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Abstract— Graphs are mathematical structures that provide
natural means for complex-data representation. Graps capture
the structure and thus help modeling a wide range focomplex
real-life data in various domains. Moreover graphsare especially
suitable for information visualization. Indeed theintuitive visual-
abstraction (dots and lines) they provide is intimgely associated
with graphs. Visualization paves the way to interatve
exploratory data-analysis and to important goals sch as
identifying groups and subgroups among data and hping to
understand how these groups interact with each othmelIn this
paper, we present a graph drawing approach that hek to better
appreciate the cluster structure in data and the iteractions that
may exist between clusters. In this work, we assumihat the
clusters are already extracted and focus rather onthe
visualization aspects. We propose an energy-basedode! for
graph drawing that produces an esthetic drawing tha ensures
each cluster will occupy a separate zone within theisualization
layout. This method emphasizes the inter-groups ietactions and
still shows the inter-nodes interactions. The drawig areas
assigned to the clusters can be user-specified (fiked areas) or
automatically crafted (free areas). The approach wsuggest also
enables handling geographically-based clusteringnlthe case of
free areas, we illustrate the use of our drawing mbod through
an example. In the case of prefixed areas, we firsse an example
from citation networks and then use another exampléo compare
the results of our method to those of the divide ahconquer
approach. In the latter case, we show that while #ntwo methods
successfully point out the cluster structure our mihod better
visualize the global structure.
clusterd graph
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. INTRODUCTION

Automatic graph drawing has been an active resemeh
over the last decades. It has been boosted byntireaising
interest for graph structures which provide nataral intuitive
ways for complex-data representation. Indeed, Grdmwve
proven their effectiveness in many fields, such sasial
network [1], software engineering [2], electroniccait design
[3], database design [4] etc... More generally, pgsa
effortlessly and perfectly model data that candensas sets of
objects sharing some relationships. The major liteaEEuch
abstract representation is that it easily transformto a
meaningful drawing which can be the core of sonfigrmation
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visualization approach and the beginning of someéa da
exploratory analysis process. Visualization paves way to
interactive exploratory data-analysis and to onésfargeted
goals: identifying groups and subgroups among daid
allowing users to better understand how these grangeract
with each other.

Many strategies have been used to draw graphs. Most
popular algorithms are based on force-directed ou=tt5, 6].
They are rather simple but give satisfactory restdt graph
with few hundreds of nodes. Some methods are @islalde
and demonstrate their ability to handle larger gsaf¥]. These
methods are effective to show the cluster struoctéire graph
when the clusters stem from the core graph strecthat is to
say when it can be derived from the edges. Howexisting
methods fail to represent the cluster structura gfaph when
this structure is derived from extra-graph progmsttifor
example from nodes attributes.

Finding effective visualization for clustered graptepends
on the application domains and the nature of thstefing. We
can distinguish the cases when a prefixed visualizarea is
associated with each cluster and the cases when
visualization areas are computed. Indeed, in variases, the
spatial constraints are part of the model. Thisigxample the
case of geographic graphs or electronic circuitrd®ahat
usually comprise a large number of components whale to
fit geographic constraints. This is also the cakemthe user is
asked to make this association.

the

In this paper, we propose an energy-based modgrémh
drawing that produces an esthetic drawing that resseach
cluster will occupy a separate zone within the aiation
layout. In this work, we assume that the clustees aready
calculated and known. Moreover, we consider thadtels can
have been obtained independently from the core hgrap
structure (that is to say edges and nodes), fomphafrom
attribute data in an attributed graph or coloreabfr We also
hypothesize that the drawing areas assigned toltiséers can
be user-specified (prefixed areas) or automaticathjted (free
areas). Our method seeks good layout for clustgraphs for
both prefixed and free areas. Good layouts are rgtiye
associated to esthetics and ergonomics [8]; ouhodedims at
providing drawings that allow users to investigatel explore
the data by properly apprehending the clustersthadnter-



clusters interactions while still esthetically sliogvthe inter-
nodes connections. We propose a new energy-basbddie
deal with this problem. Our method modifies thecéosystem
proposed in Fruchterman and Reingold [5] and pexidn
approach that handles user-selected cluster areas.

The remaining of this paper is organized as follows
section Il we give an overview of graph drawing naets. In
section Ill, we present the structure of clustem@phs,
describe our main contributions and extend it te thse of
prefixed cluster-areas. Section IV presents three nase
examples. In the case of prefixed areas, we fgstan example
from citation networks [9] and then use an exanifien [10]
to compare the results of our method to those efliiide and
conquer approach. In the latter case, we showwhde the
two methods successfully point out the clustercstme our
method better visualize the global structure.

I RELATED WORKS

Graph drawing is a long-standing issue in mathersatnd
computer science. Indeed, this flourishing domaam de
traced back to the sixties and the barycenter ndedforutte
[11] although it is in the early eighties that cartgrized graph
drawing really emerged [12][13]. Different strategi have
been proposed to answer the challenge of drawiaghgt
Some of these strategies are suitable for generaphg
structures e.g. orthogonal layout methods [14Lutar layout
methods [15] while others are only suitable for c#fie
structures such as trees or hierarchy [16].

Many works consider self-organizing cluster areble
most significant of them [21][22][23][24][25][26] itker
modify the energy function or add 'dummy' nodes ealdted
edges to lay out a “nice” drawing that enhances viseal
identification of clusters by ensuring that the esdelonging
to a given cluster are always placed close to etiobr. Some
energy based approaches use more sophisticatéelgisato
achieve the separation of clusters. For instan2g] (ise a
constraint optimization technique to keep nodesthtrinside
non-overlapping rectangular boundaries. 1PSep-C[23]
allows separation constraints, which enforce a mmimn
horizontal or vertical separation between nodesclasters.
However the underlying linear constraints preseomes
limitations due to the mandatory rectangular shdp the
clusters must fit which may end in space waste. tiAero
limitation is related to the decoupling of intradainter-clusters
visualizations which obviously favors the local wiiags and
prevents appreciating the influence of inter-clisselges. [24]
sets up an approach that clearly displays diffectunters of
graph by using a new energy model called LinLogclvhise a
cut ratio as a measure for the coupling of twoodisjsets of
vertices. Noack proves that a graph having the mmimi
energy according to LinLog has its clusters propdisplayed:
each cluster is separated from the remaining gragtices.
The distance of each cluster from each of the neimgigraph
vertices is inversely proportional to the "couplind27]
proposes a method based on the “level of detailalization”
to draw a clustered graph where the clusters @aten in the
hierarchical way. The approach allows users to gbhaheir

Eades [17] popularized one of the most used gener¥i€W from a very abstracted to a very detailed afization. It

drawing strategies —namely energy-based layoutgyHeased
methods view the graph as a mechanical system ichvdach
vertex is seen as a steel ring and each edge gwiray s
connecting the vertices —rings- at its endpointse Thduced
attractive and repulsive forces drive the graphateminimal
energy state. This heuristic paved the way for ohenost
popular force-directed algorithms [6][5]. Kamadad dtawai
[6] use adaptable spring forces. The force of esmiing is
proportional to the graph theoretic distance (&stypath
length) between its endpoints. Fruchterman anddeédnadds
electrical charges to each vertex and ends witkctréal
repulsion forces between vertices [5]. The autladse add the
notion of “cooling temperature” that lowers the amts of
vertices’ displacement as the layout becomes fiRerther
propositions such as multi-level or multi-scale ragghes
followed mainly to address the scalability problerffor
example [18] proposes a multi-scale method baseal \wertex
filtration, [19] quickly draw a graph in a very higlimensional
space plunge it into a 2D or 3D space using praicip
components analysis. Moreover, [20] induces a evagsaph
by recursively clustering the original graph andcws the
obtained graphs in inverse order of the previoussteting
process.

The problem of visualizing clustered graphs canlibeled
into two problems depending on the nature of thestering.
Indeed, algorithms dealing with clustered graphstrdiffer
one from another depending if the graphical areas@ated to
each cluster are pre-defined (user-defined) orh#yt are
defined by the visualization algorithm it-self.

only modifies the visual representation of the frapthout
altering its structure. Alternatively, rather thdreen self-
organized, the cluster areas can be geographicaligtrained
as in [28]

What distinguishes the energy-based approach weopeo
in this paper from the works represented abovevg tiusters
are defined -or uncovered. Many approaches consldeters
as sets of vertices with many internal edges andefgges to
outside vertices: the clusters are graph relatipndbpendent.
Under this assumption, clusters are often densesandgly-
connected graphs components. In other words, thsitgleof
clusters is generally greater than the one of titeeegraph.
This is a quite restricting definition since grapdértices can
group together and form clusters not only accordimghe
graph binary relationship but also according to eom
exogenous or attribute based information . For gteyrin a
collaboration or citation graph, the clusters may built in
relation to gender, age, geography or other siitjlar
relationship among vertices that has nothing towdh the
citation or the collaboration relationship. The aggzhes from
the literature do not apply well to this kind ofistered graphs.

Our motivation is to propose a method for drawing
clustered graph where clusters can be any setrtife® Under
these assumptions, a cluster can be any set df gefices. It
is even possible to consider clusters containiny pairwise
disconnected nodes.



Before describing our method, we provide some defirs
we will be using in the paper.

CONTRIBUTION

A. Definitions and notations

1) Graphs
A graph consists of a set of nodes and a binaafioelship
between the nodes that induces a set of edgesaphgr is
then a couple , where is a finite set of vertices and
a finite set of edges.

2) Clustered graphs

A clustered graph is a triplet where V is a
finite set of vertices, a finite set of edges andis a
partition over .

the power set of V, and two

elements of

The number of elements incorresponds to the number of
clustersin .

The Fig. 1 illustrates the structure of clusteregpbs —the
graph in this figure contains three clusters.

Fig. 1. lllustration of the structure of a clustered graph

3) Further notations
If isaset, representsthe number of elements of

If

B. Defining our drawing models

When building a force-directed or energy-based rhate
graph drawing, one must define its three major cuomepts:
the initial nodes positioning, the force systent ttentrols how
the graph vertices move to meet their final posgiand, since
the drawing is an iterative process, the stop dmmdithat
determines when the system reaches stability).

is a vector represents the Euclidian norm of

As said before, the problem deals with finding thest
drawing for a clustered graph. This mainly includbat all
vertices belonging to the same cluster must beedlén a
restricted and exclusive area. The areas associateithe
clusters can either be automatically determinelobeothosen by
the user. The resulting drawing must meet theseepiant
constraints while still optimizing the graph glodalout as
well as the clusters' local-layouts.

Whatever the types of areas (pre-defined and sdified
areas), the methods we propose for drawing clustgraphs

are based on the force directed placement modebpea by
Fruchterman and Reingold [5]. For this reason, wiefli
present this algorithm.

1) Fruchterman and Reingold ‘ algorithm
The force directed placement model proposed ing®ne
of the most popular methods for graph drawing.

Fruchterman and Reingold ' approach begins with a
random initial positioning of the graph verticeshen, it
iterates two steps that consist in 1) computingatiraction and
repulsion forces exerted on each vertex and 2)tipoiig
adjustment of vertices that follows this computiBgch couple
of vertices and , exerts on each other two opposite

e
s the

repulsive force that exerts on . # is a constant that depends
on the visualization-space size and on the numbdisplayed

$

repulsive forces of the same intensity.

vertices

o # is the optimal distance connected

nodes.

Only related vertices (for exampleand ) exert attractive

and opposite forces of the same intensity on edlbr dsee
Fig. 2).

————is the repulsive force that exerts on .
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Fig. 2. The sets of attractive and repulsive forces exedcigithin a graph of
three vertices and two edges. Attractive forcesragreen and repulsive
ones are in red

A temperature model is used and a cooling funciasures
that the displacement of each vertex is majored byaximum
displacement value that decreases over time. Téilsites the
idea that, as the layout becomes better the anamehheed for
adjustment becomes smaller.

The stopping condition is based on energy minirforat
but rather than computing the energy and findiagritnimum
or a local minimum, most algorithms perform a fixagmber
of iterations.

Fig. 3 shows a pseudo code of Fruchterman and Bleing
algorithm.
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Fig. 3. Algorithm 1 : Fruchterman and Reingold ’ algorithm.

2) Clustered-graph drawing
cluster areas.

In this section, we focus on the case when aressciaded
to clusters are defined by the drawing algorithiseif. When
dealing with clustered-graph drawing, the main geab find a
way to draw vertices from a given cluster near doheother;

while vertices from different clusters must be dnaas far as

possible from each other. When the clustering idopmed

directly using the graph relationships (edges),dlusters are

generally sets of vertices that form dense sublya24]

relatively to the entire graph. In force-based maideh as in
[5], these vertices exert naturally attractive &ron each other

making them close in the final graph drawing. Thiges
relating vertices from different clusters are igiuent which

tends to separate the clusters in the final dravsiigce we are

also interested in clusters that do not stems fthengraph

relationship, the force system has to be revisitedcreate

attractive forces between the vertices that commoggven
clusters in order to make them closer in the fidedwing.

Unlike the methods proposed in [EH00, FT04] thatate a

:the case of self-defined

‘dummy’ node for each cluster, we rather add “ifbles’ edges
-that lead to additional attractive forces- betweran-

connected nodes of the same cluster. This is ietknd keep
the nodes of a given cluster close together invibealization

space. We consider that the layout of a clustegoisd if it

resembles to some extend the layout of that clugemn it is

considered as a separated graph. The forces gethdratthe
additional edges must be lowered to prevent themm fover

affecting the internal layout of clusters. In otheords, we
want these extra edges to help creating homogeands
separated clusters without over-modifying the pedat
placement of the cluster nodes. To do so, we adjust
intensity of the additional attractive forces rifaly to the one
of real edges.

The main differences with the approach used iraf8]

1) we distinguish two types of spring forces andl ad
attractive forces between non-connected nodes cfarae
cluster (some kind of invisible edges) and

2) we increase the repulsive forces between verfiam
different clusters.

Indeed, our force model is built as a combinatibrthoee
types of springs and an electrical force (in thet redgorithm
we will add another electrical force):

- Real springs that link adjacent nodes from a same
given cluster,

- Invisible springs that link non adjacent nodes fram
same cluster (they correspond to invisible linkat th
represents the other criteria making the nodes
belonging to the same cluster). These springs are
weakened, using an attenuation funct@moRsPtzSn
order to produce attenuated forces and store less
energy,

- Real springs that link adjacent nodes from differen
clusters. These springs link are also weakene@, in
different manner using an attenuation function
OPoRsPtcR@0 produce a different force comparing to
real springs that link adjacent nodes from a same
cluster,

- The repulsive forces that concern vertices from two

different clusters are amplified using the function
PSu[SsP

Fig. 4 illustrates the force system we propose. dtiers
help distinguishing the different kinds of force.

It is Attractive and repulsive forces depend on thvbey;
andv; belong or not to the same cluster

Fig. 4. Attractive and repulsive forces depend on whethand vj belong or
not to the same cluster



The remaining of Fruchterman and Reingold algorithm 3) Clustered-graph drawing : the case of predefined
components such as temperature and optimal distange c|yster areas

leaved unchanged in our algorithm. In this section, we examine the case of user pfieete
Algorithm 2 presents the algorithm we propose. areas: egch area is ass_ouated to a graph cligeehelieve
that this is an important issue and to the besuoknowledge,
0* -/01 2.%3407%), 56, 78456 *34 9,3.:5 6, 56, )*<, it has not been addressed as a force placementeprab
=->2V]1 2@6, )58+'%), “834)*34<8 385894 8583 previous works. In our model, the visualizationaagssociated
with each cluster is a convex polygon. Nodes otelts will be
0 *, placed according to inter-cluster forces and eslater forces.
B-C 1 Two types of forces —attractive and repulsive- deéined the
same way as in the previous case and the concegitiofial
DEFGHIJFKMN distance is personalized to each cluster. In oudahowe
OPQR(D%JW distinguish two types of distance: one between iaest
belonging to two different clusters —optDist. Théher is
DEFGHIJF KM N relevant to vertices of a same cluster -optDisttéhJ§We
W hypothesize that the optimal distance between ogsrtiof a
OPQROFW given cluster must be smaller than the global ogttidistance.
y . We argue that the size the area occupied by aeclust
Q Qi 2z5zQz[\z]P QP"_BRIQR obviously smaller than the one of the total drawarga. In
;) 8- 5 SabQPO[QZ&B] addition, the density of a cluster is generallyhieigthan the
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’ 20446 508 485457 g ,+5IN between optDist and optDistCluster as larger than
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k-,h hA;" m ,h(hA;'1 ) ) ) ) T
8 (83+9(5) N However, this latter idea is not optimal as thetafises
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' | Instead, we use only two different values one f@ global
,h(h48A - h(h48A A /K 11 graph and one for the clusters. We use
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Fig. 5. Algorithm 2 : our algorithm for self-defined arebssed on [5]. formulated according to the distance between tlilesand the

border of the clusters they belong to. It must b#icgently



strong when the distance to the border is smalloriter to
achieve this goal, we consider that the nodes &erged
particles and that the borders of a visualizatiozaaare also
electrically charged. The induced repulsive fort@kw the

electrical force principles. There is no need ttmg kind of

force operates beyond a considered strip alongctbster
border. In our model, the maximum displacementiptesor a

vertex is governed by the temperature and the mgdlinction.
The width of the strip we consider is then two tamghis

maximum displacement, that is to gay Q.

Still, because of the discrete placement of noolespme
special cases, the strength of cumulative forcescesed on a
given node may push it outside the cluster frontiée use the
same strategy as in Fruchterman and Reingold modekurn
the vertex to its associated area.

In this context of fixed and none porous areais, lifto more
necessary to add the “invisible” edges to sticketbgr the
vertices of a given cluster. However, we maintaitieein in
the proposed solution to better handle the incidesfcextra-
cluster influences.

0 2%t

Fig. 6. The strength of frontier forces over the distarmé¢he frontier. This
strength rapidly decrease as the distance sepgrativertex from its
cluster-frontier reach 2*t

We also consider that this force has to be rapaibered to
reach and stick to zero as the vertex reachestandes of 2
times the value of the threshold.

Let k be the frontier force and the distance between a
node and the border of its clusﬂgris defined as:

"bKo tfQu
ko \A
oV
where Qu scc\Q is the maximum possible

displacement for any vertex,
V| is the optimal distance in cluster context.

For simplification reasons, the frontier force exeed on a
given node is determined by its nearest frontiéntpo

The Fig. 7 shows the principle of our model. Thstatice
between two vertices belonging to two differentstdus is split
in three partsos, oy ando- . oy which is the distance between
the two clusters is handled differently from theotwther

distances. We use a function to alter this distdloseer it) in
order to manage the attractive force that dependdnosome
sort, we curve the space between clusters zondmsave can
handle the strength of inter-clusters forces. Tikisuitable
when the clusters are too far from each other fanwmle in
geographic visualization. Note that this strengtduction is
also the reason of using a multilevel optimal dista

: d d;

3 e s s P S ‘
: / ;

\ Vi | f Vi

Fig. 7. The sets of exercised attractive (green) and repuleéed) and
frontier (black)

Fig. 8 presents the algorithm we propose.
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Fig. 8. Algorithm 3: Our algorithm in the case of pre-definareas based on
(5]

IV. EVALUATION AND RESULTS

In this section, we provide and discuss three elasnip
show the practicability of our models.

A. First example: a clustered collaboration
network

This first example presents a collaboration netwehere
the vertices represent researchers that have lsseciated to
eight different clusters. How these clusters hasenbobtained
is out of the scope. First we perform a drawinghaf related
graph using Fruchterman and Reingold algorithm.(B)g As
we can see, the resulting drawing is quite pleakanhit does
not clearly show the clustered structure of theplgran eight
clusters. The two next figures (Fig. 10 and Fig. Aresent the
resulting drawing for the same graph when usingmethods.
Fig. 10 shows the results when the self-definea apgproach
is applied (Algorithm 2 in Fig 5) while Fig. 11 related to
predefined-area approach (Algorithm 3 Fig. 8). As can see
the cluster structure is clearly presented andjkbieal aesthetic
of the two graphs is still quite pleasant.
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Fig. 9. Graph drawing based on algorithm 1
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B. Second example: a citation network

This second example is intended to show that th
predefined area drawing we suggest can be usedelfp h
appreciating the correlation between the clusterng the
binary relationships inherent to the graph strietiiihe graph
we present in this section represents the citati@ts/ork in
the context of graph drawing [9]. The graph cossist 311
vertices and 647 edges. Each vertex represents par pa

published in thdnternational Symposium on Graph Drawing

from 1994 to 2000.

We perform an authority analysis [29][30][31] anbitain
an authority score for each vertex. Table 1 shauwes top
authority scores. This authority score is useddoegate eight
clusters. Each cluster is composed of papers toat kimilar
authority scores. Actually, the clustering resuitesm the
fragmentation of the authority scores into eiglgnsents of the
same amplitude. Each cluster is then associated prefixed
area where the areas are organized as horizonpal st layers
of the same width and positioned on the top of eatbler’s.
Clusters on the top of the drawing correspond tdesothat
have best authority scores.

TABLE I. AUTHORITY SCORES OFGD PAPERS1994-2000

Paper Paper title

GD 96, 139 Eades,

Two Algorithms for Three Dimensional Orthogond|

Graph Drawing.

GD 94, 1 Cohen, ...

Three-Dimensional Graph Drawing

GD 95, 254
Foessmeier, ...

Drawing High Degree Graphs with Low Bend
Numbers

GD 94, 286 Garg, ...

On the Compuational CompjefitUpward and
Rectilinear Planarity Testing

GD 95, 419
Papakostas, ...

Issues in Interactive Orthogonal Graph Drawing

GD 95, 99 Bruss, ...

Fast Interactive 3-D Graphu¥ization

GD 94, 388 Frick, ...

A Fast Adaptive Layout Algbrn for Undirected

Graphs
GD 95, 8 Alt, ... Universal 3-Dimensional VisibjliRepresentations
for Graphs
GD 97, 52 Incremental Orthogonal Graph Drawing in Three
Papakostas, ... Dimensions
GD 95, 234 Fekete,| New Results on a Visibility Representation of Grap
in 3D

Top authority papers from the International Symposon Graph Drawing from 1994 to 2000
The resulting drawing (Fig. 12) confirms that ddat
mainly go from nodes in lower layers to nodes ghier layers.
It also shows that papers that obtain high auth@tdbres do
not cite each other’s.
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Fig. 12.Drawing of the citation network where vertices greuped according
to their authority score and placed into correspunthyers

C. third example: a short comparison

This third example is intended to compare the tesaflour
method to those of a divide-and-conquer approach.

[10] presents a divide-and-conquer approach to rgéme
visually structured layouts for clustered graphise proposed
algorithm partitions a graph into sub graphs andhpases
them to form the resulting layout. To position eaeltex, the
divide-and-conquer approach uses a composite fdined
includes intra- forces, progressively increasingertluster
forces and gradually decreasing meta forces. Theogsl
propose an example and draw it as follows:

Fig. 13.The grah example as it have been drawn by theeliaidi-conquer
methode in [10]

Fig. 14 shows the drawing our method outputs.

The two drawings presented in Fig. 13 and Fig.1dwsh
that while the two methods successfully point dw& tluster
structure, our method better acknowledges the glsthacture
of the graph.



Fig. 14. The grah example given in [10] as it have beemwdraur prefixed

areas related method

V. CONCLUSION

model for clustered graph drawing. Two aspecthefdrawing
corresponding to self-defined and pre-defined elustlated
drawing areas have been addressed; a distincisohds been
proposed for each one of them.

The results we obtained show the potential of cadehin

dealing with metric values such as authority scoféss work
can also help dealing with geographic graph vigatibn when

graphs vertices are grouped according to some eir th

geographic properties such as the authors' coantoe
locations in scientific citation networks. Such gradrawing
approach will help to understand the implicatioifsany- of
geographic characteristics over the vertices miatips.
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