
Component-Based Agent Architectures to Build Dedicated Agent Frameworks

Victor NOËL, Jean-Paul ARCANGELI and Marie-Pierre GLEIZES
Université de Toulouse, Institut de Recherche en Informatique de Toulouse,

118, route de Narbonne, 31 062 Toulouse Cedex, France
{victor.noel,jean-paul.arcangeli,marie-pierre.gleizes}@irit.fr

Abstract

In order to fill the gap between design and imple-
mentation of multi-agent systems, we introduce
an intermediary phase in the development pro-
cess that consists in implementing application-
specific “models of agents”. Their realisation
using multi-level software architectures relies
on software components for separation of con-
cerns and complies with agent-oriented require-
ments. Then, a dedicated agent framework is de-
rived from the architecture, which can be more
or less refined depending on the application re-
quirements and the ability and skills of the tar-
geted multi-agent developer. Finally, the agents
of the multi-agent system are implemented using
the framework by programming behaviours that
make use of their respective model. We present
MAY (MAKE AGENTS YOURSELF), a tool inte-
grated into Eclipse that supports the description
of agent architectures and their transformation
into executable agents implementable in JAVA.
An example illustrates the development process
by following our approach and using MAY.

1 Introduction
Multi-agent systems (MAS) are complex systems com-
posed of interacting agents that are possibly heteroge-
neous. Their development requires appropriate tools
(methodologies, development environments, programming
languages. . . ) in order to cope with this complexity. The
more the development tools fit with the considered applica-
tion, the more developers can concentrate on “what” their
system does instead of “how” it works: development is fa-
cilitated and the produced software is easier to maintain.

Many platforms and programming frameworks have
been proposed (Jade, Jadex, AgentScape, Jason, MadKit,
CArtAgO, NetLogo, Repast. . . ), some of them specifically
for agent-oriented methodologies (Tropos, Prometheus, In-
genias, Passi, SODA, IODA. . . ), or theoretical models
(MASQ, A&A. . . ). When implementing MAS, developers
must fill the gap between the framework they chose and
the agents of their application (most often resulting from
an agent-oriented design methodology). Indeed, the main
problem is how the agent concepts (“agent”, “interaction”,
“communication”, “adaptation”. . . ), which are useful for

the application, are defined and provided by the chosen
platform and its programming model. This often results
in the programming framework being tightly coupled to
the used design methodology, or worse, in agents that are
designed so that they can target an existing agent program-
ming framework. But in reality, depending on the appli-
cation, different “models of agents” are needed, whether
by the way they perceive, act, communicate or by the way
they are internally structured: an agent controlling a mo-
bile robot tracking targets using a camera does not need
the same capabilities and interaction mechanisms with its
environment as a grid agent that solves constraint-based
problems in a distributed computing context and moves be-
tween nodes of the network.

For example, programming the behaviours of like-ant
agents that use coordination by stigmergy demands high-
level mechanisms such as moving, depositing or scenting
pheromones in a virtual space. If the development relies on
a platform like Jade [Bellifemine et al., 1999], stigmergy
must be implemented through message passing, which is
inadequate in this case. If the chosen platform is NetLogo
[Wilensky, 1999], implementation of stigmergy may be fa-
cilitated (through the use of the “patches”) but no advanced
mechanism for direct communication is available. In both
case, the implementation is complicated, the volume of the
code is increased, reuse is made difficult and the gap be-
tween the “model of agent” proposed by the platform and
those of the applications only burdens the developer with
different concerns mixed together.

Bridging the gap between analysis and implementation
is a key challenge for the MAS community [Bordini et
al., 2005]. To cross it, instead of proposing another more
or less generic agent programming framework, we pro-
pose to produce a dedicated framework implementing the
application-specific models of agents that will next sup-
port the implementation of the agents. More concretely,
the resulting framework is a programming toolbox (for ex-
ample in our case JAVA classes) that final developers can
use to program the agents using high-level mechanisms in-
stead of (re-)programming them with low-level ones. This
approach clearly separates the level of the expression of
“how” agents do (by developing the dedicated framework
implementing the models of agents) from “what” they do
(by developing the MAS using the framework).

Component-based software engineering aims at build-
ing software by composing independently developed and



reusable pieces of software, with well-specified interfaces
and dependencies, called software components [Szyper-
ski et al., 2002]. It promotes separation of concerns and
definition of clear, composable, and reusable abstractions.
In this work, we aim at assisting developers in the use
of component-based technologies for MAS development
while taking into account agent-oriented concerns such
as autonomy, interactions or adaptation. We thus pro-
pose to make possible the realisation of models of agents
by designing software architectures (of agents) composed
of software components. Then, the architecture is trans-
formed into usable and executable code. Finally, by im-
plementing some of the components of the architecture, a
more or less refined and specialised framework can be gen-
erated. So, the level of abstraction and expressiveness of
the framework can be adjusted depending on the expertise
of the targeted user of the framework (i.e. the developer of
the MAS).

This work has been used for biological simulation [Bon-
jean et al., 2009], dynamic ontology construction [Sellami
et al., 2009] and naval surveillance [Georgé et al., 2009],
but also integrated into a methodology [Rougemaille et al.,
2009]. It is currently applied in French national projects
on distributed robotics for crisis management (ROSACE1)
and multi-agent simulation for environmental norms im-
pact assessment (MAELIA2).

Currently, only the agent level is addressed from an ar-
chitectural point of view, but our next step is to consider
environments and mechanisms for interaction as first class
entities (components) in the spirit of [Weyns et al., 2006].

The paper is organised as follows. In Sect. 2, our solu-
tion to describe component-based agent architectures as a
mean to realise models of agents dedicated to an applica-
tion is presented. We show the µADL description language
and detail how agent-oriented concerns are taken into ac-
count with our solution. Then Sect. 3 presents the transla-
tion from µADL to a class-based object-oriented program-
ming language to make the implementation of the archi-
tectures possible. It is followed in Sect. 4 by a presentation
of MAY, a set of model-based tools with adequate editors
and generators for JAVA. In Sect. 5, some examples are
presented and one is developed to show the advantages of
the solution and illustrate a possible development process.
Finally, related works are discussed in Sect. 6, then con-
clusions and some interesting perspectives are presented in
Sect. 7.

2 Realising Models of Agents with
Component-Based Architectures

What is the simplest way to implement models of agents
to be as expressive and safe as possible, by reusing exist-
ing mechanisms, and at the same time complying with the
requirements of MAS (complexity, autonomy, interactions
in a system, self-adaptation, diversity of mechanisms. . . )?
To answer this question, in line with previous works on
the Agentϕ approach [Leriche and Arcangeli, 2008], we
propose to realise models of agents by: 1) programming,
composing and reusing existing components aggregated in

1http://www.irit.fr/Rosace,737
2http://www.iaai-maelia.eu/

an architecture; 2) using constructs adapted to MAS (at
component and architecture level).

We thus propose the µADL description language to de-
scribe components and architectures. In µADL, agent ar-
chitectures are described using two orthogonal constructs
to separate concerns:

1. their separation in components, at description and
implementation;

2. their separation in two levels, operational and ap-
plicative, corresponding to the separation between what
will be part of the dedicated agent framework and what
will need to be implemented to program the agents.

They are orthogonal in the sense that the first enables
separation of concerns between the different developers of
the different components, while the second enables sepa-
ration of concerns between the creator of the agent archi-
tecture and its user.

In this section, the µADL language is presented, then
we show how it answers software engineering require-
ment such as re-usability, evolution and safety and agent-
oriented software engineering requirements such as auton-
omy, interaction and self-adaptation.

2.1 µADL: Components and Architectures
Components. Software components are a way to pro-
vide different mechanisms in a reusable and composable
way. For agents, examples of components are those for the
control loop, such as lifecycle; for interaction with the en-
vironment, such as communication (message passing. . . ),
sensors and actuators (stigmergy, wheels, vision. . . ) or
scheduling and distribution; and of course more logical
components such as behaviour or knowledge management.

Our proposition introduces a simple component model
where components are specified using a description (what
is achieved by the component) and can have several im-
plementations (how it is achieved). Furthermore, they are
kept decoupled from any architecture and are the units of
adaptation.

More technically, a component has a name and is liv-
ing in a flat global namespace (hierarchical naming based
on the Internet domain names as in JAVA). A component
description provides operations, which are identified by a
name, a return type and typed parameters. It also has re-
quirements over the architecture into which it will be used:
currently a component can require that some operations
must be present or that it must be able to change at run-
time the implementation of another component of the ar-
chitecture (see Sect. 2.3). Finally, it can specify a persistent
(typed) state that must be kept when its implementation is
dynamically changed.

In all these descriptions, to stay simple because this is
not the objective here, we consider that components and
operations names as well as types denotes the specification
of their semantics (like with interface and methods names
and types in JAVA).

The description of one of the example components from
Sect. 5 is shown Fig. 1.

Architectures. An agent architecture realises a model of
agent by connecting components. It is separated in two lev-
els: operational and applicative. Typically, the operational
level contains mechanisms such as lifecycle, message pass-



component Stigmergy {
package components.ants

provided deposit(quantity: Int)
provided scent(): Int

required myPosition(): Position
}

Figure 1: Component Description in µADL

model SimpleAgent {
package my.archs.simple

operational {
Message
LifeCycle
}
application {
changeable Behaviour
}
visibility {
external receive(m: Msg)
application send(a: Agent, m: Msg)
application me(): Agent
application suicide()
}

}

Figure 2: Architecture Description in µADL

ing, adaptation, sensors and actuators; and the applicative
level assembles more logical concerns such as behaviour,
knowledge representation or interpretation of perceptions.

In each of the two levels, used components are refer-
enced by their name. It must be noted that contrary to most
of component models, components operations are not con-
nected together by hand but implicitly by the architecture
(conflicts are not currently handled, aliasing of operations
is a possible solution). In the architecture, it is also spec-
ified if components are replaceable (with the specific con-
struct changeable) at runtime and if some of the oper-
ations of the components are available from outside of the
agent (with the specific construct external).

The description of an architecture derived from the ex-
ample from Sect. 5 is shown Fig. 2. This example is here
to illustrate the possibilities of the language, obviously the
interest of our proposition is to realise more complex and
dedicated model of agents.

2.2 General Software Engineering Concerns
Benefiting from the advantages of component-based archi-
tectures, we are able to check that every required operation
is provided by exactly one component in the architecture,
i.e. that the architecture is valid. So, when implementing
components, the required operations are always provided.

Moreover, components enable adaptation at develop-
ment time (software evolution) by choosing different com-
ponent implementations for different needs. The simplest
example is to use the same agent architecture for differ-
ent behaviours, but more interesting application of static
adaptation is for prototyping (simplified implementation of
components), simulation (before deployment on real hard-

ware: only the operational components implementations
change), debugging (components with and without trac-
ing). . .

2.3 Agent-Oriented Software Engineering
Concerns

We now show briefly how our proposition complies to
agent-specific concerns. It is very important to understand
that we do not propose a generic solution for the follow-
ing concerns: we aim at simplifying the implementation of
dedicated solutions and their composition with other con-
cerns. Future work will be focused on exploiting and im-
proving this part of our proposition.

Self-Adaptation. At this point of our work, self-
adaptation relies on the replacement of component imple-
mentations at runtime (dynamic adaptation). A simple case
is when several possible behaviours for an agent are man-
aged by the agent itself; but it can also consist in the self-
replacement of the reasoning process depending on the
context, or in the upgrade of a component with a bug.

Because architectures are valid, self-adaptation is safe
and the architecture coherence can’t be disturbed as long
as component implementations respect their description
(which is what they can only do to be compilable).

Interactions. An important point in MAS is that agents
are entities interacting together. Thus, it is necessary to
build (reusable) components to support the interactions.
External operations are the way (even if simple for now)
of enabling the implementation of dedicated and adequate
interaction mechanisms in a reusable manner. The exam-
ple developed in Sect. 5 illustrates this aspect.

This part of our proposition is currently being worked
on to make it safer and more composable by considering
interactions as first-class entities at the development level.

Autonomy. Two aspects of the autonomy of agents are
addressed by our approach. First, because the architec-
tures encapsulate the components, agents keep the control
of their inside, which is made accessible only through ex-
ternal operations. Besides, autonomy of execution is an-
swered by the fact that the scheduling of the agents is im-
plemented by components: it allows to choose, depending
on the model to be realised, how agents are executed and
thus what are their lifecycles. For example, a thread could
run inside the agent, but on the opposite, scheduling could
also be done by an external engine (e.g. for simulation
purpose).

3 Generating Dedicated Agent Frameworks
At runtime, an agent is an executable instance of a
µADL architecture where all components have been imple-
mented. Programming the agent relies on a dedicated agent
framework, which is a set of classes corresponding to the
implementation of the architecture and the components of
the operational level to form a specialised architecture. Us-
ing the framework consists in implementing the remaining
components (application level) and plug them in the pro-
vided specialised architecture.

Translation. Our approach relies on the following trans-
lation from µADL to a class-based object-oriented pro-
gramming language that can be automatised. This exploits



the type system of the language and well-known design
patterns [Gamma et al., 1995].

The basic principle of this translation is that an architec-
ture description is translated to a class that links the im-
plementations of its components without preventing their
independence from any architecture.

Technically, each component description is translated
to an abstract class with abstract public methods corre-
sponding to the provided operations. This class will be
extended to write an implementation of the component de-
scription. Each class also has an attribute that gives it ac-
cess to the required operations, without connecting them
directly (Bridge Pattern). To handle persistent state, a class
representing a common data structure for the state is gen-
erated and abstract methods to get and set the state is added
to the component description.

Each agent architecture is translated to a class that con-
tains an attribute for each of its component: it connects
them and is responsible of applying the dynamic adapta-
tion (Mediator Pattern). In particular, dynamic replace-
ment of component implementation is automatically done
by getting the persistent state of the old component and set-
ting it in the new one. Finally, a class, which represents the
agent in the MAS, provides external methods using public
methods (Facade Pattern).

To create an agent, the framework provides a factory for
to the specialised architecture (Factory Pattern) with some
component implementations and holes for the others.

Validity Preservation. Always with safety in mind, the
properties and advantages of agent architectures descrip-
tions are preserved at the code level, in particular for adap-
tation and safe calls to required operations. Our solution
does not use error-prone solutions such as XML or string
interpretation at runtime to define architectures but relies
on the type system of the host language. It insures that, at
every step of development, validity of the architecture is
preserved (see Sect. 2.2). The agent architecture is set at
compile time and the only possible actions to modify it at
runtime are architecturally safe.

4 MAKE AGENT YOURSELF

To validate these propositions and experimentally apply
them, we developed and released MAY3 (MAKE AGENT
YOURSELF). It provides textual and graphical editors for
the µADL language to define components and architectures,
a tool to generate the corresponding classes needed to im-
plement agents in JAVA and a factory creator to automa-
tise the creation of dedicated framework. The textual ed-
itor also features error highlighting and completion, while
the graphical focus on drag-and-drop architecture building.
From the user point of view, all these pieces are integrated
in the Eclipse IDE around a new file type recognised by
Eclipse and its facilities to program JAVA classes.

Technically, descriptions and their transformation to
other representations are typical applications of model
driven engineering. Thus, we used a meta-model to de-
fine the way components and agent architectures are de-
scribed, model editors to instantiate it and model transfor-
mation to generate the code. All of this is relying on the

3http://www.irit.fr/MAY

Eclipse modelling ecosystem. The textual editor was re-
alised using TMF Xtext, while the graphical is based on
GMF. Constraints to check the validity of the descriptions
are developed with TMF Xcheck and code generation with
TMF Xpand.

5 Examples and Development Process
We show now a simple example of communicating agent
then complicate it by adding movement and stigmergy in
a virtual space. The detail of its implementation can be
found on the website of MAY.

Disclaimer. This example is given to briefly illustrate
our proposition with known concepts. We build common
agent components from scratch to show how our proposi-
tion handles MAS requirements. In practice, the idea is to
reuse such components when needed. More complex mod-
els of agents can be produced with specific mechanisms
composed with the presented ones, like: self-organising
term agents creating ontological relations [Sellami et al.,
2009]; cells that divide, mutate, die and communicate by
exchange of molecules [Bonjean et al., 2009]; agents rep-
resenting real boats for naval surveillance [Georgé et al.,
2009]; robot agent executable indistinctly in a simulator
or in a real robot (ROSACE); agents for social simulation
(MAELIA).

Example. We want to build agents complying to the fol-
lowing model of agent: capable of sending and receiving
messages, processing them one at a time to react. The be-
haviour should be implementable by defining a method
that takes a message in input and that can use the send
primitive.

First we write a component description for the be-
haviour: it provides step(m: Msg) and requires
send(a: Agent, m: Msg); and a component for
the lifecycle: it requires getNextMsg(): Msg and
step(m: Msg). Then, we write an architecture descrip-
tion stating that it must have a component behaviour in its
application level and a component lifecycle in its opera-
tional level. Using the editors provided by MAY, we are in-
formed that the dependencies getNextMsg(): Msg and
send(a: Agent, m: Msg) are not present in the ar-
chitecture. We thus write a component description for mes-
sages providing both. We add it in the operational level of
the architecture: the architecture is now valid.

We generate the corresponding JAVA classes (compo-
nent description and agent architecture) using MAY. First
we implement the lifecycle, see Fig. 3, implementing the
definition of the dynamic of the model of agent: in a loop,
take a message in the mailbox (blocks if there is no mes-
sage) and treat it with the behaviour. Then, for the mes-
sages component, we first need to write the class Agent:
its purpose is to encapsulate a reference to an agent archi-
tecture to keep it hidden from the user of the framework.
To pass a message to an agent from the outside, it needs an
entry point: we add receive(m: Msg) to the message
component description and specify it as external in the ar-
chitecture. We regenerate the corresponding classes and
implement the method send(Agent ag, Msg m) with
ag.receive(m).

Finally, we create a factory that specialises the agent ar-
chitecture with the implementation of these two compo-



public class LifeCycle
extends QuasiComponentLifeCycle {

private boolean alive = true;
public void start() {
new Thread(new Runnable() {
public void run() {
while (alive) {
Msg m = architecture().getNextMsg();
architecture().step(m);

}}}
).start();

}
public void suicide() {
alive = false;

}
}

Figure 3: An implementation of LifeCycle

nents. We can export this set of classes to make a deliver-
able framework for this model of agent. To program this
model of agent, one needs to create a class implementing
the behaviour component using the required operations,
and create an agent using the factory.

Evolution. Now we want to add movement and stig-
mergy in a virtual 2D space. This requires to add a com-
ponent for movement (in 4 directions) and a component
for stigmergy (deposit and scenting of pheromones) to the
architecture and required operations to the behaviour.

The movement component provides move(d:
Direction) and myPosition(): Position. The
stigmergy component provides deposit(qty: Int)
and scent(): Int and requires myPosition():
Position. In the architecture only move(d:
Direction), deposit(qty: Int) and scent():
Int are made available to the application level while the
behaviour component now requires these 3 operations.

The implementation of the movement component will
be given an object shared by agents representing the 2D
space, while the stigmergy component will have its own.

Notes. The message and movement components can be
used in any architecture, the lifecycle component can
be used in any architecture with any components pro-
viding getNextMsg(): Msg and step(m: Msg) and
the stigmergy component only needs myPosition():
Position to be provided.

At description and development time, the only software
dependency between the movement and stigmergy com-
ponents is the class Position, and between message and
lifecycle the class Msg.

6 Related Works
In this section, we focus on works at the same level than us,
i.e. the gap between design and implementation, and not on
methodologies, specific models of agents or behavioural
models.

Modular and implementation-independent design at the
agent level has been proposed with the generic agent model
(GAM) [Brazier et al., 1999]. The GAM is an high-level,
abstract, and component-oriented pattern of agent that de-
fines the essential generic parts of an agent: six interaction
and internal components. The GAM can also be reused by

specialisation and refinement, but entirely at the charge of
the designer. In some sense, the authors propose a very
generic agent model (without separation of level) while we
advocate for the description of a very specialised one that
could be delivered after generation.

Several research works concern implementation of
agents by means of software components. MALEVA
[Briot et al., 2007] is a model of software components
for the building of complex behaviours of agents by com-
posing elementary ones. MALEVA targets the applicative
level while we focus mainly on the operational one. Mag-
ique [Mathieu et al., 2001] is a platform which permits
the construction of agents by gathering reusable units of
code representing skills. The set of skills of an agent can
change dynamically but the availability of skills at runtime
is not guaranteed. In our current solution, it is not possible
to change a component that doesn’t exist: we preferred to
constrain dynamic adaptation in exchange for safety.

Closer to our work, authors of [Garcia and Lucena,
2008] proposes to use aspects-based engineering as a
means to define cross-cutting concerns and provide them
through components to easily integrates different concerns
without modifying the others. Cross-cutting interfaces in-
verses the dependencies of the component and enables
components to be more flexibly composed. Our work fo-
cus more on building architectures by integrating different
mechanisms that would be used by the developer of the
behaviour than building a behaviour as the result of the
composition of the mechanisms. More globally, we want
to build frameworks by separating its development from its
use by non-experts.

For this last concerns, [Weyns et al., 2006] proposes a
complete framework to build situated MAS where holes,
called hot-spots, are left to be implemented by the users by
relying on provided parts, called frozen spots. In a way this
solution is close to ours by simplifying the development
of MAS at the programming level, but it only provides a
more or less generic model of agent. In fact, this frame-
work could exactly be a dedicated framework produced
with our proposition: frozen spots would be operational
components and hot-spots applicative components. Using
our solution would have added the possibility of reuse of
existing components and generation of specialised versions
of the framework depending on the application.

7 Conclusion and Perspectives
The global objective of our work is to facilitate the devel-
opment of MAS. Here, our proposal relies on the use of
software components for their advantages in separation of
concerns, reuse, composability and safety. In order to fill
the gap between design and implementation of multi-agent
systems, we have introduced an intermediary phase in the
development process based on the realisation of models of
agents by component-based multi-level software architec-
tures that are specifically designed for an application. Ar-
chitectures are coherent (an operation required by a com-
ponent is provided by another one). Operational compo-
nents represent sensors, effectors, lifecycle, and other ba-
sic mechanisms of the agent while applicative components
represent quite the logic of the agent.

The development process is split in two steps which can
be carried out by different engineers with different ability



and skills. Dedicated agent frameworks that fit require-
ments of applications can be generated from agent archi-
tectures and delivered to MAS developers, which can ben-
efit from the adequacy and clean abstraction that the frame-
work provides. Connecting components in an architecture
is pretty fast and easy, and can be done each time a spe-
cific kind of agent is needed. Additionally, the validity of
the architectures is preserved at every step of the develop-
ment process: when generating the framework, when im-
plementing agents, and at runtime when an agent adapts
itself by replacing one component by one another.

A framework is a set of classes in an object-oriented lan-
guage, currently JAVA. In our opinion, the use of JAVA
and well-tried technology such as components can foster
a smooth integration of the agent-oriented paradigm in the
software industry because few new programming concepts
need to be learnt by the developers. Coupled with a repos-
itory of common components, the development experience
of MAS can be improved and the development effort can
focus on the problems it has to tackle, that is on “what”
agents do rather than on “how” they do it. We also hope
this approach can enable reuse and share of works in the
MAS community.

To experiment, we have presented tools that make possi-
ble to describe and implement agents in an integrated envi-
ronment based on Eclipse. As said before, experiments are
currently done in the context of several projects in different
domains.

For the future, we see different research directions to
follow. First, to realise model of agents and address agent-
oriented concerns, our next step will be to make possible
to define and implement environments and mechanisms for
interaction as components instead of hiding it behind in-
ternal components. Then, we aim at perfecting the com-
ponent and architecture model we use to allow for better
composition and adaptation. Finally, more work is needed
to be in line with a complete development process, either
by being usable by different methodologies or by exploit-
ing facilities of programming languages. Of course, in par-
allel to these goals, we are willing to improve the tools as
well as to propose a mature library of components for com-
mon agent mechanisms.

References
[Bellifemine et al., 1999] F. Bellifemine, A. Poggi, and

G. Rimassa. JADE - A FIPA-Compliant Agent Frame-
work. In Proceedings of International Conference on
the Practical Applications of Intelligent Agents, pages
97–108, 1999.

[Bonjean et al., 2009] N. Bonjean, C. Bernon, and
P. Glize. Engineering Development of Agents using
the Cooperative Behaviour of their Components. In
G. Fortino, M. Cossentino, M.-P. Gleizes, and J. Pavon,
editors, MAS&S @ MALLOW’09, Turin, volume 494.
CEUR Workshop Proceedings, 2009.

[Bordini et al., 2005] R. H. Bordini, M. Dastani, J. Dix,
and A. El Fallah-Seghrouchni, editors. Multi-Agent
Programming: Languages, Platforms and Applications,
volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations. Springer, 2005.

[Brazier et al., 1999] Frances M. T. Brazier, Catholijn M.
Jonker, and Jan Treur. Compositional Design and Reuse
of a Generic Agent Model. Applied Artificial Intelli-
gence Journal, 14:491–538, 1999.

[Briot et al., 2007] J.-P. Briot, T. Meurisse, and
F. Peschanski. Architectural Design of Component-
Based Agents: A Behavior-Based Approach. In
R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah-
Seghrouchni, editors, ProMAS 2006, volume 4411 of
LNCS (LNAI), pages 71–90. Springer, 2007.

[Gamma et al., 1995] E. Gamma, R. Helm, R. Johnson,
and J. Vlissides. Design Patterns - Elements of Reusable
Object-Oriented Software. Professional Computing Se-
ries. A. Wesley, 1995.

[Garcia and Lucena, 2008] A. Garcia and C. Lucena.
Taming Heterogeneous Agent Architectures with As-
pects. Communications of the ACM, 51(5):75–81, 2008.

[Georgé et al., 2009] J.-P. Georgé, J.-P. Mano, M.-P.
Gleizes, M. Morel, A. Bonnot, and D. Carreras.
Emergent Maritime Multi-Sensor Surveillance Us-
ing an Adaptive Multi-Agent System. In Cogni-
tive systems with Interactive Sensors (COGIS), Paris.
SEE/URISCA, November 2009.

[Leriche and Arcangeli, 2008] Sébastien Leriche and
Jean-Paul Arcangeli. Flexible Architectures of Adap-
tive Agents: the Agent-φ approach. Technical Report
RR-2008-11-FR, IRIT, April 2008.

[Mathieu et al., 2001] P. Mathieu, J.-C. Routier, and
Y. Secq. Dynamic Skills Learning: A Support to Agent
Evolution. In AISB’O1, Symposium on Adaptive Agents
and Multi-agent Systems, 2001.

[Rougemaille et al., 2009] Sylvain Rougemaille, Jean-
Paul Arcangeli, Marie-Pierre Gleizes, and Frédéric Mi-
geon. ADELFE Design, AMAS-ML in Action: A
Case Study. In Post-Proceedings of the International
Workshop on Engineering Societies in the Agents World
(ESAW 2008), volume 5485 of LNAI, pages 97–112.
Springer-Verlag, 2009.

[Sellami et al., 2009] Z. Sellami, M.-P. Gleizes,
N. Aussenac-Gilles, and Sylvain Rougemaille.
Dynamic ontology co-construction based on adaptive
multi-agent technology. In International Conference on
Knowledge Engineering and Ontology Development,
Madeira, Portugal. Springer, 2009.

[Szyperski et al., 2002] C. Szyperski, D. Gruntz, and
S. Murer. Component Software - Beyond Object-
Oriented Programming. A. Wesley / ACM Press, 2002.

[Weyns et al., 2006] Danny Weyns, Andrea Omicini, and
James Odell. Environment as a first class abstraction
in multiagent systems. Autonomous Agents and Multi-
Agent Systems, 14(1):5–30, 2006.

[Wilensky, 1999] U. Wilensky. Netlogo itself, 1999.
http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University. Evanston, IL.


