¬ O1 is defined by –f1 and O1∪ O2 is defined by G(f1,f2), thus: 
•  O1∩O2 = ¬ (¬ O1∪¬ O2) is defined by –G(-f1,-f2), 
•  O1\O2 = O1∩¬ O2 is defined by –G(-f1,f2). 

A=(|f1-f2|, f2) if point pE
k1is in the side of H2, and ∇ A is 

the Jacobian matrix of A. 
For the difference operator, X≡|f1+f2| and Y≡f1 in the side 
of H1 and Y≡-f2 in the side of H2. 
In an adapted interface, these properties allow the user to 
accurately and easily define and control the form of the 
blend from its modeling space.  
Also defined with an adding matter function, operators on 
R-functions include the two blended zero iso-surfaces into 
their expression without generated differential 
discontinuity [23]. It could be very interesting to 
instantiate the ordinate field by equation 1 (see section 3), 
to avoid the discontinuity generated by the min function. 
This is, again, future work, specifically to verify the 
regular variations of the field produced, and to define the 
new properties of the function fb. 
 
 

                

                        

             

                
 
Figure 23: (a) Classical blending, (b) “almost” free-
form blending, (c) intersection and (d) difference (with 
soft transitions) of two spheres. 
 
 

(a) (b) 

(c) (d) 

|f1-f2| 

f1 = H1 (|f1-f2|) 

Control points Pj 

H1’(0)=t1 

H1’≠0 
H2’(0)=t2 

|f1-f2| 

f2 = H2 (|f1-f2|) 

H2’=0 
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6. Visualization 
 
3D shapes and 2D sections are rendered using octrees. The 
voxelization method is based on interval arithmetic for all 
the depths of the tree except for the last one where the sign 
of the function value at each vertex is compared to validate 
the intersection with the surface3. To render the surface, a 
point is visualized for each vertex of the intersecting cells 
[18]. The computational time grows rapidly with the 
complexity of the potential function. This method is 
unsuited to interactive modeling but it has the advantage 
that it gives a precise visualization of most implicit 
surfaces (Figure 24). This is thus a good mechanism for 
visual validation of our models. There is a need for faster 
but probably less precise rendering method and this is a 
subject for future research. 
 

 
 

Figure 24: Octrees 256××××256××××256 of Smurf’s house and 
the Hobbit’s pipe visualized in render points with 
OpenGL. 
 
The color variation at blend level is the sum of blended 
object colors balanced with their potential value. The 
weight value is 1 if the potential equals 0 and 0 if the 
potential is superior or equal to the potential at the blend 
intersection with the other object. It is inversely 
proportional to potential value variation along the blend. 
 
7. Conclusion 
 
Extruding profiles in implicit extrusion fields allows us to 
introduce precise control of “almost” free-form blending. 
Through the instantiation of implicit space coordinates, we 
produce tools which allow sculpting on or around a simple 
surface and the creation of original extrusion objects. 
Nevertheless, the use of potential fields as coordinates of a 
2D space represents an abstraction level for the user, and 
suitable interfaces have to be studied. 
Another constraint of interactive modeling is fast surface 
visualization. We have not yet explored this line of 
investigations and research still has to be done. For 

                                                 
3 If at least one of the values in a vertex does not have the same sign as 
the others, then the cell is considered as intersecting the zero iso-surface 
of the potential field.  

example, splines create bounded modifications on the 
primitives. Algorithms computing only these 
modifications in 2D/3D visualization structures can 
increase interactivity. 
Using free-form curves is an exciting perspective to 
increase our model efficiency. Implicitization of 
parametric curves [28,29], projection of a 3D shape onto 
plane [30] and combination with soft transition of 2D 
implicit curves [31] are different possibilities to explore. 
Many studies have to be done to find the limits of implicit 
extrusion fields. If free form PROFILE and interactive 
visualization are proposed, it will be important to explore 
different modeling processes and interface. Models like 
generative modeling [32] or implicit sweep objects [12,15] 
will be a great base of comparison and inspiration. 
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