LEARNING FROM SOCIAL MEDIA & CONTEXTUALISATION

Josiane.Mothe@irit.fr

User-Generated Content in Social Media
Dagstuhl Seminar July 2017
RESEARCH OBJECTIVES

- **Learning from Social Media: main trends vs peculiarities**
 - Information Mining to extract main trends and behaviour
 - Main topics
 - Main users (e.g. influential users on a topic)
 - Following dissemination (e.g. flu, typhoon)
 - Link between information (e.g. location information extraction)
 - Information Mining to detect peculiarities and weak signals
 - Used in Business Intelligence
 - Knowledge of the environment / contexts
 - Detect opportunities / risks
 - Detect changes

Detecting changes in behaviour: early detection of depression
RELATED WORK IN DEPRESSION DETECTION

Supervised learning based on 6 main groups of features:

- **N-grams**: unigram, bigram and trigram [Yang et al., 2015];

- **Relevant Lexicons**: depression symptoms, lexicon of drug names etc. (wikipedia);

- **Linguistic Style**: frequency of negative word, quantifiers, quantity of first personal pronoun, quantity of emoticons, numbers of exclamation and question marks etc. [Coppersmith et al., 2014];

- **Users Behaviors**: number of words/posts, proportion of reply posts from a user per day etc., user’s active period or posting time span [Choudhury, 2016];

- **Sentiment analysis**: sentence polarity, sentiment words - positive and negative sentiment [Mowery et al., 2016];

- **Emotion analysis**: categories of emotions - emotional degree [Choudhury, 2016].
Our Natural Language Processing Approach

1. Users’ writing (posts and comments)
2. Preprocess
3. Features Extraction
4. Train
5. Test
6. Feature Selection
7. Machine Learning
8. Model
9. Application
10. Evaluation
11. Python
12. WEKA (The University of Waikato)
5 MAIN GROUPS OF EXTRACTED FEATURES

- **Bag of Words**: 18 most frequent unigrams (depressive) - our baseline
- **Group 1: Language Style** 13 features
 - Negation frequency
- **Group 2: Self-Preoccupation** 9 features
 - Frequency of Personal Pronouns
- **Group 3: Reminiscence and Relevant Words** 5+5 features
 - Past tense
 - Reference to related drugs
- **Group 4: Sentiment and Emotion** 3+8 features
 - Positive sentiment
 - Sadness
EXPERIMENTAL FRAMEWORK: eRISK DATA AND WEKA

CLEF eRisk 2017: early risk prediction of depression from data extracted from Reddit (american social news aggregation, web content rating, and discussion website.)

Training: 403 Non-depressive + 83 Depressive
Testing: 349 Non-depressive + 52 Depressive

RESULTS

Model 1: Baseline + Group 1: Language Style;
Model 2: Features of Model 1 + Group 2: Self-Preoccupation;
Model 3: Features of Model 2 + Group 3: Reminiscence and Relevant Words;
Model 4: Features of Model 3 + Group 4: Sentiment and Emotion.

I. A. Malam et al, Location Extraction from Tweets, CLEF 2017
ML for Detecting Location

Predicting and recognizing location names in tweets

Jamie Fox tonight in Budapest waiting for someone to jump off the 4th floor of a building.

If you love NY, watch this video and take action against

CONTAIN a LOCATION
ML FOR DETECTING LOCATION

Predictive model

- Twitter posts
- Observability

Data Set
- Data Analysis

Features Extraction
- Contain a word appearing in geography gazetteer.
- Contain preposition right before proper nouns.

Algorithms
- RF
- SVM
- NB
- ...

- Binary classifier

Location Prediction
ML FOR DETECTING LOCATION

- **Features**
- **Collections**
 - Existing (Ritter’s; MSM2013)
 - New (1% tweet)
- **ML**: Naïve Bayes, SVM, Random Forest
- **Results**
 - Accuracy: from 84% to 94% (prediction of occurrence)
 - Increases accuracy of location extraction
- **Current**: predict diffusion

Thi Bich Ngoc Hoang, Josiane Mothe,
Location Extraction from Tweets
IPM (submitted) 2017
RESEARCH TOPICS

- Learning from Social Media
- Contextualization
 - Developed a CLEF task 2011-> now
 - Aim: provide context to help short text understanding
 - Collection: 1,000 tweets + Wikipedia
 - Mean: multi-document summarization
 - Evaluation: informativeness & readability
 - Outcome and main results

Patrice Bellot et al.
INEX Tweet Contextualization task: Evaluation, results and lesson learned.
IPM 52(5):801-819, 2016
CONTEXTUALIZATION

- **Method**
 - Document retrieval
 - Sentence retrieval
 - Sentence ordering

![Diagram showing relationships between document retrieval, sentence retrieval, and summarization]

[Hughes and Palen, 2009]
[Sakaki et al. 2013] Tweet [Wu et al., 2011]
[Lu, 2013]
[Erkan & Radev 2004]
[Linguamatic: Yang et al., 2011]
[INEX/CLEF: Bellot et al. 2015]
[Meij et al. 2012]
[Giannakopoulos et al. 2011]
[Shen et al., 2007]
CONTEXTUALIZATION

- Contribution
 - Sentence weighting using many parameters
 - Content
 - Syntax
 - Dependences
 - Graph theory to order sentences
 - Topic/comment model

Liana Ermakova.
A Method for Short Message Contextualization: Experiments at CLEF/INEX. 2015 (CLEF conference)
RESEARCH RESULTS

- **Trust in information**
 - How trust in Wikipedia evolves: a survey of students aged 11 to 25
 Josiane Mothe, Gilles Sahut

- **Event dissemination**
 - News Dissemination on Twitter and Conventional News Channels
 A Seth, S Nayak, J Mothe, S Jadhay

- **Detecting changes in behaviour**
 - Early detection of depression (CLEF e-risk 2017)
 F. Benamara, Z. He, J. Mothe, V. Moriceau, F. Ramiandriosa,

- **Detection of locations in short messages**
 - Location extraction from tweeter
 T. B. N. Hoang, J. Mothe IPM 2017 (submitted)

- **Short text (tweet) contextualization**
 - Task and collections (CLEF 2011 – 17)
 P. Bellot et al,
 - Propositions
 Liana Ermakova (PhD), CLEF 2015