Collaborative Decision Making Process: A flexible, preferences based, methodology

Pascale Zaraté, Christophe Sibertin-Blanc
IRIT – Toulouse Capitole University
{zarate,sibertin}@irit.fr
Content

- Collaborative Decision
- Tools for Collaborative Decision
- Group Support Systems & Facilitation Process
- MCDM Group Decision Making
- Methodology to support Co-Decision Processes
- GRUS System
- Conclusion
ICT Introduction in Organizations

- ICT: Decision Making processes modification
 - Organizational: Multi-actors
 - Cognitive: Sorting Step reinforcement

- Collaborative Decision
 - Process orientation
 - Electronic Teams
 - Asynchronous / Distributed Processes

- Needs to design new tools: Collaborative Decision Support Systems
Cooperative DSS

(Dynamical HCI)

Tasks Management

Knowledge Management

Interpersonal Communication

Dynamical HCI

CDSS

MBMS

DBMS

Knowledge Base

User

Other User

(Zaraté, 2013)
Group Support Systems

- Improve quality of Decision Processes
- Facilitation is needed particularly in Asynchronous / Distributed situations
- Facilitation Process (Adla, 2010)
 - Difficulties to agree on common criteria of Decision Making
Facilitation Process

Fig. 1: Group facilitation process

(Adla, 2010)
MCDM Group Decision Making

- Macharis et al. (1998)
 - GDSS: Promethee
 - Decision Makers
 - Individual Preferences ➔ One performance matrix by Decision Maker
 - Same or Different Weight for each criteria
 - Global aggregation for the group ➔ Weighted Sum

- Advantage: Sensitive Analysis among Stakeholders

- Limit: No Collaboration, No Co-Decision
Proposed Methodology

- Sharing information for Co-decision Processes
- 2 levels of preferences
 - Common Criteria discussed among the stakeholders
 - Individual Criteria
Criteria

- Suitability Function
 - Scoring Scale
 - Indifference Score
 - Reject Score
 - Shape of Interpolation

(a) linear improvement of the suitability
(b) sigmoide improvement of the suitability
(c) plateau improvement of the suitability
Step 1: Collective Evaluation

Agreement on

- Collective Criteria Definition
- Scoring scale
- Score of each alternatives for these common criteria
- Weight of each participant
- Which level of sharing information
- How many iterations
Methodology

- Step 2: Individual evaluation
 - Individual Criteria ➔ private no shown
 - Personnal Weights for all criteria
 - Personnal Suitability Functions for all determinant criteria
 - Dependences of all criteria
Methodology

- Step 3: Aggregation and Analysis
 System computes
 - Global Weight ➔ Sum of all weights (individual and collective)
 - Statistics: Average and Standard deviation of weight of collective criteria
 - Statistics of Suitability Function for Collective Criteria ➔ Average, Standard Deviation, Min, Max
 - Collective Assessment of each alternatives (median, standard deviation and extremum values)
 - Sensitivity Analysis
Methodology

- Step 4: Discussion
 - Allow participants to see all data
 - Discussion fed by the results computed by the system
 - Justification of some preferences
 - Come back to step 2 if necessary
GRoUp System (GRUS)

» Web Application : ToolBox

» Based on Grails web application framework
 > Open Source Framework

» GRUS is a fully open source system : available upon request
GRUS Features 1/2

» Can be used in several situations

- Same Time
 - Same Place
 (Synchronous and collocated)
- Different Time
 - Same Place
 (Asynchronous and collocated)

 Indifferent to Time
 Indifferent to Place

- Same Time
 - Different Place
 (Synchronous and distributed)
- Different Time
 - Different Place
 (Asynchronous and distributed)

» In GDSS, 2 roles of user
 > One facilitator (meeting manager)
 > Several Participants (meeting contributors)
GRUS Features 2/2

» 2 kinds of meetings are available
 > Public meetings
 + All registered users in GRUS system can participate
 > Private meetings
 + Only invited users can participate to a private meeting

» Some collaborative tools are available
 > Electronic Brainstorming
 > Categorizer
 > Vote
 > Agenda
 > Report...

» User with the role of facilitator can for her/his meeting
 > Define the meeting type
 + Group process (sequence of collaborative tools)
 > Invite users
 > Manage the group process (stop, add, delete,...) tools
GRUS Objectives

» Open System for
 > Sharing collaborative tools
 > Sharing group processes

» Promote the use of GDSS in organizations

» Improve the efficiency of group work
MCDA aggregation tools:
- Weighted Sum / Choquet
- Other technics: to be implemented

MCDA aggregation tools use:
- Definition of alternatives (=ideas)
- Definition of criteria: public or private
- Definition of suitability functions
- Definition of performances

Weight of participants:
- Equi-weighted
- Could be parametrizable
GRUS: Creation of a New Process

Create Process

Title: My 1st process

Choose your tools: brainstormingWs, clustering, consensus, vote

Filter

Create
GRUS: Process Modification

Logo and Project Name

Home | Open meeting | Support | Developer | Plugin | About

Options

Brainstorming | Clustering | Consensus

Click to update the current process

Topic: My topic to discuss

Edit meeting

Edit your current process: My 1st process: My topic to discuss

Brainstorming

Vote | Clustering

Consensus

Remove last tool

Save changes

brainstorming

brainstormingWs

clustering

consensus

vote
Collective Preferences

Topic: Selection of PhD Student

Vote

Please introduce performances for each alternative.

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Age</th>
<th>Cursus</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>18</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>John</td>
<td>14</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Helena</td>
<td>14</td>
<td>13</td>
<td>10</td>
</tr>
</tbody>
</table>

Objectif(s): We have to choose one candidate among three for a PhD Position.

Example: PhD Student selection
Individual Preferences

Weight and preference function

Please introduce the weight and the parameters for the preference function for each criterion.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Mark</th>
<th>Minimum</th>
<th>Desired</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>12</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cursus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: PhD Student selection
Example: PhD Student selection

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Age</th>
<th>Cursus</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Cursus</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Publications</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Criteria Aggregation

Topic : Selection of PhD Student

Consensus

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Average</th>
<th>Standard deviation</th>
<th>Minimum</th>
<th>Desired</th>
<th>Maximum</th>
<th>Authorized minimal performance</th>
<th>Authorized maximal performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of the weights attributed by the decision-makers</td>
<td></td>
<td></td>
<td>Global preference</td>
<td></td>
<td></td>
<td>Tolerated minimal and maximal performances</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

The importance of the criterion --Age-- in the model: 1.198
Final Ranking

Summary of the mark for the alternatives

- **Results of the alternative--John --**
 - Global mark obtained by integral of Choquet: 1.44
 - Global mark obtained by balanced sum: 1.8

- **Results of the alternative--John --**
 - Global mark obtained by integral of Choquet: 1.26
 - Global mark obtained by balanced sum: 1.8

- **Results of the alternative--Helena --**
 - Global mark obtained by integral of Choquet: 0.9
 - Global mark obtained by balanced sum: 1.5

Example: PhD Student selection
Conclusion

- Proposed methodology for Co–Decision
 - Co–construction of the Decisional Process
 - Process oriented
- GDSS Platform under development: to be improved
- Aggregation technic simple (weighted sum)
 - Limit: to be improved
Methodology allows a participatory decision making process including 2 levels of preferences

- Individual: Citizen could be involved in the Individual preferences evaluation
- Collective: Citizen could be involved in the decision making process and problem definition

Remark: Finite set of stakeholders