
Improving the Worst-Case Execution Time Accuracy
by Inter-Task Instruction Cache Analysis

Fadia Nemer, Hugues Cassé, Pascal Sainrat*

Institut de Recherche en Informatique de Toulouse(IRIT)
Université Paul Sabatier de Toulouse

Toulouse, France
{nemer, casse, sainrat}@irit.fr

* Hipeac Network of Excellence

Ali Awada

Computer Science Department
Lebanese University

Hadath, Lebanon
al_awada@ul.edu.lb

Abstract�In hard real-time applications, WCET is used to check
time constraints of the whole system but is only computed at the
task level. While most WCET computation methods assume a
conservative approach to handle the processor state before the
execution of a task, the inter-task analysis of long effect hardware
facilities should improve the accuracy of the result. As an
example, we developed an analysis of a direct-mapped instruction
cache behavior, that combines inter- and intra- task instruction
cache analysis to estimate more accurately the number of cache
misses due to task chaining by considering task Entry and Exit
states along the inter-task analysis. The initial tasks WCET can
be computed by any existing single-task approach that models the
instruction cache behavior.

Keywords � Worst Case Execution Time, Data Flow Analyses

I.I. INTRODUCTION

Checking the temporal behavior of critical hard real-time
systems requires sound and accurate timing analyses: (1) an
underestimation of the tasks execution time may cause
catastrophic effects, and (2) an overestimation may waste
hardware resources. The Worst Case Execution Time (WCET)
analysis is a part of the timing analysis of a system. It
computes an upper bound of a task execution time for a
specific run-time environment.

In the last decade, an extensive research has developed
methods and techniques for evaluating a WCET
approximation based on static analysis approach [1, 2, 3, 4, 5,
6]. Usually, single-task based analyses manage the hardware
state in a conservative way, a usual example of such state is
the empty cache, ensuring an overestimation of the WCET.
Although they provide safe approximations, a lot of factors in
a multi-tasking system are not taken into consideration which
definitely affect the accuracy of such timing estimates. For
example, lots of works have been performed to analyze the
cache behavior inside tasks [1, 2, 3, 4] in order to predict their
timing properties but very few to handle the cache between
tasks [5, 6, 15] and not directly for the sake of WCET.

In this paper, we present an approach to analyze the
instruction cache behavior of tasks as well as the inter-task
cache state in a real-time system with a static schedule of tasks
to give an approximation of cache hits due to task chaining.
This critical real-time system is made of a set of tasks that are
subject to real-time constraints (i.e. deadlines) and that are
sharing processing resources. To assert hard real-time
properties and WCET computability, we are considering tasks

running in a non-interruptible environment and statically
scheduled.

The results are obtained by analyzing the addresses that are
first loaded in the cache when executing a task. They are used
to reduce the miss count evaluation induced by conservative
approaches which leads to the optimization of the initial tasks
WCET. These initial WCETs can be computed using any
existing timing analysis modeling the instruction cache
behavior. To analyze the inter-task cache states, we use a cycle
of the static task schedule. A cycle is the sequence of tasks that
are repeated in the same order in the schedule while the
system is running. This sequence contains one or more
occurrences of each task according to their periods.

The remaining of this paper is organized as follows.
Section 2 introduces existing cache timing analyses. The
problem is analyzed in section 3. Section 4 describes the
characteristics of an Iterative Data Flow Analysis (DFA) and
the details of the intra- and inter-task cache analyses.
Experimental results are shown in section 5 and section 6
concludes the paper.

II.II. RELATED WORKS

Most WCET analyses are performed at the task level
where a task is a non-interruptible code sequence. Caches are
complicating timing analysis because their content depend on
the program control flow. They improve the average memory
access time as they are implemented with a faster memory
than the main memory but they suffer from a smaller size due
to cost consideration. So, they only store a small part of the
memory and require special policies to select dynamically
which part of the main memory to store and to wipe out during
the execution of the program. Consequently, their behavior is
control flow sensitive and hard to predict.

While both instruction and data caches have effects on the
WCET estimation, we only consider in this paper, like most of
WCET cache surveys, the instruction cache. The data cache
causes even worst WCET pessimism and is often managed by
direct program control [14].

Li and Malik [1, 2] propose a WCET analysis approach for
a non-interruptible task called Implicit Path Enumeration
Method (IPET). The program and the cache behavior are
modeled as a set of integer constraints and a function whose
maximization gives the WCET. They only consider inter-task

251-4244-0840-7/07/$20.00 ©2007 IEEE.

cache effects by taking into account the possibility of the
presence of the blocks in the cache before the task starts.

F. Mueller [4] presents a framework to handle WCET
prediction. This static cache simulation method uses data-flow
information to categorize instructions according to their
caching behavior (always hit, always miss, first hit, first miss).
The WCET is computed by traversing the CFG paths and
propagating timing predictions within a tree in a bottom-up
traversal. It seems there is no support for inter-task cache state
management.

Ferdinand et al. [3] describe semantics-based analysis
methods using abstract interpretation that predicts the cache
behavior of programs. MUST and a MAY sets are provided to
compute the set of memory blocks that, respectively,
must/may be in the cache at a given program point under all
circumstances. These sets are then used to assign to each
memory reference one of the following categories: always hit,
always miss, persistent, not classified. To our knowledge, this
approach does not take in account the inter-task state.

All the aforementioned approaches focus on a single task
timing analysis. To ensure a conservative computation of the
WCET, they consider either an empty or an undefined cache
state before the task. Yet, they may miss some opportunities to
record hits in the WCET computation due to persistence of
some blocks between different activations of the same task.
This issue is discussed in [5, 6] that propose a timing analysis
approach to compute Worst Case Response Time for (WCRT)
in preemptive multi-tasking systems with caches.
The approach focuses on cache reload overhead caused by
preemptions. A path analysis is performed on the preempted
and preempting tasks. The WCRT of each task is estimated by
analyzing intra- and inter-task cache eviction.

Staschulat and Ernst, in [15], analyze the cache effects in a
multi-process real time systems with preemptive static priority
schedule to evaluate WCRT. They conduct experiments to
quantify the cache effects and use the process response time
for comparison. The core execution time of each process is
simulated with an empty cache at startup to deliver
conservative results, then the response time for multiple
preemptions is computed. To lessen the complexity of the
computation, only interruptions at basic block bounds were
considered. Consequently, the response time is computed
ignoring basic block overlapping causing a very
approximative value on modern pipelined and superscalar
processors.

[5, 6] and [15] computes the WCRT and not the WCET of
the tasks and hence the approaches are applied mostly to soft
real time systems and is bound to simple processors.

In this paper, we propose a task timing analysis for a multi-
tasking critical real-time system, thus assuming no
preemption between and inside tasks. As opposed to [1, 2, 3,
4], our analysis takes in account the execution context of the
tasks. We compute the inter-task cache state and the set of
memory addresses that will be first loaded into the cache when
executing a task, in order to compute the hits count due to task
chaining. The obtained results are straightforwardly used to
improve the estimated WCET. While the approach in [5, 6]
requires the computation of a list of sets for each instance of
the tasks in the schedule, our approach uses only five sets for

each task, four of these sets are computed once and used for
every instance of the same task in the schedule and whatever
the schedule. As opposed to [5, 6, 15], the simplicity of the
analysis makes it applicable to complex processors.

Our approach is bound to non-preemptive tasks as found in
usual critical industrial real-time systems (avionics for
example). So, we have experimented it with PapaBench [10], a
whole real-time application benchmark driving an Unmanned
Aerial Vehicle. On the contrary, the method presented in [5, 6]
and the simulations in [15] were tested on simple tasks
configurations (two tasks for [15]) that (1) do not exhibit the
properties of a complete real-time system environment and (2)
do not provide any evidence of computation complexity
scaling with bigger realistic systems.

Our approach guarantees the validation of the system
timing constraints without wasting time clearing the cache
memory .

III.III.PROBLEM DEFINITION

In this section, we detail the behavior of the cache all along
the execution of the control loop of a real-time system.

A.A. Context

Let be a real-time system composed of n non-interruptible
tasks named T1, T2, ... Tn. Each task Ti has a period Pi. Ti is
ready to run at the beginning of its period and the deadline of
Ti is at the end of its period. No constraint holds on the task-
scheduling algorithm apart from being static, that is, it
produces the schedule as a static table containing the order and
the activation date of the tasks before the system start. Usually,
the scheduling algorithm requires the period and the WCET of
each tasks. The latter parameter is estimated by the OTAWA
framework [8, 9] assuming a conservative hardware state at
the entry of the tasks, i.e. an empty cache.

According to the static schedule of the real-time
applications, we will analyze the instruction cache state
between tasks in order to reduce the pessimism induced by the
conservative WCET computation. To this end, we need to
analyze the cache behavior inside and between the tasks.
According to the tasks period, a task may be activated many
times and each instance is named Ti.j, the jth instance of task Ti

in the control loop.

B.B. Cache Behavior in the task

We propose to improve the WCET of statically-scheduled
tasks involved in an application by taking into account the
hardware state between tasks. As the tasks may execute many
instructions, only the hardware features, whose state depends
on old instruction executions, should be taken into account.
Consequently, we focus on the instruction cache.

Although static analysis approaches managing the
instruction cache effects only apply to single tasks, they
provide an insight about the cache behavior in the task. We
face two problems (1) how to turn false miss induced by the
conservative state of the cache to hits and (2) how to use the
intra-task results to model the cache behavior all around the
application control loop. We have based our intra-task analysis
on the MAY / MUST method developed by Ferdinand [3].

26

This approach is based on a Control Flow Graph (CFG)
which describes the control structure of each task. As a
function may be called many times from different locations of
the program, every call is treated as an in-line during the CFG
construction. This improves the sensitivity to the context and
makes easier the analyses implementation. A CFG is
considered as a pair (N, E) where the nodes, N, represent basic
blocks1 denoted by Bi and the edges from E, the control
transfer between basic blocks.

The execution time of an instruction depends upon the
behavior of the instruction cache. Whether it has been recently
executed, it may be still stored in the cache, resulting in a fast
access called a cache hit, or it may have been wiped out from
the cache resulting in a long memory access called a cache
miss. Usually, the memory is composed of cache blocks of the
same size. Each cache block may be stored in one of the cache
lines. When a cache block is accessed, either it is already in
the cache, or a block in its matching line need to be wiped out
in order to make place for the new block loaded from the
memory. In our experimentation, we are using direct-mapped
cache whose lines can only contains one cache block and do
not need any complex replacement policy.

As the cache memory accesses are performed by blocks of
constant size, we use the line-block unit, or simply l-block, to
consider the cache effects on the instruction execution time.
A l-block is a maximal contiguous sequence of instructions
contained in a basic block that are mapped to the same line in
the instruction cache. Two l-blocks that map to the same cache
line conflict with each other if the execution of one displace
the cache content of the other. Although a cache line can hold
one cache block, this one may be composed of several
l-blocks. These l-blocks are mapped to the same cache line but
they are not conflicting with each others because they are
contained in the same cache block. For example, figure 1
shows a CFG with three basic blocks. We assume that the
cache has four lines and suppose that a basic block Bi is
partitioned into s l-blocks denoted by Bi,1, ..., Bi,s. The l-blocks
of each basic block mapping to the same cache line are painted
with the same pattern. One can remark that B1.1 and B3.1 are
conflicting l-blocks while B1.2 and B2.1 are not.

From such a CFG with partitioned basic blocks, the
algorithm provided in [3] computes by abstract interpretation
and for each point L of the program two sets:

· MUST(Bi): list of l-blocks that must be in the cache
whatever the execution path, after Bi execution.

· MAY(Bi): list of l-blocks that may be in the cache for

1. A basic block is a maximum sequence of consecutive instructions which
control flow enters at the beginning and leaves at the end without halt or
possibility of branching except at the end.

one execution path at least, after Bi execution.

These sets may be used to categorize the l-blocks and to
derive cache miss count and the time penalty for each
instruction.

C.C. Cache behaviour between the tasks

For all single task based analyses, the cache are considered
empty at the start of the task to ensure an overestimation of
WCET. Yet, according the actual state of the cache before the
task, some hits have been considered conservatively as misses.
Now, we examine the cache state behavior between tasks in
order to remove these false misses.

We compute for each task an interval of the number of
cache hits which are considered as misses by the conservative
approaches. The upper bound of the interval is the maximum
possible number of hits (depending on the control flow of the
task) while the lower bound is the number of hits forgotten
whatever the real execution path of the task. To obtain such a
result, we need to estimate the cache state before each task,
which cache blocks of this state may cause hits and which
cache blocks stay in the cache after the task execution
according to the schedule chaining.

· the cache state S before the task execution,

· the cache state S' after the task execution,

· Entry, the set of cache blocks that will be first loaded
in the cache when executing the task and

· Exit, the set of cache blocks that will be in the cache
after the task execution.

Entry and Exit are computed ignoring the inter-task cache
state and assuming an empty cache or an undefined cache state
at the start of the task. S' is a function of S and Exit. As S' is the
set of cache blocks after the task execution, it contains the
cache blocks produced by the task (Exit) and the cache blocks
that were in the cache before the task execution and were not
replaced by the task cache blocks (which is a subset of S). The
Entry and the Exit sets derive from the intra-task cache
analysis. However, S and S' proceed from an inter-task cache
behavior analysis. We need to compute Entry and Exit
separately because the intersection of Entry and S produces the
number of false misses, while the Exit set is prominent to
compute S' that will be used as the input cache state (S) for the
next task in the schedule.

Ferdinand proposes only an Exit analysis in [3] that
predicts the cache behavior using MUST and MAY analyses.
Same as Ferdinand, we propose MUST and MAY analyses to
compute the Exit set. However, we have performed our
computation using an iterative Data Flow Analysis (DFA) [13]
and we are only interested in the Exit set at the end of the task
execution and not to evaluate the WCET.

Figure 1. L-block construction

Cache line

0

1

2

3

0 B1.1 B3.1

1 B1.2 B3.2

2 B1.3 B2.1

3 B2.2

Cache line Basic Block

(i) CFG
(ii) Cache Table

B1

B1

B1 B2

B2

B3

B3

B1

B2

B3

27

Yet, we provide in this paper a MUST and a MAY analyses
for the task Entry. The computed MUST and MAY Entry sets
holds the list of l-blocks that are (respectively may be) first
loaded in the cache when a task executes. The Entry analysis
was not considered before because the majority of WCET
computation methods are single-task based. We analyze the
Entry of a task T as only these task l-blocks are affected by the
task chaining. In other words, we have conservatively
forgotten cache hits of l-blocks that are in the Entry set and in
the cache state before the execution of the task. The remaining
l-blocks of the task are only influenced by the l-blocks that are
loaded in the cache during execution of the task.

Figure 3 exhibits several behaviors of instruction cache l-
blocks. It displays an example of an application tasks schedule:
the time runs from left to right. We focus on the internal CFG
of the task Ti drawn horizontally. According to the given In
cache state, we can compute the Out state after Ti execution
whatever the actual execution of the CFG. The l-blocks having
the same color are mapped to the same cache line and as we
consider a direct mapped instructions cache these l-blocks
conflict with each other.

The l-blocks that are affected by the task chaining are {f, c,
g, r, e, h} because they are the first encountered l-blocks in
their own cache line. r and g provides very simple cases
(edge 4): they are never in the In state and consequently cause
ever a miss. Because f and c are first accessed in the CFG (2,
3), b and i are never affected by the task chaining. When Ti is
running, f evicts b from the cache generating a cache miss. As
opposed to c and d, b is found in the Out state because it is
reloaded after f eviction and no other l-block wipes it out (2).
On the other hand, c and e is ever in the In state so that a hit is
generated when the l-block c is accessed (3, 5): this is one of
the forgotten hits considered as a miss with a conservative
empty cache state. Finally, we can notice that the line
containing a is not changed (1) by the task making the task
execution transparent for this line. The case of h (6) is trivial
too: it fills a non-used cache line.

As the Exit analysis, the Entry analysis does not model the
instruction cache behavior to compute the task WCET but is
dedicated to the evaluation of the forgotten hit count in the
start cache state S. The details of the Entry, Exit and cache
state analyses are shown in the following sections.

IV.IV.CACHE ANALYSES

We begin this section with a general overview of the used
Data Flow Analysis and then we explain the characteristics of
our intra- and inter-task cache analysis.

A.A. Data Flow Analyses

A Data Flow Analysis (DFA) is a process to collect run-
time information about data items in programs without
actually executing them. DFA algorithms are frequently
defined using operations on control flow graphs (CFG).
We use an Iterative DFA algorithm that combines and
manipulates information, added to the CFG nodes and edges,
using a set of equations that relate information at a given node
to the information at other nodes. A typical equation is Out(n)

�= (In(n) - Kill(n) Gen(n), which can be read as
�the information at the output of a node n is either generated in
n or it enters at the input and is not deleted in n�. In general
In(n) is a function that collects information from a subset of
neighbors of n, either the successors or the predecessors of n
in the graph.

The DFA is a static program analysis and therefore, makes
an approximation of the program behavior and performs a
fixed- point computation for the body of the repetition
statements. Such a fixed point always exists because (1) the
data flow equations compute sets of variables in a monotonic
way and (2) there is only a finite number of variables available
since we consider only programs with finite number of
statements. Therefore, there is a finite upper limit to the
number of elements of the computed sets which means that a
fixed-point always exists. Figure 4 shows the general Iterative
DFA algorithm. It consists of an initialization part where we
must initialize the set to compute (In and Out) and the main
loop which iterates until the convergence of the In sets (and
the Out sets as a consequence). Therefore, we use a boolean
variable convergence that will not be set to true unless all the
Out sets remain unchanged. This algorithm may be applied
forward or backward according the execution order depending
on the extracted information. Evaluation order of basic blocks
in the CFG has no effect on the result except to speed up the
convergence to the fix point.

B.B. Intra-Task Cache Analysis

In both Entry and Exit analyses, we use the function lines
(l-block set) that returns the sets of all l-blocks of the CFG
mapped to the same line than an l-block of the considered set.
Let LB be the set of the CFG l-blocks and line(l) computing
the cache line containing l-block l. For each basic block Bi, we
use four sets: In is the set of l-blocks available at Bi's entry,
Out is the l-blocks set after Bi execution, Gen is the set of
l-blocks accessed by Bi and Kill. Equations (1), on the next
page, shows how Gen and Kill are computed for a basic Bi.

Figure 3. LBlock Traversal

/* Initialisation */

In [Bi]=� ; /� B i

Out [Bn]=� ;

/* Main Loop */

do { convergence = true ;

for B i do {

In[B i] =�Out [s] ; // s�Predecessor [Bi]

OldOut=Out [B i]; Out [Bi]=�In[B i]�kill [B i]��Gen[B i];

if Out [Bi]	 OldOut then convergence= faux ;}}

while � !convergence �

Figure 4. General DFA algorithm (A1)

1. Traverse

2. Conflicts and is in the Out State

3. Hit and is not in the Out State

4. Conflicts and is not in the Out State

5. Hit and is in the Out State

6. Is in the Out State

b

c

d

e

a

b

e

h

f c

g

e h

1

2

3

4

5
6

Ti-1 Ti Ti+1

b

r

r

i

i

a

h

In State Out State

2

1. Traverse

2. Conflicts and is in the Out State

3. Hit and is not in the Out State

4. Conflicts and is not in the Out State

5. Hit and is in the Out State

6. Is in the Out State

b

c

d

e

a

b

e

h

f c

g

e h

1

2

3

4

5
6

Ti-1 Ti Ti+1

b

r

r

i

i

a

h

In State Out State

2

28

Gen [Bi] = {l�Bi }

Kill [Bi] = {l�LB /
 l ' �B i . line �l �=line �l ' �}
 (1)

Same as Ferdinand, we propose a MUST and a MAY
analysis to compute the Exit set. However, we have performed
our computation using an iterative DFA and we are only
interested in the Exit set at the end of the task execution.
The MUST analysis provides the set of l-blocks that must be in
the cache after the execution of a task Ti while the MAY
analysis gives the set of l-blocks that may be in the cache after
the task execution.

The CFG is traversed in a descending order starting
from B1. We use the algorithm A1 with the changes shown in
figure 5 for the MUST Exit analysis or with the changes shown
in figure 6 for the MAY Exit computation. Note that the Exit
analysis results are used to compute the cache state after the
task execution.

Then, we propose a MUST and a MAY analysis to compute
the task Entry set. The Must analysis gives the set of l-blocks
that must be first loaded in the cache when executing the task.
And the May analysis produces the set of l-blocks that may be
first loaded in the cache.

Having a CFG with n basic blocks, we apply the algorithm
A1 with the changes shown in in figure 7 for the Must analysis
and those shown in figure 8 for the MAY Analysis. A1 goes
through the CFG in an ascending order starting from the last
block Bn and using a basic block iterator on the CFG. Must
and the May analysis to compute the In and the Out sets using
an iterative approach.

There are only a finite number of cache lines and for each
task, we have a finite number of memory blocks. Additionally,
the union (intersection) operators applied to decreasing
(increasing) Out sets produce a decreasing (increasing) set at
each iteration of the main loop. This guarantees the

termination of the analyses.

C.C. Inter-Tasks Cache Analysis

Our objective is to compute the WCET of a complete
application cycle. Hence, we need to analyze the inter-task
cache effects to have a tight value of this WCET.

Previous section has shown how we can characterize the
behavior of the cache in the task using MUST and MAY cache
states on exit, called respectively MUSTExit and MAYExit, and
first accessed blocks on entry with sets called MUSTEntry and
MAYEntry. Moreover, the cache state before the execution of a
task is the cache state after the execution of the previous task
in the schedule (as the task schedule produces a cyclic graph,
there is always a predecessor to each task). To perform the
analyses of the cache between tasks, we apply the iterative
DFA algorithm to the graph formed by the application
scheduling whose nodes are the tasks instances. One may
observe that this graph, formed by an unterminated loop
containing a sequence of nodes, is simpler than a usual CFG.

For each task Ti and each analysis, we use four sets: In is
the set of l-blocks available at Ti entry, Out is the l-blocks set
after Ti execution, Gen is the set of l-blocks produced by Ti

and Kill is the set of l-blocks that were in the In set and were
replaced by Ti l-blocks. In the MUST analysis, Kill contains the
list of l-blocks that may be evicted, that is, the MAYExit l-blocks,
while for the MAY analysis, it contains the list of l-blocks
evicted whatever the execution path as in the MUSTExit set.

In the MUST analysis, the computed cache state holds the
l-blocks that will be in the cache whatever the execution
control flow of Ti. The Ti execution paths give different exit
sets. These sets includes at least the MUSTExit set as it is the
minimal exit set. Hence, to build the MUST cache state after Ti

execution, we must evict the list of l-blocks that conflict with
the elements of the MAYExit set. In the other hand, to compute
the MAY cache state, holding the l-blocks that will eventually

/*Initialisation*/ Out[B1]=Gen[B1] ; In [B i]=LB;

/* Main Loop */ In [B i]=� Out[p] ;// p�Predecessors [B i]

Figure 5.MUST Exit analysis

/*Initialisation*/ for Bi do { Out [B i]=� ; In[Bi] =� ;}

/*Main Loop*/ In [B i] =�Out[p] ; // p�Predecessor [Bi]

Figure 6. MAY Exit analysis

/*Initilisation*/

In[T 1] =� ;

Out initial[T i]= MayExit [T i] ;

Gen[T i]= MayExit [T i] ;

Kill [T i]= lines�Must Exit [T i]� ;

/*Main Loop*/

In[T i]=�Out [T] ; //T �Predecessors[T i]=T i�1

Figure 9. Cache State May Analysis

/*Initialisation*/ for Bi do { Out [B i]=� ; In[Bi] =� ;}

/*Main Loop*/ In [B i]=�Out [s] ; // s�Successor [B i]

Figure 8. May Entry analysis

/*Initialisation*/

In[T 1]=� ;

Out [T i]=Must Exit [T i] ;

Gen [T i]=MustExit [T i] ;

Kill [T i]=lines�MayExit [T i]� ;

/*Main Loop*/

In [T i]=�Out[T] ; //T �Predecessors [T i]=T i�1

Figure 10: Cache State MUST Analysis

/* Initialisation */

Out [Bn]=Gen [Bn] ; In [B i]=LB ; / �B i

for Bi 	 Bn do Out [B i]= LB�Kill[B i];

/* Main Loop */

In [Bi] =�Out [s] ; // s�Successor [B i]

Figure 7. MUST Entry analysis

29

be in the cache after Ti execution, we must use the MUSTExit.
Hence we must evict from the cache the l-blocks conflicting
with its elements.

To perform the computation, we assume an empty cache to
initialize the input state In[Ti] of each task Ti. We use A1 with
the definitions shown in of figure 10 to implement the MUST
analysis or those shown in figure 9 for the MAY analysis.

V.V.EXPERIMENTAL RESULTS

Our approach aims to tighten the WCET of tasks involved
in a complete application cycle taking into account the inter-
task instruction cache state. With such a scheme, the WCET of
each task depends on the task itself but also on its location in
the task chain. Therefore, a different WCET is computed for
each instance of the task in the application execution cycle.
To this end, we evaluate the lower bound of cache hits (from
the MUST analysis) used to fix the task WCET and an upper
bound (from the MAY analysis) that can be used to recompute
the WCET of the task in a context-sensitive way. We have
experimented our approach on a real-time benchmark
modeling a full application and the results are exposed here.

A.A. Benchmarks

To get objective results from our experimentation, we
need a whole real-time application and we want also to avoid
unrealistic benchmark made of unrelated benchmark pieces.
As no such a benchmark was existing to our knowledge, we
have derived one from an actual application driving an UAV,
called PapaBench [10].

ID Description Processor Period

T3 Receive MCU0 values MCU1 20Hz

T4 Transmit Servos MCU1 20Hz

T5 Check Failsafe MCU1 20Hz

T7 Stabilization MCU0 20Hz

T8 Send Data to MCU1 MCU0 20Hz

T9 Receive GPS Data MCU0 4Hz

T10 Navigation MCU0 4Hz

T11 Altitude Control MCU0 4Hz

T12 Climb Control MCU0 4Hz

T13 Reporting Task MCU0 10Hz

I1 Transmission Servos interrupt MCU1 20Hz

I2 SPI interrupt of MCU1 MCU1 20Hz

I4 SPI interrupt of MCU0 MCU0 20Hz

I5 Modem interrupt MCU0 10Hz

I6 GPS interrupt MCU0 4Hz

TABLEI. AUTOPILOT TASKS

PapaBench has 13 tasks and 6 interrupts. We use an
AADL [12] model of this application assuming that tasks and
interrupts are periodic (consequently, in the following, we do
not distinguish explicitly between tasks and interrupts and use

the task term for both). The AADL models the benchmark as a
bi-processor architecture separating the radio/servo command
management, handled by the processor MCU1, from the
autopilot task managed by the processor MCU0. Notice that
processor and their memory are independent and only linked
by a serial interface : actually, PapaBench contains two
embedded real-time applications, one for each processor.

As PapaBench has two operation modes, we choose to
analyze the automatic mode as it exhibits the most critical part
of the application. Table I shows the task list of the automatic
mode schedule and provides for each one an identifier, a
description, the corresponding processor and a period.
The deadline of a task is at the end of its period. As a sample
of the application cycle, each time T4 is executed, six
instances of interrupt I1 are also executed on the same
processor, one per servo and the execution time will vary
between 1ms and 2ms.

We analyze the task scheduling of each processor alone
because the separation of tasks execution makes the
propagation of tasks execution effects impossible between the
two processors. Hence, the cache behavior is only affected by
the list of tasks executed on the corresponding processor.

B.B. Tools

Our cache static analysis has been performed in the
OTAWA [8, 9] framework. In this tool, the WCET
computation is viewed as performing a chain of analyses that
use and produce annotations hooked to the code until getting
the WCET evaluation. We choose the Implicit Path Evaluation
Technique [1] in our experiments to compute the WCET and
the CAT approach to estimate the effects of the instruction
cache on execution time. CAT is the adaptation of the Muller's
categorization approach [4] to IPET. To perform this work,
OTAWA builds the CFG of the tasks and performs several
analyses to finally represent the WCET as a set of linear
constraints. The maximization of a cost function according to
the constraints by an Integer Linear Programming solver
(lp_solve) gives the WCET value [1].

The static schedules of each processor tasks used in our
experiments have been generated by CHEDDAR [11], a
resource requirements analyzer. It provides analytical and
simulation performance analysis methods / tools and it focuses
on tasks, processors, shared resources, buffers and task
dependencies. It fits well the requirement of our experiments
because (1) it supports AADL used to model the real-time
application of PapaBench and (2) it supports the task periods
and the precedence rules of the original application to perform
its schedule.

We used a fixed-priority scheduling called �Posix Highest
Priority First� where task priorities range from 1 to 255.
The algorithm schedules the tasks according to their priority
and their precedences. In the future, we plan to analyze the
effects of the scheduling protocols to the cache state. So,
we will consider these protocols in our future
experimentations.

To perform the experimentation, we have tested different
instruction cache configuration with the same processor
pipeline. As our IPET approach uses processor simulation to
compute the times of program parts, we have chosen a generic

30

four stages in-order pipeline with execution in-order. All
stages process two instruction by cycle with two ALU and two
float computation functional units. The used binary programs
was compiled for a PowerPC ISA but the used generic
simulator supports any architecture available on OTAWA.
The program running on MCU1 processor has a code size of
320 Kb while the program on MCU0 is a bit bigger with
370 Kb.

C.C. Results

In our experiments, we analyze different configurations of
a direct-mapped instruction cache to evaluate their impact on
the WCET estimation with our method. The cache size and
the block size effects are taken into consideration.

First, we have fixed the cache size to 64 Kb and tested
different block sizes: 8 bytes, 16 and 32 bytes. The results are
shown for the two programs in figure 11 and 13. Vertically, we
measure the average number of forgotten cache hits per task
instance, that is, the number of l-block in the MUST causing
hits whatever the execution path. Horizontally, we have the list
of tasks with one bar for each configuration. The number of
hits represents a lower bound of the pessimism in the WCET
evaluation with a conservative approach and, conversely, the
minimal gain of our approach.

The average count of hits � 1304 / 663 / 334 per block size

� is significant and enforces the interest in our approach. Then,
one may notice that little cache block size exhibits best inter-
task analysis results. Small cache basic blocks benefit from the
random distribution of code in memory and create less cache
block aliasing effect on cache wiping between tasks.

In the second set of measures, we have fixed the cache
block size to 16 bytes and we have performed our analysis for
different cache sizes: 8Kb, 64Kb and 128Kb. Figures 12 and
14 use the same notation as previous figures. Notice that, in all
cases, the cache is much smaller than the code size of each
program inducing a realistic load on the cache use. First, both
cache sizes of 16 Kb and 32 Kb provide the same benefit in
number of hits whatever the task. Yet, the 8 Kb cache size
seems to be too much small for the MCU0 program, 20%
bigger than the MCU1 program where it produces the same
measures. While the cache size should improve the WCET of
the tasks, it seems to have very few effects on the inter-task
analysis.

Lastly, we have computed the tasks WCET for each
instruction cache configuration for the processor described in
the previous section with a miss penalty of 10 cycles. Then
we have improved the tightness of the WCET with the results
of the hit count of our inter-task analysis by simply subtracting
10 cycles by each forgotten hit, counted as a miss by the
conservative WCET analysis. Indeed, the CAT method just
counts the number of misses and add the resulting penalty in

Figure 13.MCU1 average hit count (cache size 64KB)Figure 11. MCU0 Hit count (cache size 64KB)

Figure 12: MCU0 average hit count (cache block size 16 B) Figure 14.MCU1 average hit count (cache block size 16 B)

0

1 0

2 0

3 0

4 0

I6 T 9 T 1 0 T 1 1 T 1 2 T 5 T 8 I 4 T 1 3 I5

c a c h e s i z e 8 k o

c a c h e s i z e 6 4 k o

c a c h e s i z e 1 2 8 k o

0

2 0

4 0

6 0

8 0

I 6 T 9 T 1 0 T 1 1 T 1 2 T 5 T 8 I 4 T 1 3 I 5

b l o c k s i z e 8 o

b l o c k s i z e 1 6 o

b l o c k s i z e 3 2 o

0

1 0

2 0

3 0

I 2 T 3 T 5 T 4 I 1 . 1 I 1 . 2 I 1 . 3 I 1 . 4 I 1 . 5 I 1 . 6

c a c h e s i z e 8 K o

c a c h e s i z e 6 4 K o

c a c h e s i z e 1 2 8 K o

0

2 0

4 0

6 0

I 2 T 3 T 5 T 4 I1 . 1 I1 . 2 I 1 . 3 I1 . 4 I 1 . 5 I 1 . 6

b l o c k s i z e 8 o

b l o c k s i z e 1 6 o

b l o c k s i z e 3 2 o

Figure 15. WCET Improvement

0

5 0

1 0 0

I 2 T 3 T 5 T 4 I 1 . 1 I 1 . 2 I 1 . 3 I 1 . 4 I 1 . 5 I 1 . 6 I 6 T 9 T 1 0 T 1 1 T 1 2 T 5 T 8 I 4 T 1 3 I 5

A v e r a g e W C E T G a i n r a t i o

31

cycles to the WCET.

Figure 15 shows the results of our computation.
Horizontally, we have the list of tasks of MCU0 and MCU1
tasks while the vertical bars represent 100% of the WCET of
each task. The black part of each bar represents the number of
penalty cycles subtracted to the conservative WCET and,
consequently, the gray part represents the WCET after fix.
This figure shows that our approach can tighten the WCET
estimate by 20% over approaches that does not consider the
inter task cache analysis, and this is only the minimum
improvement ratio. It also shows that the amelioration can
reach 40% for some tasks.

In this experimentation, we have only used the results of
the MUST analysis as it is the improvement that we provide
and do not depend on the task flow execution. In the opposite,
the MAY analysis provides an upper bound of the inter-task
hits but it depends on the flow execution. Yet, this kind of
information should be useful to provide a non-empty
conservative state to intra-task instruction cache WCET
analyses.

VI.VI.CONCLUSION

In this paper, we have presented an analysis of a direct-
mapped instruction cache behavior combining inter- and intra-
task instruction cache analysis to estimate the number of cache
hits due to task chaining.

A MAY and a MUST analysis are provided to compute the
cache states between tasks. As the MUST analysis gives the
lower and safe bound of the hit count due to task chaining, we
have presented its results considering that the MAY analysis
will mostly be useful to tighten the WCET intra-task
estimation. Although we consider the MUST bound a lowest it
is not insignificant, it can tighten the WCET estimate by an
average of 20% over approaches that does not consider the
inter-task cache analysis and the improvement can reach 40%
for some tasks. It is very important to mention that the initial
task WCET provided to our approach can be computed using
any WCET computation methods bound to intra-task cache
analysis. Our approach can be viewed as a lens filtering the
cache hits due to task chaining to reduce the WCET estimation
deduced from conservative methods.

There are many axes of improvement or extensions for our
method. First, we are going to extend our method to set-
associative caches. While it should more benefit from the
persistence of blocks in the cache, it could make fuzzier the
identification of blocks accessed at the entry of tasks. Another
improvement would be to use the results of the intra-task
analysis, that is, the cache state at the entry of each task, to
improve the accuracy of instruction cache algorithms to
perform intra-task WCET computation. As, in our current
experiment, we have only exploited the MUST analysis, this
would allow to benefit from the MAY analysis results too.

Then, in our experimentation, we have considered a static task
schedule that is not changed by the reduction of the WCET of
the tasks. In a first time, we plan to experiment different
scheduling policies with our inter-task analysis. Then, we want
to examine the impact of the WCET reduction on the schedule
and the back effect of the new schedule on the inter-task
analysis results. We hope to find a strategy to converge toward
a static schedule with a minimal overall WCET of the
application. Moreover, it will be also interesting to experiment
our analyses on dynamic scheduling policies.

As a last word , we believe that it should be interesting to
adapt our approach to hardware devices with long time effects
whose behavior depends on the task schedule such as branch
prediction and data caches.

REFERENCES

1] Y.-T. S. Li, S. Malik. �Efficient Microarchitecture Modeling and Path
Analysis for Real-Time Software�. 16th IEEE Real-Time Systems
Symposium, pp. 298-307, 1995.

2] Y.-T. S. Li, S. Malik. �Cache Modeling for Real-Time Software:Beyond
Direct Mapped Instruction Caches�. 17th IEEE Real-Time Systems
Symposium, 1996.

3] C. Ferdinand et al. �Applying Compiler Techniques to Cache Behavior
Prediction�. ACM SIGPLAN Workshop on Languages, Compilers, and
Tools Support for Real-Time Systems, pp. 37� 46, june 1997.

4] F. Mueller. �Timing analysis for instruction caches�. Real-Time Systems,
18(2/3):209�239, May 2000.

5] Y. Tan, V. Mooney. � Integrated Intra- and Inter-Task CacheAnalysis for
Preemptive Multi-Tasking Real-Time Systems�. 8th International
Workshop, SCOPES, in Lecture Notes on Computer Science, LNCS3199,
pp. 182�199, 2004.

6] Y. Tan, V. Mooney. � Timing Analysis for Preemptive Multi-Tasking Real-
Time Systems with caches�. Design, Automation and Test in Europe
Conference and Exibition, Vol 2, pp. 1034 � 1039, 2004.

7] I.Wenzel, B.Rieder, R. Kirner, P. Puschner. �Automatic Timing Model
Generation by CFG Partitioning and Model Checking�. Design,
Automation and Test in Europe, Vol. 1, pp. 606-611, 2005.

8] H. Cassé, C. Rochange, P. Sainrat. �An open Framework for WCET
Analysis�. IEEE Real-Time Systems Symposium-WIP session, pp. 13-16,
2004.

9] H. Cassé, C. Rochange, P. Sainrat. �OTAWA, a framework for
experimenting WCET computations�. 3rd European Congress on
Embedded Real-Time, 2005.

10] F.Nemer, H. Cassé, P. Sainrat, J.P. Bahsoun, M. De Michiel. PapaBench: a
free real-time benchmark. 6th WCET Workshop, 2006.

11] F. Singhoff, J. Legrand, L. Nana. AADL resource requirement analysis
with CHEDDAR. LYSIC/EA 3883.

12] P. Feiler, D. P. Glush, J. J. Hudak, B. A. Lewis. �Embedded System
Architecture Analysis Using SAE AADL�, 2004.

13] A.V. Aho, R. Sethi, J.D. Ullman, �Compilers: Principles, Techniques, and
Tools�, Addison Wesley, 1986.

14] I. Puaut and D. Decotigny. Low-complexity algorithms for static cache
locking in multitasking hard real-time systems.In Proceedings of the 23rd
IEEE Real-Time Systems Symposium (RTSS02), 2002.

15] J. Staschulat, R. Ernst. Cache Effects in Multi Process Real-Time Systems
with Preemptive Scheduling. Technical report, IDA, TU Braunschweig,
Germany, November 2003.

32

