
H. Giese (Ed.): MoDELS 2007 Workshops, LNCS 5002, pp. 65–76, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Domain-Specific Methods and Tools
for the Design of Advanced Interactive Techniques

Guillaume Gauffre, Emmanuel Dubois, and Remi Bastide

IRIT – University of Toulouse
118, route de Narbonne

31062 Toulouse Cedex 9, France
{gauffre,emmanuel.dubois,bastide}@irit.fr

Abstract. Novel interactive systems such as Augmented Reality are promising
tools considering the possibilities they offer, but no real development methods
exist at the moment to help designers in their work. We present in this paper a
design method for tightly coupling early interaction design choices and soft-
ware design solutions. Based on an existing model used for abstract UI design,
our work introduces a second model dedicated to the software UI specification
and the model-based process used to derive one from the other. To achieve this,
we present here a framework based on domain-specific models and transforma-
tions to link them and thus support the development process.

Keywords: Mixed Interactive Systems, Model-Driven Engineering, Domain-
Specific Languages, Metamodeling, Model Transformations, Design Process.

1 Introduction

In the past 10 years, a new HCI trend has emerged: traditional “Window, Icon, Menu,
Pointing device” interfaces tend to be replaced by new forms of interaction that in-
volve physical artifacts, easily manipulated by users. Augmented Reality systems, for
example, are interactive systems in which the realization of a physical task is enriched
by the presence of digital data and/or services. Tangible User Interfaces and ubiqui-
tous systems are other forms of interactive systems which merge physical and digital
worlds. Because they deal with similar concepts and techniques, we group these
approaches under the single term: Mixed Interactive Systems (MIS). To support the
development of such systems, MIS frameworks have been developed and adopt bot-
tom-up or top-down approaches. Each of them brings consequent advances at differ-
ent levels of abstraction of the design [7], but interlacing them remains difficult to
accomplish, thus limiting the coverage of the development process.

As the use of MIS increases, enhancing the robustness, efficiency and quality of
these systems is required. In this sense, elaborating a convenient development process
becomes necessary. To cover the different steps of such a process, our approach pro-
motes the results gathered in the early design phases and bridges the gap between the
abstraction levels of these results and the implementation. To do so, we articulate

66 G. Gauffre, E. Dubois, and R. Bastide

models to progress along the development process and adopt an MDE approach, thus
introducing a Domain-Specific Language [1] for MIS.

2 MIS Engineering Framework

Common processes for HCI development include four phases: requirements gather-
ing, design, implementation and evaluation. Figure 1 presents how our tools cover the
first three phases.

Following interviews and observations, task modeling is one of the major tools
used to support the requirements gathering. Task models are used to characterize the
sequence of sub-tasks with their type (i.e., user’s activities, system’s activities or in-
teractive activities), the domain objects involved and the events triggered, and to
structure these sub-tasks in a hierarchical form corresponding to the global system
task.

The design phase can be decomposed into two separate steps: UI design and the re-
lated software specification. The former step is concerned with user interaction as-
pects. It may be linked to requirements gathering by combining users’ observation,
brainstorming or focus-groups to collect user needs, and an interaction model to or-
ganize them according to the specificities of MIS [4]: domain objects description, user
abilities, physical and digital artifacts, forms of interaction. During the latter step, de-
sign aspects related to the software architecture are considered, using a model dedi-
cated to the description of MIS architectures.

The next step is the implementation of the system by using component-based plat-
forms improving flexibility and adaptability.

Finally an evaluation can be carried out in different ways such as user experiments
or ergonomic inspection.

Software
Architecture

Modeling

Mixed Interaction
Modeling

Component-based
Implementation

Task
Modeling

Focus-Group

Fig. 1. MIS domain-specific process

At each step, a set of existing models, notations and tools exists: task model in the
requirements gathering, dialog and interaction models in the UI design, software ar-
chitecture and system objects models in the software specification. In this context, ra-
ther than modifying the different models involved in order to articulate their usage,
we describe a DSL to support this process. Indeed, the current state of the design
approach is consistent with two major aspects that are well addressed by an MDE
approach:

Domain-Specific Methods and Tools for the Design of Advanced Interactive Techniques 67

• Multiple models are required in each phase of the development process and one
role of MDE is to “promote models to primary artifacts that drive the whole devel-
opment process” [1]. MDE will facilitate their articulation and permit the elicita-
tion of coherence rules.

• The MIS domain, with regards to its applications in our every day life, produces
emergent systems. Elaborating methods for developing them requires to evaluate
the adequacy of models and to support their evolution when required. The MIS
domain is in a phase of empiricism and begins to develop theories; MDE will be a
powerful support of this evolution.

3 Two Domain-Specific Models

The core of the MIS Domain-Specific Language is based on two models:

• ASUR [4], a model which describes the user’s interaction with a Mixed Interactive
System. It can be used by itself or as mentioned before, in combination with a fo-
cus-group.

• ASUR-IL [4], a complementary model that have been introduced to cover the
description of the software decomposition and structure. Its aim is to prepare the
implementation step by producing a coherent architecture, promoting the forms of
interaction chosen in a technological perspective.

After an overview of the ASUR metamodel in the next section, we present the
ASUR-IL metamodel to enable the collaboration of our two domain-specific models.

3.1 ASUR Overview

For a given task, the role of ASUR is to support the description of the physical and
digital entities that make up a mixed interactive system and the boundaries among
them. ASUR components are adapters (AIn, AOut) that bridge the gap between both
digital and physical worlds, digital tools (STool) or concepts (SInfo, SObject), the user (U)
and physical artifacts that are used as tools (RTool) or objects of the task (RObject).

Components can be interconnected by several kinds of relationships. The most im-
portant one, data exchange, is used to describe the kind of data that is transmitted. In
the physical part, the relationships represent the information channels between com-
ponents, and in the digital part the way the system treats them. The representation
link is used to express the fact that two components are two representations (one digi-
tal and one physical) of the same concept: this link is characterized in terms of behav-
ior and rendering. Finally, real associations express the physical proximity of two
physical components and triggers represent an action of one component on another.
On the basis of previous works in the domain, design-significant aspects have been
identified and added to the model as objects attributes: ASUR characteristics improve
the specification of components (perception/action sense, location, etc.) and relation-
ships (type of language, point of view, dimension, etc.). By analyzing the characteris-
tics of each element, the model supports the predictive analysis of two properties:
continuity and compatibility of interactions.

68 G. Gauffre, E. Dubois, and R. Bastide

To illustrate ASUR (Figure 2), let us consider a system for 3D object modeling.
This system offers, among other features, a dedicated physical artifact for translating,
scaling and rotating the 3D object during its edition. This tool embeds a marker for
video-based detection of its position and a pressure sensor for switching between each
mode (translation, scale and rotation). The physical tool is modeled in ASUR as an
RTool, manipulated by the user. The 3D object is the main digital concept of the task
and is modeled as an SObject. The second digital concept is the interaction mode and is
typed as an STool. Two adapters for input (AIn) collect data (marker detection and pres-
sure sensor) to control each digital concept. These are in turn connected to one AOut
for visual output: the mode is rendered as textual data and the 3D object in a 3D
scene.

Fig. 2. ASUR model of the 3D object modeler example

3.2 ASUR-Implementation Layer: Towards the Implementation Phase

For each ASUR model, i.e. a given mixed interactive task, an ASUR-IL model is as-
sociated. The main contribution of this model is to identify the software components
and relationships required to implement this specific task. Only the components
involved in the interaction part of the system are described. The description of func-
tional parts of the system is out of ASUR-IL scope. This model is also the frontier be-
tween Platform Independent Model (PIM) and Platform-Specific Model (PSM): it
describes the software components involved in the task and their communications, the
next step being the transfer to a PSM where each ASUR-IL component will be asso-
ciated to existing software component or new ones.

An ASUR-IL model is an assembly of components which contains two kinds of
sub-assemblies: adapters and entities. Each of them is related to ASUR components
(ASUR adapters ASUR-IL adapters, ASUR system components ASUR-IL
entities). Each sub-assembly regroups several components with specific roles in the
architecture (devices, APIs, models, controllers, and views). ASUR-IL adapters for
input or output, corresponds to the adapters in the ASUR model and group devices
and software libraries (APIs), used to connect physical and digital worlds. Devices are
used to capture/render data from/to the physical world. They can translate physical
phenomenon into digital data and vice versa. APIs permit to combine several comput-
ing facilities to obtain required data: for example, ARToolKit is a specific toolkit for
Augmented Reality, which grabs a video frame and produces 3D coordinates of the
recognized markers. Therefore adapters compose the system part which is likely to be
reused: a software implementation of an adapter can either exist and satisfy the

Domain-Specific Methods and Tools for the Design of Advanced Interactive Techniques 69

ASUR modeling, or be developed on the basis of a combination of existing devices
and APIs.

ASUR-IL entities are the other kind of sub-assemblies that make up an ASUR-IL
model. They correspond to the digital concepts that are involved during interaction
and which are identified in ASUR as STool, SObject or SInfo. They are triplets of three
ASUR-IL components called models, views and controllers, inspired by the MVC de-
composition [8]. Controllers interpret the physical phenomena and translate data from
adapters into commands on model parts. Models are the entry point to the functional
core. They are an abstraction of it, enabling the dialog with the application core. Fi-
nally, views are in charge of the computation required to reflect the state of each digi-
tal concept on each output adapter connected.

Finally, the relationships named data flows connect each component by using the
interfaces port. The correctness of the data flow between two components is ensured
by the value given to the attribute data type of each port.

The ASUR-IL model (Figure 3) that describes the 3D object modeler cited in the
previous section is composed of 13 components. A first adapter collects the pressure
level on the tool using only one device component. A second one produces a 4x4 ma-
trix for position and orientation of a marker, captured by a camcorder device and
computed by the ARToolKit API. The last adapter is in charge of rendering the digital
concepts, using a screen device connected to a window API. To render each concept,
two API components are added: a text field and a 3D canvas.

The two ASUR-IL entities follow the MVC decomposition. For example, the 3D
object is composed of one model which contains the object’s characteristics (position,
size, etc.). One controller transforms a 4x4 matrix into a scale/rotation/translation fac-
tor. Finally, one view is in charge of inserting the object into the 3D scene by using
3D primitives. The second entity, the interaction mode, follows the same decomposi-
tion: one model containing the three states, one controller to convert one level of
pressure into one of these three values and a view to express the current mode as a
string of characters.

Fig. 3. ASUR-IL model of the 3D object modeler example

3.3 MIS Design Support

ASUR has its own editor: GuideMe [6]. It is a graphical editor which can export dia-
grams as XML files. After its metamodel was defined [3], a second version of the editor

70 G. Gauffre, E. Dubois, and R. Bastide

was developed using EMF to separate graphical editing from model manipulation. As
mentioned above, ASUR and ASUR-IL are two models required at different steps of a
MIS design process. Other models could also be required such as task models for re-
quirements gathering or system models for functional core specification. To support the
integration of our two models and further evolution, we adopt an MDE approach and
choose to instrument it with tools from the Eclipse Modeling Project (EMP [5]). This
enables the creation of dedicated tools for each model with EMF, GMF, and others.
Therefore each model can be edited using the corresponding plug-ins in Eclipse
(cf. Figure 4).

Using these tools, the designer can manipulate the two models easily. The main
challenge is now to link them by model transformations to rapidly observe the conse-
quences of modifying the description of the interactive situation modeled with ASUR
on the software architecture described with ASUR-IL. The next section presents the
transformation between ASUR and ASUR-IL and finally introduces the transforma-
tion between ASUR-IL and a software component model: WComp [2].

Eclipse
GuideMe Plugins

ASUR
EMF .codegen
 .edit

GMF .diagram

ASUR-IL
EMF .codegen

 .edit

GMF .diagram

ASUR2IL
ATL

WComp

Fig. 4. Tools integration

4 Domain Transformations

In order to implement domain transformations, the Atlas Transformation Language
(ATL) was chosen. One of the main reasons is that ATL is now fully integrated with
the Eclipse Modeling Project [5] and so ensures complete coherence between the dif-
ferent tools. ATL also provides some precious characteristics for the manipulation of
our models: transformation rule inheritance (as class inheritance in object-oriented
language) and three ways to define a rule: using a declarative paradigm, an imperative
or a mixed one. A model-2-text engine (JET) is also used to produce the PSM for the
WComp platform, from the PIM ASUR-IL. The metamodel of the software compo-
nent model WComp is currently only expressed as code in the platform itself. Thus at
the moment, only platform-specific code generation is supported in the framework.

Domain-Specific Methods and Tools for the Design of Advanced Interactive Techniques 71

4.1 ASUR2ASUR-IL: Software Modeling Initialization

The goal of this transformation is to prepare the construction of a component-based
architecture. ASUR identifies several digital concepts and describes their roles in the
interaction: this is the left-hand side of the transformation. On the right-hand side,
ASUR-IL is in charge of describing the different kinds of software components in-
volved in the interactive part of the system, with adequate ports and data flows be-
tween them. Practically, the principles of the correspondence between these two parts
are well-known, but verbally or textually expressed and not formalized. With ATL,
these rules are expressed using a transformation specification language and thanks to
the transformation engine, are applied on the models.

Each ATL rule follows roughly the same behavior: the type of each ASUR compo-
nent plus the characteristics of the relationships between them are identified, and the
satisfying rules are applied. It consists, for example, in creating for each ASUR adap-
ter, an ASUR-IL adapter (Figure 5-1) that contains one default device and some APIs
that account for the kind of interaction modalities described in the ASUR model. The
rules include imperative code to interconnect components (Figure 5-3) and to factor-
ize common processes. When ASUR digital components are transposed into ASUR-
IL (Figure 5-2), they potentially trigger the creation of multiple views and controllers
after models have been created: one controller per modality used to interact on the
digital component, one view per modality used to reflect its state.

This transformation is the starting point of the software architecture design. From
the characterization of a mixed interactive situation with ASUR, it produces the basis
of the software architecture. It offers to rapidly design the software components struc-
ture of a concrete system before starting its implementation. This combination sup-
ports the designers during design phases, by linking abstract UI design and software
UI specification. Following the transformation, designers can extend the specification

ASUR
model

ASUR-IL model

SObjects

Adapters
Adapters :

APIs + Devices

Entities :
M + V + C

WComp
configuration

Components

Repository

Components

Components

Assembly

(1)

(2)

(3)

(4)

(5)

(6)

ASUR-2-ASUR-IL transformation

ASUR-IL-2-WComp transformation

Fig. 5. Specific transformations of MIS process

72 G. Gauffre, E. Dubois, and R. Bastide

by additional design decisions, such as the instantiation of other APIs or devices
considering some technical limitations.

Based on this software specification, the next step is defining a platform-specific
model of the system. We present in the next section another transformation process to
support this final transition.

4.2 ASUR-IL2WComp: Platform-Specific Model Definition

Assuming, that during ASUR-IL editing the designers carefully identified each com-
ponent of the system, they now must be transposed to the platform model. The cur-
rently chosen platform is WComp [2] which is dedicated to rapid prototyping of
wearable and ubiquitous interactive systems. Considering these purposes, this plat-
form allows the creation of assemblies of components with a small granularity and the
runtime adaptation to the platform context (i.e., low battery level, devices discon-
nected, etc.). Its flexibility and its simplicity are the major reasons that motivated its
use.

The definition of this transformation is on-going work using the model-2-text en-
gine of EMF: JET. It will build the bridge from the PIM (ASUR-IL) to the PSM (an
assembly of WComp components), with two goals:

• Creation of software components. It consists in:
− describing the data manipulated and the associated interfaces (Figure 5-4),
− identifying an existing software component in a repository (Figure 5-6) that con-

tains previously developed components or standard APIs and devices,

• Management of the assembly of components (Figure 5-5) to establish the connec-
tions between each component in accordance with the ASUR-IL model.

The code required for implementing new components that will be generated by the
transformation includes the definition of constructors, interfaces and the common files
to generate ready-to-use libraries for the platform. Finally, the assembly correspond-
ing to the system will be expressed as an XML file, in accordance with an XML
schema specific to the WComp platform. The generated XML file contains the kind
of components to instantiate and the communication channels between each interface.

Once the definition of this set of transformations is complete, our work will pro-
vide MIS designers with a range of tools from interaction design to implementation. It
will help to rapidly experiment with designed interactive situations from the ASUR
results to the WComp assembly of components dedicated to MIS. To illustrate the
kind of process it will create, we next describe our tools on a case study.

5 TUI for Museum Exhibitions

The goal of this case study is to design innovative interactive situations in the context
of museum exhibitions. Our task is to design solutions promoting knowledge trans-
mission and entertainment in a science museum for particular themes: in this case the
evolution of species. By using this approach, we can rapidly experiment with ad-
vanced interaction and adapt them to other themes by reusing components.

Domain-Specific Methods and Tools for the Design of Advanced Interactive Techniques 73

Fig. 6. Schema of the mixed interactive system

The current project aims at proposing visitors to discover species evolution by ela-
borating an evolution tree based on phylogenetic criteria. Adopting MIS in that con-
text offers the opportunity to keep the visitors away from technologies as much as
possible, by letting them manipulate physical objects: visitors thus remain focused on
the content and are not impressed or afraid of the use of technologies such as mouse,
keyboard, complex 3D devices, etc. Using MIS also increases the visitor’s experience
by adding digital rendering (video, 3D, sound, etc.). To elaborate the evolution tree,
the user manipulates physical representations of species (a frog, a crocodile, etc.) to
add them to the tree which is rendered by video on the interactive space with related
phylogenetic criteria (Figure 6).

The first solution (Figure 7) uses marker-based detection to capture tangible objects
(species) and visual rendering to report the data. These two facets of the interaction are
described by three adapters on the ASUR model. The first one, marker-detection,
is able to determine the position and orientation of each physical component represent-
ing species. The second one is capable of visually rendering the state of each digital
component of the system. Another adapter for output is used for displaying the evolu-
tion tree to the rest of the audience using a large display. When describing with ASUR
the task of inserting a species in the tree, an ASUR system component is identified to
depict the digital object that includes the characteristics of the selected species. A sec-
ond system component is required to depict the digital information related to the
hierarchical classification of the species: this is a second digital concept manipulated in
this task. These two digital concepts are thus connected to the three ASUR adapters:
these relationships express the fact that information captured by the adapter for input
(the camcorder) will affect the two digital concepts and that these two digital concepts
are also affecting the adapters for output (namely the video-projection and the
large-display).

Figure 8 shows the ASUR-IL model resulting from the asur2asur-il transformation.
Each adapter has been translated into an ASUR-IL adapter, combining a default
device connected to one API component which will be used to adapt the data emitted
or needed by each device. In this case, the localization of each physical object

74 G. Gauffre, E. Dubois, and R. Bastide

Fig. 7. ASUR model for evolution-tree construction

Fig. 8. Asur2asur-IL transformation result

representing one species will be made using a camcorder, producing a picture used by
the API ARToolkit to obtain the 3-dimensional coordinates.

For each ASUR digital component, an ASUR-IL entity is created with the correct
amount of controllers and views depending on the number of modalities used during
the interaction. In this case, only one controller and one view are necessary for the in-
teraction with the species, and only one view is used to render the evolution tree
(same modality on each adapter: video-projection and large-display). The core behav-
ior of each digital concept will be implemented in the model components, and the in-
teraction with them will be coded into controllers for input and views for output.

To illustrate the dependencies between the two models, we focus on the case where
the system also provides vocal feedback when selecting a species. This way, the user
gets a description of the selected species. It results (Figure 9) in the addition of an AOut
in the ASUR model, an adapter for output corresponding to Voice synthesis, and its
translation to the ASUR-IL model. The transformation will produce another view
component for the species because of the two modalities used.

Once the architecture is designed, the next step is to use the ASUR-IL model for
the implementation of the system on the WComp platform, a .NET platform using C#
code. This transformation will generate component skeletons, such as interfaces, con-
structors and parameters, to be loadable into the platform. This is the behavior for

Domain-Specific Methods and Tools for the Design of Advanced Interactive Techniques 75

Fig. 9. Model evolution

novel components. The other choice is to specify a component that has already been
developed and is described in a repository. Following this step of choosing or generat-
ing components, an XML file will be generated containing the assembly description
of the system, used by WComp to run it. In the example, the components for AR-
Toolkit API and camera device but also the frame component based on the device for
video-projection, have been yet developed. Finally only entities and PiccoloCanvas
components must have to be developed on the platform WComp.

6 Conclusion and Future Work

This work is a step toward the definition and instrumentation of a design process for
Mixed Interactive Systems. This process will permit us to increment on the designed
solution until obtaining a convenient degree of usability. The advances presented
here, ASUR-IL model and related transformations, offer rapid navigation between the
abstract design of innovative interaction techniques, expressed with ASUR, their con-
crete specification, expressed in ASUR-IL, and the final realization corresponding
to their implementation by a WComp assembly. The Domain-Specific Language
developed is an efficient tool for promoting the characteristics issued from the user-
centered design into the crucial phase of implementation. As this approach uses mod-
els as primary artifacts, thanks to the MDE tools, each level of abstraction defined in
the development process embeds properties standing for the usability of the interac-
tive system.

The ASUR model defines some properties related to the quality of the interaction
between a user and a mixed environment. Our goal is to integrate them throughout the
entire process, to finally evaluate their evolution during each cycle of the process.
Further work will aim at identifying additional properties, relevant at the software de-
sign level (ASUR-IL) such as computing time or hardware constraints, and structur-
ing their impacts on the remaining design steps of our process. It will increase the
ability to evaluate the quality of each interactive situation.

Another perspective is to study the feasibility of reverse transformations between
each step and their impact on the higher levels of abstraction. A modification of a

76 G. Gauffre, E. Dubois, and R. Bastide

WComp assembly (choosing one device instead of another) could be evaluated at the
ASUR level to determine the consequences of such choices.

Finally, we focus here on specific models for MIS. To make possible the develop-
ment of concrete systems, other aspects could be included: collaboration with business
models for the connection with the functional core, interactive modalities ontology to
support the choice of specific devices and APIs, and also description of the behavior of
the components using dialog models for example (State charts, Petri nets, etc.).

As already mentioned, the MDE approach is very helpful to articulate and trans-
form models. However, it appears that designing MIS may rely on a lot of models and
maintaining the coherence among all of them may be difficult. The management of
this combination of models and transformations needs to be investigated to better as-
sess the usability of the MDE approach for a MIS development process.

References

[1] Bézivin, J., Jouault, F., Kurtev, I., Valduriez, P.: Model-based DSL frameworks. In: 21st
ACM SIGPLAN conference on Object-oriented programming systems, languages, and ap-
plications, Portland, USA, pp. 602–616 (2006)

[2] Cheung, D.F.W., Tigli, J.Y., Lavirotte, S., Riveill, M.: WComp: a Multi-Design Approach
for Prototyping Applications using Heterogeneous Resources. In: Proceedings of the 17th
IEEE International Workshop on Rapid System Prototyping, Chania, Crete, pp. 119–125
(2006)

[3] Dupuy-Chessa, S., Dubois, E.: Requirements and Impacts of Model Driven Engineering on
Mixed Systems Design. In: Gérard, S., Favre, J.-M., et Xavier Blanc, P.-A.M. (eds.) Pro-
ceedings of the conference IDM 2005, Paris, France, pp. 43–54 (2005)

[4] Dubois, E., Gauffre, G., Bach, C., Salembier, P.: Participatory Design Meets Mixed Real-
ity Design Models. In: Conference Proceedings of Computer Assisted Design of User In-
terface (CADUI 2006), Bucarest, Romania. Information Systems Series, pp. 71–84.
Springer, Heidelberg (2006)

[5] Eclipse modeling Project, http://www.eclipse.org/modeling/
[6] GuideMe, http://liihs.irit.fr/guideme
[7] Hampshire, A., Seichter, H., Grasset, R., Bilinghurst, M.: Augmented Reality Authoring:

Generic Context from Programmer to Designer. In: Proceedings of the 20th conference
CHISIG of Australia, OZCHI 2006, pp. 409–412. ACM Press, Sydney, Australia (2006)

[8] Krasner, G.E., Pope, T.: A cookbook for using the Model-View-Controller User Interface
Paradigm in Smalltalk-80. The Journal of Object Oriented Programming, 26–49 (1988)

	Domain-Specific Methods and Tools for the Design of Advanced Interactive Techniques
	Introduction
	MIS Engineering Framework
	Two Domain-Specific Models
	ASUR Overview
	ASUR-Implementation Layer: Towards the Implementation Phase
	MIS Design Support

	Domain Transformations
	ASUR2ASUR-IL: Software Modeling Initialization
	ASUR-IL2WComp: Platform-Specific Model Definition

	TUI for Museum Exhibitions
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

