Handling uncertainty and defeasibility in a possibilistic logic setting

Florence Dupin de Saint-Cyr, Henri Prade

IRIT, Université Paul Sabatier, 31062 Toulouse Cedex 9 (France)

Abstract

Default rules express concise pieces of knowledge having implicit exceptions, which is appropriate for reasoning under incomplete information. Specific rules that explicitly refer to exceptions of more general default rules can then be handled in a non-monotonic setting. However, there is no assessment of the certainty with which the conclusion of a default rule holds when it applies. We propose a formalism in which uncertain default rules can be expressed, but still preserving the distinction between the defeasibility and uncertainty semantics by means of a two steps processing. Possibility theory is used for representing both uncertainty and defeasibility. The approach is illustrated in persistence modeling problems.

Key words: uncertainty, default rule, non-monotonic reasoning, possibilistic logic

1 Introduction

Reasoning under incomplete information by means of rules having exceptions, and reasoning under uncertainty are two important types of reasoning that artificial intelligence has studied at length and formalized in different ways in order to design inference systems able to draw conclusions from available information as it is. However, the joint handling of exceptions and uncertainty has received little attention in non-monotonic reasoning, up to few noticeable exceptions [1–3]. This is the topic of this paper.

Default rules are useful in order to express general behaviors concisely, without referring to exceptional cases. Moreover they only require general information

Email addresses: Florence.Bannay@irit.fr (Florence Dupin de Saint-Cyr), Henri.Prade@irit.fr (Henri Prade).

Preprint submitted to International Journal Of Approximate Reasoning7 June 2007
to be fired, which agrees with situations of incomplete information. In practice, reasoning from a set of exception-tolerant default rules in presence of incomplete knowledge first amounts to select default rules. The selected set of rules should focus on the current context describing the particular incomplete information situation that is considered, and then this set of rules can be applied to this information situation in order to draw plausible conclusions. When new information is available on the current situation, these conclusions may be revised at the light of more appropriate default rules. The selection problem is solved in practice by rank-ordering the default rules in such a way that the most specific rules whose conclusion may conflict with the conclusion of more general defaults, receive a higher level of priority [4], following the idea first proposed in [5]. Clearly, the level of (relative) priority of a particular rule depends on the whole set of default rules that are considered.

However, conclusions that we want to privilege in a given context may themselves be pervaded with uncertainty. Indeed, when a rule of the form “if a then b generally” is stated, no estimate of the certainty of having b true in context a is provided, even roughly. The status of being a default rule, is just a proviso for possible exceptional situations to which other rules in the knowledge base may refer. The priority level of a default rule in a set of such rules cannot be regarded as a kind of qualitative certainty level. In fact, it may happen that a specific rule provides default conclusions that are less certain than more general rules, or on the contrary strengthens the certainty of its conclusion. For instance, the rule “birds with large wings fly” is more certain than “birds fly”, while one may consider that the rule “Antarctic birds fly” is less certain than “birds fly”, assuming that in Antarctic there are many penguins (that do not fly) together with some more sea birds that fly. But, even if it is less certain, the specific rule that fits the particular context of incomplete information at hand, is the right one to use. More generally, the uncertainty attached to a rule is not necessarily related to its specificity level.

As already said, reasoning with default rules and under uncertainty are two important research trends that have been developed quite independently from each other in Artificial Intelligence, even if conditional probabilities do exhibit a kind\(^1\) of non-monotonic behavior when its context part is modified. They indeed address two distinct problems, in general using symbolic and numerical approaches respectively. Default rules are concise pieces of knowledge (by omitting some propositional variables that are needed for describing exceptional situations), which are especially useful in case of incomplete information. Reasoning with non-defeasible rules requires the complete specification of all relevant variables. It is still the case when reasoning under uncertainty. However, handling uncertainty, at least qualitatively, in a given incomplete

\(^1\) Indeed translating the default “if a then b generally” by a constraint of the form $\text{Prob}(b \mid a) \geq \alpha$ violates System P postulates of non-monotonic reasoning [6,7].
information context is crucial in various situations. For example, high level
descriptions of dynamical systems often requires both the use of default rules
that express persistence (for the sake of concise representation) and the pro-
cessing of uncertainty due to the limitation of the available information.

This paper proposes a joint handling of defaults and uncertainty in qualita-
tive possibility theory, where there already exist separate treatments for them
(although other uncertainty representation settings could be considered). Sep-
arate refreshers on the possibilistic handling of uncertainty and defaults are
given in Annex A and B while the problem raised by their joint processing
is first discussed. Then three methods for default reasoning are presented be-
fore integrating uncertainty in these methods. The approach is illustrated on
the problem of persistence handling in dynamical environments (persistence
rules are by nature default rules), and links with related works are discussed.
Another illustration about reasoning with fuzzy defaults such as “young birds
cannot fly” understood as “the younger the bird, the more certain it cannot
fly” can be found in a previous version of this paper [8]. This paper is a revised
and slightly expanded version of the main parts of two conference papers [9,8].

2 Uncertain default rules

We assume a representation language \mathcal{L} built on a set of propositional vari-
ables \mathcal{V}. The set of interpretations associated with this language is denoted
by Ω. An interpretation $\omega \in \Omega$ represents a state of the system under study. In
order to have a more expressive representation formalism, we now introduce
the notion of uncertain default rule.

Definition 1 An uncertain default rule is a pair $(a \sim b, \alpha)$ where a and b
are propositional formulas of \mathcal{L}, and α is the certainty level of the rule, the
symbol \sim is a non classical connective encoding a non-monotonic consequence
relation between a and b.

In the following, for simplicity, we use for certainty levels the real interval
scale $[0,1]$. However a qualitative scale could be used, since only the complete
preorder between the levels is meaningful. The intuitive meaning of $(a \sim b, \alpha)$
is “by default” if a is true then b has a certainty level at least equal to α.
For instance, let b, f, w stand for “bird”, “fly”, “wounded”. Then $(b \sim f, \alpha_1)$
means that “a bird generally flies” with certainty α_1. It is a default rule since
it admits exceptions mentioned in other rules: for instance, $(b \land w \sim \neg f, \alpha_2)$
(“wounded birds generally do not fly”). But it is also an uncertain rule since
when all we know is that we are in presence of a bird, the certainty level α_1 is
attached to the provisional conclusion that it flies. Thus, the α’s provide an
additional information with respect to the default rule. Moreover, the more
specific rule about wounded birds is again an uncertain default rule since some ones may fly. Note that, in general, as suggested by the above example where there is no clear inequality constraint between α_1 and α_2, there is no relation between the certainty level associated with a default rule and the certainty level associated with a more specific rule. In particular, it would be wrong to assume that the more specific rule always provides a more certain conclusion.

The core of our treatment of uncertain default rules is based on the idea of translating them into a set of uncertain (non defeasible) rules. This can be done in different ways, depending on how default rules are handled and on the kind of uncertainty representation framework. In the following, uncertainty is modeled in the qualitative setting of possibility theory [10,11] and possibilistic logic (see Annex A). Indeed, this agrees with the qualitative nature of default rules. We present several approaches for dealing with default rules.

Roughly speaking, default reasoning amounts to apply a set of default rules Δ to a factual propositional base FC describing a context at hand.

- A first idea is then to select the subset of the rules of Δ that is appropriate for the factual context FC under consideration and remove the other rules, and to turn the selected rules into classical propositional rules. As we shall see, this idea is not entirely satisfactory, because many information are lost (due to a drowning effect that leads to a problem of inheritance blocking).
- A method that copes with this difficulty, still relying on the context, named contextual entailment, has been proposed in [12]. This method may be too cautious and has no known efficient algorithmic counterpart. Based on this idea, we propose a contextual rational entailment that is less cautious than the previous one. The problem is that the context should be given before each deduction, so for each change of context a compilation of the default base must be done.
- Another approach that we also explore further in the following, and for which we provide an efficient algorithm, is to rewrite each default rule into a propositional rule by making its condition part more precise (by explicitly naming the exceptions mentioned in the default base). This approach is more satisfactory with respect to the problems encountered by the previous methods. However, to be able to deal with incomplete information, this set of rewritten rules should be augmented with an additional set of rules that depends on the context and states in what respect this context is not exceptional. These additional rules aim at completing the factual context in order to be able to apply the rewritten rules.

In the next section, we discuss in detail the three above alternatives for handling default rules before presenting the treatment of uncertain default rules in a new section.
3 Handling default rules

A normative approach to default reasoning is provided by System P [13] that defines a “preferential” inference between formulas, denoted \(\models \), relation obeying one axiom and five inference postulates:

- **Reflexivity**: \(a \models a \)
- **Left logical equivalence**: if \(\vdash a \leftrightarrow b \) and \(a \models c \) then \(b \models c \)
- **Right weakening**: if \(a \vdash b \) and \(c \models a \) then \(c \models b \)
- **Cut**: if \(a \land b \models c \) and \(a \models b \) then \(a \models c \)
- **Cautious monotony**: if \(a \models c \) and \(b \models c \) then \(a \land b \models c \)
- **Or**: if \(a \models c \) and \(b \models c \) then \(a \lor b \models c \),

where \(a \models b \) reads “\(b \) follows non-monotonically from \(a \)” (in this paper, we indifferently replace \(a \) by a set of formulas viewed as equivalent to their conjunction). The set of conclusions that one can obtain by using a “preferential” entailment is usually regarded as the minimal set of conclusions that any reasonable non-monotonic consequence relation for default reasoning should generate. Lehmann and Magidor [14] have defined a more adventurous consequence relation (which allows to draw more conclusions), named “rational closure entailment”, which is a “preferential” relation that also obeys a Rational Monotony rule:

- **Rational monotony**: if \(a \models b \) and \(a \not\models \neg c \) then \(a \land c \models b \)

Another landmark work in the treatment of default rules is the system Z [4] for stratifying a set of default rules according to their specificity (see Annex B). Given a set of default rules \(\Delta \), System Z stratification partitions it into subsets \(\Delta_0, \ldots, \Delta_n \), where rules in \(\Delta_i \) have priority over the ones in \(\Delta_j \) if \(i > j \). These priorities reflect specificity levels since specific rules get higher priority. System Z is a rational closure entailment. Besides rational closure entailment and System Z entailment have been shown to be equivalent to a possibilistic treatment of default rules briefly recalled in Annex B [15].

In the following, we consider a set \(\Delta \) of default rules, together with a propositional factual base \(FC \) describing all the available information about the context. Three methods for drawing plausible conclusions from \(FC \) using \(\Delta \) are presented below. The factual base \(FC \) is supposed to be consistent. Moreover, we also assume that the set \(\Delta \) is consistent. This means that we cannot encounter a situation where it is not possible to compute the specificity levels of \(\Delta \). This consistency condition is equivalent to the existence of a possibility measure \(\Pi \) satisfying the set of constraints \(\Pi(a \land b) > \Pi(a \land \neg b) \) associated with each default in the base \(\Delta \), leading to a possibilistic logic handling of the specificity levels (see Annex B and A). This is the basis of the first method.
Method 1: Possibilistic selection of the rules in a given context
Given a set Δ of default rules and a factual base FC, the possibilistic approach proceeds in two main steps:

- Associate to each default rule $r = a \leadsto b \in \Delta$ its specificity level $d(r) = \frac{Z(r)+1}{n+2}$, where $Z(r)$ is the rank of the stratum of r once the system Z procedure has been applied (see Annex B). Let D_π be the possibilistic knowledge base s.t. $D_\pi = \{(a_i \rightarrow b_i, d(a_i \leadsto b_i)) | a_i \leadsto b_i \in \Delta\}$ where \leadsto is the classical material implication. Besides, each proposition φ in FC is encoded in a possibilistic format: $(\varphi, 1)$, which amounts to consider the factual information as totally certain. Then compute the inconsistency level $Inc(D_\pi \cup FC)$ (see Annex A).
- Applying default rules in Δ to FC amounts to reason with the formulas in $D_\pi \cup FC$ that are above $Inc(D_\pi \cup FC)$. Hence, remove each formula $\{a_i \rightarrow b_i, \sigma_i\}$ from D_π such that $\sigma_i \leq Inc(D_\pi \cup FC)$.

Definition 2 (rational closure entailment)
A formula ψ is said to be a rational closure consequence of Δ given a factual context FC, denoted by $FC \vdash R_\Delta \psi$, if and only if ψ is a classical consequence of $FC \cup D$, where $D = \{a_i \rightarrow b_i | a_i \leadsto b_i \in \Delta \text{ and } d(a_i \leadsto b_i) > Inc(D_\pi \cup FC)\}$:
$$FC \vdash R_\Delta \psi \iff FC \cup D \vdash \psi$$

Example 1 We consider the following default base, describing the fact that birds generally fly and wounded birds generally do not fly: $\varphi_1 : b \leadsto f$ and $\varphi_2 : b \land w \leadsto \neg f$.
System Z gives: $\Delta_0 = \{\varphi_1\}$, $\Delta_1 = \{\varphi_2\}$. The specificity levels associated to the rules of Δ_0 and Δ_1 are $1/3$ and $2/3$ respectively. Let D_π be the possibilistic knowledge base associated to $\Delta : \{(b \rightarrow f, 1/3), (b \land w \rightarrow \neg f, 2/3)\}$. Let $FC = \{(b \land w, 1)\}$, meaning that we are considering a wounded bird. Then $Inc(D_\pi \cup FC) = 1/3$ since $D_\pi \cup FC \vdash_\pi (f, 1/3)$ from rule φ_1, we have also $D_\pi \cup FC \vdash_\pi (\neg f, 2/3)$ from rule φ_2, hence $D_\pi \cup FC \vdash_\pi (\bot, 1/3)$ (applying the resolution rule of possibilistic logic, where \vdash_π denotes the possibilistic entailment, see Annex A). So, the final base D only contains the formula $(b \land w \rightarrow \neg f)$. So $FC \cup D_\pi \vdash_\pi (\neg f, 2/3)$. One concludes that a wounded bird is unable to fly.

However, this method suffers from the “drowning effect”. For instance, if we had the rule “birds generally have legs (l)”, then it will not be possible to conclude that “wounded birds generally have legs”, since the rule $b \leadsto l$ will have $1/3$ as specificity level.

Method 2: Contextual rational entailment
Our second approach is based on an idea presented in [12] and aims to remedy to the “drowning effect” problem. In this work, the authors studied under which conditions they can infer b from $a \land c$, given a rule “generally, a’s are b’s”. Classical logic always answers that $a \land c$ infers b (monotony property). Default reasoning should answer like classical logic except when the c’s are exceptions of the rule. Hence, it is important to check if $a \land c$ is an exception of the rule “generally, a’s are b’s”.

6
Benferhat and Dupin de Saint-Cyr [12] used System P in order to answer this latter question since System P never draws undesirable conclusions. In the following, the approach of [12] is extended by using “rational closure” inference relations instead of “preferential” inference relations. It is based on the identification of rules having exceptions in a given context (the approach is similar to [12], but uses rational closure instead of preferential closure).

Definition 3 Let FC be a propositional consistent factual base considered as the current context and $fc \in \mathcal{L}$ be the associated proposition made of the conjunction of the formulas in FC. Let Δ be a set of default rules. A default rule $a_i \leadsto b_i$ of Δ has an exception with fc if and only if one of the two following conditions is satisfied: (1) $a_i \land fc \land b_i$ is inconsistent, or (2) $\exists \varphi \in \mathcal{L}$, s.t., $fc \vdash \varphi$ and $a_i \land \varphi \not\sim_{R,\Delta} b_i$, where $\not\sim_{R,\Delta}$ is the inference relation defined by the rational closure of the relation $\not\sim$ over the set obtained by interpreting each default $a_i \leadsto b_i$ of Δ as $a_i \not\leadsto b_i$.

For each rule $a_i \leadsto b_i$ of Δ, we can check if it is exceptional or not in the given context. If not, we change it into a strict rule $a_i \rightarrow b_i$, else we delete it.

Definition 4 (contextual rational entailment) A formula ψ is said to be a CR-consequence (C for context and R for rational) of Δ given a factual context fc, denoted by $fc \not\sim_{CR,\Delta} \psi$, if and only if ψ is a classical consequence of $\Sigma_{fc} \cup \{fc\}$, where $\Sigma_{fc} = \{a_i \rightarrow b_i | a_i \leadsto b_i \in \Delta, a_i \leadsto b_i \text{ has no exception with } fc\}$:

$$fc \not\sim_{CR,\Delta} \psi \quad \text{iff} \quad \Sigma_{fc} \cup \{fc\} \vdash \psi.$$

Using the same reasoning as in [12], we can argue that $\not\sim_{CR,\Delta}$ is non-monotonic, since increasing the context reduces the set of rules that have no exception, and thus the set of conclusions.

Proposition 1 If $fc \vdash fc'$ then $\Sigma_{fc} \subseteq \Sigma_{fc'}$.

Proof: Indeed, if $\exists \alpha_i \rightarrow \beta_i \notin \Sigma_{fc'}$ then (1) either $\{a_i \land fc' \land \beta_i\}$ is inconsistent since $fc \vdash fc'$ then $\{a_i \land fc' \land \beta_i\}$ is also inconsistent, or (2) $\exists \varphi$ s.t. $fc' \vdash \varphi$ (hence $fc \vdash \varphi$) and $\alpha_i \land \varphi \not\sim_{R,\Delta} \beta_i$. Hence, $\alpha_i \rightarrow \beta_i \notin \Sigma_{fc}$.

We show now that $\not\sim_{CR,\Delta}$ is “rational”, so, the conclusions obtained by the first method can be obtained by contextual rational entailment as well.

Proposition 2 $\forall \Delta, \not\sim_{R,\Delta} \subseteq \not\sim_{CR,\Delta}$.

Proof: Indeed, if a rule $a_i \leadsto b_i$ has exceptions in a given context fc, then it means that $a_i \land fc \not\sim_{R,\Delta} b_i$. So this rule has a specificity level smaller or equal to the level of inconsistency of $D_\pi \cup \{fc\}$ (where D_π is the possibilistic knowledge base associated to Δ, $D_\pi = \{(a_i \rightarrow b_i, d(a_i \leadsto b_i)) | a_i \leadsto b_i \in \Delta\}$). Hence, a rule having exception in a given context cannot be used by $\not\sim_{R,\Delta}$. Since we translate every default rule that has no exception into a material implication, and use classical entailment on the set obtained, we use at least all rules that are kept by $\not\sim_{R,\Delta}$. So,
this system can at least draw every conclusion obtained by $\vdash_{R,\Delta}$.

Proposition 3 $\vdash_{C,R,\Delta}$ verifies Reflexivity, Left logical equivalence, Right weakening, Or, Cautious monotony, Cut and Rational monotony.

See appendix C, for the proof. Moreover, contextual rational entailment can obtain more conclusions than rational entailment, namely it does not suffer from the drowning effect:

Example 2 Let us consider the following default base $\Delta = \{b \leadsto f, b \land w \leadsto \lnot f, b \leadsto l\}$. We have $\sum_{b \land w} = \{b \land w \leadsto \lnot f, b \rightarrow l\}$, so $b \land w \vdash_{C,R,\Delta} l$.

Note that some scholars (e.g. [16]) have pointed that “rational closure” may lead to deduce undesirable results in examples where no conclusion is better than too a bold conclusion:

Example 3 Let Δ be a default base representing that “Quakers normally are pacifists”, “Quakers are generally Americans”, “Americans normally like base-ball”, “Quakers generally do not like base-ball” and “Republicans are generally not pacifists”. $\Delta = \{q \leadsto p, q \leadsto a, a \leadsto b, q \leadsto \lnot b, r \leadsto \lnot p\}$. Then $q \land r \vdash_{C,R,\Delta} p \land a \land \lnot b$, since $\sum_{q \land r} = \{q \rightarrow p, q \rightarrow a, q \rightarrow \lnot b\}$.

The result “pacifist” can be debatable (note that the two other conclusions are desirable). One can argue that it would be better to not conclude anything about the plausibility of having p true or false. In our opinion, it is not the fault of “rational closure” but, it is rather due to the ambiguity of the example. In this example, there is only one piece of information about “Republicans”. Indeed, here, “Republican” can be considered as a general property, as general as “American”. So its specificity level is as low as the American property. Meanwhile, if we learn that Republicans are Americans that have a given particularity (if they were only Americans, then the two words would be synonymous) then the conclusions would change. Hence as discussed in [16], it is not rational monotony that leads to undesirable conclusions, but it is rather a lack of information in the knowledge base. A too adventurous conclusion is only caused by missing pieces of knowledge that the system cannot guess on its own, and these pieces can be always added to the default base (without leading to inconsistency) in order to get the desirable conclusion (cf. [16]).

To conclude on this approach, it gives better results than the first one, but the computation depends on the context: a computation of the set of rules having no exception should be done before any new contextual deduction.

Method 3: Rewriting the rules by expliciting their exceptions
The first method handles default reasoning by deleting all the rules under a level of inconsistency in a given context. It has the “drowning effect” as a drawback: rules that are not directly involved in the inconsistency may be
deleted, while the second method correctly addresses this problem. However the computation in the second method depends on the context: before each deduction a computation of the rules that are kept must be done. Indeed, this computation may be heavy since the whole set of default rules ∆ should be examined with respect to any new context. Hence, we propose another method that somewhat handles these drawbacks. The idea is to transform the default rules independently of any context into a set of non-defeasible rules.

The idea is to generate automatically from ∆ a set of non-defeasible rules D in which the condition parts explicitly state that we are not in an exceptional context to which other default rules refer. In the same time, strict rules called “completion rules” stating that we are not in an exceptional situation are added to a new set CR. The use of these completion rules is motivated by the need of reasoning in presence of incomplete information: the completion allows us to still be able to apply the modified rules which now have a more precise condition part. Note that the rules in CR will only be used if they are consistent with the context described in FC (taking D into account). Hence, it only requires to do a consistency test each time the context FC is changed.

Definition 5 (Explicit Rule and Completion Rule)

Let D = {a_i → b_i}i=1,..,k be a set of strict rules. For any given default rule r = a ∼ b, we define the set of exceptions in D to the rule r by:

\[E(a ∼ b, D) = \{ a_i | a_i → b_i ∈ D, \{a_i ∧ a\} ∪ D ⊬ ⊥, \{b_i ∧ b\} ∪ D ⊢ ⊥ \} \]

The explicit rule associated with r is defined by

\[a ∧ \bigwedge_{x ∈ E(r, D)} \neg x → b \]

A completion rule associated with r is of the form a → ¬x where x ∈ E(r, D).

REWIRING ALGORITHM

| input | \[\Delta = \{a_i ∼ b_i\}i=1,..,k \] a set of default rules \[\Delta_0, \ldots, \Delta_n \] the stratification given by System Z (\(\Delta_n \) is the most specific stratum) |
| output | D the set of all rules rewritten from \(\Delta \) |
| CR the set of completion rules. |
| local variables | k (rank of the current stratum), D_k (set of rules already rewritten from \(\Delta_k \)), r (rule currently examined), E(r, D) (current set of exceptions to r in the current D) |

begin

\[k := n - 1; \quad CR := \varnothing; \quad D := \{a_{ni} → b_{ni}|a_{ni} ∼ b_{ni} ∈ \Delta_n\}; \quad \{ \text{initialization} \} \]

while \(k ≥ 0 \)
do: $D_k := \emptyset$;
for each rule $r = a \leadsto b \in \Delta_k$ do:
 $E(r, D) := \emptyset$;
 for each rule $a' \rightarrow b' \in D$ s. t. \{a \wedge a'\} \cup D \not\proves \bot and \{b' \wedge b\} \cup D \proves \bot do:
 $E(r, D) := E(r, D) \cup \{a\}$;
 $CR := CR \cup \{a \rightarrow \neg a'\}$;
 $D_k := D_k \cup \{a \wedge \bigwedge_{x \in E(r, D)} \neg x \rightarrow b\}$
end

$k := k - 1$;

Note that the rules of the last stratum n do not admit exceptions with respect to the knowledge base Δ since they are the most specific ones. This is why they are directly transformed into strict classical rules. Then the algorithm begins with the rules of the stratum $n - 1$. The stratum $n - 1$ contains rules that admit exceptions only because of rules in the last stratum. More generally, a stratum k contains rules that admit exceptions only because of rules in strata with rank greater or equal to $k + 1$. More precisely for each rule in a given stratum, all its exceptions (coming from strata with a greater rank) are computed in order to rewrite this rule by explicitly stating that the exceptional situations are excluded in its condition part. Moreover, completion rules are added for each exceptional case found; as already said, completion rules are useful to state in what respect the current context is not exceptional. For instance, if b is the only exception to the rule $a \leadsto c$, then the rule is modified into $a \wedge \neg b \rightarrow c$, and the completion rule, associated with it, has the form $a \rightarrow \neg b$. This completion rule will only be used if it is consistent with the current context and the set of rewritten strict rules.

Proposition 4 This algorithm terminates.

Proof: The algorithm examines each rule of each stratum. For a rule of a stratum Δ_k, the algorithm executes at most two consistency tests with each rule of strata of rank greater or equal to $k + 1$. Since each stratum is finite, the algorithm terminates. \hfill \Box

Proposition 5 The set D of strict rules given by this algorithm is consistent.

Proof: At the beginning D is consistent since it is built on the set Δ_n of rules tolerated by the set $\Delta \setminus (\Delta_0 \cup \cdots \cup \Delta_{n-1}) = \Delta_n$. It means that it exists $\omega_0 \models a_{n1} \land b_{n1}$ where $a_{n1} \leadsto b_{n1}$ is the first rule of Δ_n and satisfying every other rules of Δ_n. Hence $\omega_0 \models a_{n1} \land b_{n1} \land \{\neg a_{ni} \lor b_{ni}\} | a_{ni} \leadsto b_{ni} \in \Delta_n\}$. At each step, a rule is added to D only if its conclusion is consistent with every conclusion of a rule of D. For a rule $r = a \leadsto b$ from a stratum Δ_k, if it exists a rule $a' \rightarrow b'$ in D such that $b' \wedge b \wedge D \not\proves \bot$, then r is replaced by $a \land \neg a' \leadsto b$. Note that
a \land \neg a' is consistent since, by construction, every rule of Δ_{k+1} is tolerated by r, it means that it exists $\omega \models a \land b \land D \land (\neg a' \lor b')$, i.e., $\omega \models a \land \neg a' \land b$. r modified by specifying all its exceptions is added to D only when there is no more rule in Δ_{k+1} whose conclusion is inconsistent with b. So D remains consistent.

Note that each rule of the initial default knowledge base is present, modified or not, in the resulting rule base. So, there is no loss of information as with the previous method. Moreover the addition of rules $a \leadsto \neg a'$ and $a \land \neg a' \leadsto b$ in situations such that $a \leadsto b$ and $a \land a' \leadsto \neg b$ hold, is in full agreement with postulates of rational closure [14]. Indeed, from $a \land c \models \neg b$, we have by consistency, $a \land c \not\models b$. Then from $a \models \neg b$ and $a \land c \not\models b$, we get $a \models \neg c$ applying one of the equivalent forms of rational monotony. Moreover from this result and $a \models b$ we obtain $a \land \neg c \models b$ by cautious monotony.

Definition 6 (Rewriting entailment) A formula ψ is said to be a \textit{RW} − consequence (Rw for rewriting) of Δ given a factual context FC, denoted by $\text{FC} \models_{\text{RW,} \Delta} \psi$, if and only if for any $\text{CR}' \subseteq \text{CR}$, such that CR' is maximally consistent with $\text{FC} \cup D$, $\text{FC} \cup D \cup \text{CR}' \models \psi$ where D and CR are respectively the set of strict rules and the set of completion rules obtained from the rewriting algorithm.

Proposition 6 $\forall \Delta$, $\models_{R, \Delta} \subseteq \models_{\text{RW,} \Delta}$

Proof: As previously noticed, the addition of rules $a \land \neg a' \leadsto b$ in situations such that $a \leadsto b$ and $a \land a' \leadsto \neg b$ hold, is in full agreement with postulates of rational closure. Moreover the consistency of D computed from Δ (Proposition 5) allows us to transform \leadsto into \models. More formally, it gives: $\models_{R, \Delta} D$. The same reasoning can be done for the completion rules: $a \leadsto \neg a'$. It leads to $\models_{R, \Delta} \text{CR}$. Hence, $\models_{R, \Delta} D \cup \text{CR}$, by right weakening, we get $\models_{R, \Delta} D \cup \text{CR}'$ where $\text{CR}' \subseteq \text{CR}$. So, if $\text{FC} \models_{R, \Delta} \psi$ then, by cautious monotony, $\text{FC} \cup D \cup \text{CR}' \models_{R, \Delta} \psi$, i.e., $\text{FC} \models_{\text{RW,} \Delta} \psi$.

Proposition 7 $\models_{\text{RW,} \Delta} \text{verifies Reflexivity, Left logical equivalence, Right weakening, Or, Cautious monotony, Cut and Rational monotony.}$

See appendix C for the proof.

Example 4 Now we can rewrite the rule of example 2 by describing explicitly their exceptions starting from the last stratum. It gives the following knowledge base $D = \{ b \land w \rightarrow \neg f, b \land \neg w \rightarrow f, \varphi_3 : b \rightarrow l \}$. There is only one completion rule: $\text{CR} = \{ b \rightarrow \neg w \}$, hence, in the context $\text{FC} = \{ b \}$, the completion rule is consistent, so it allows us to deduce $f \land l$. In the context $\text{FC} = \{ b \land w \}$ we cannot add the completion rule since it is inconsistent with FC so we can conclude $\neg f \land l$.

For “Nixon Diamond” example (see example 3), the algorithm gives $D = \{ q \rightarrow p, q \rightarrow a, q \rightarrow \neg b, a \land \neg q \rightarrow b, r \land \neg q \rightarrow \neg p \}$ and $\text{CR} = \{ a \rightarrow \neg q, r \rightarrow \neg q \}$. In the context, $q \land r$ we deduce p, a and $\neg b$. An intuitive interpretation of the fact that pacifist is obtained is that the context Quaker is more specific than Republican in this knowledge base, since Republican is compatible with all the rules which is not
It is now interesting to check if method 3 retrieves all the conclusions of method 2. We can establish that it is the case.

Proposition 8 \(\forall \Delta, \, \models_{CR, \Delta} \subseteq \models_{RW, \Delta} \).

The last part of the proof (presented in Appendix C) has also pointed out that method 3, which is based on the rewriting of the default rules, is only protected against existing exceptions that can be discovered by compiling the default base. In case the context \(FC \) corresponds to a new exception to which \(\Delta \) does not refer, method 3 cannot conclude anything meaningful (as it is the case of method 1), while method 2 would lead to non trivial conclusions by getting rid of rules inconsistent with \(FC \). However, we may assume that the default rule base refers to any exception that can be encountered in practice. Otherwise, it would mean that there is some important missing information in \(\Delta \).

4 Handling uncertain default rules

Let \(U\Delta \) be a set of uncertain default rules of the form \((a \sim b, \alpha) \), while \(\Delta \) continues to represent a set of default rules without certainty levels. In this paper, two types of levels are involved: namely levels encoding specificity and levels of certainty. Although in the first approach specificity levels are handled by possibilistic logic in the same manner as the certainty levels will be processed in this section, the two types of levels should not be confused and the inference process uses the two scales separately. In fact in each of the three above methods for handling default rules, specificity is used to determine which rules are appropriate in the current context. We denote by \(D \) the set of strict rules obtained from \(\Delta \) by applying one of the three rewriting methods, and we denote by \(UD \) the corresponding set of strict rules associated with their certainty levels. Then, in the resulting base \(UD \), the certainty levels should be taken into account in agreement with possibility theory in order to draw plausible conclusions with their certainty levels.

Using the first method, an uncertain default rule \((a \sim b, \alpha)\) is considered under the form \((a \sim b)\) and on the basis of its specificity level is selected or not with respect to the current context. If the rule is selected, it is then rewritten into the form \((a \rightarrow b, \alpha)\).

Using the second method, an uncertain default rule \((a \sim b, \alpha)\) is also considered under the form \((a \sim b)\). If it is not exceptional in the given context according to rational closure then it is changed into a strict rule as in the
previous method. Otherwise it is deleted. If the rule is selected, it is then rewritten into the form \((a \rightarrow b, \alpha)\).

For the third method, an uncertain default rule \((a \sim b, \alpha)\) is considered under the form \((a \sim b)\) and on the basis of its specificity, its set of exceptions is computed, say \(a_1', \ldots, a_k'). Then this rule is rewritten into the form \((a \land \neg a_1' \land \ldots \land \neg a_k' \rightarrow b, \gamma)\). Moreover, \(k\) completion rules are created and added to the set of completion rules \(CR\), namely, \((a \rightarrow \neg a_1', \delta_1), \ldots, (a \rightarrow \neg a_k', \delta_k)\). Remind that each rule in \(CR\) is used only if it is consistent with the context and the set of rewritten rules. We have now to discuss how to determine the levels \(\gamma, \delta_1, \ldots, \delta_k\).

The third method can be justified in the following way. On the one hand, as already said, the addition of rules \(a \sim a_1'\) and \(a \land a_1' \sim b\) in situations such that \(a \sim b\) and \(a \land a_1' \sim b\) hold, is in full agreement with postulates of rational closure \([14]\). Moreover, we have to assess the certainty levels \(\gamma\) and \(\delta_1, \ldots, \delta_k\) associated with the added default rules. This can be done easily by interpreting the certainty levels of the default rules we start with, as lower bounds of conditional necessity, namely \(N(b|a) > \alpha\) and \(N(\neg b|a \land a_1') > \beta_i\), and noticing\(^2\) that when the bounds are strictly positive, they coincide with the necessity of the corresponding material implication. Then from \(N(\neg a \lor b) > \alpha\) and \(N(\neg a \lor \neg a_1' \lor \neg b) > \beta_i\), applying possibilistic resolution rule (see Annex A), we get \(N(\neg a \lor \neg a_1') > \min(\alpha, \beta_i)\). Then we can take \(\delta_i = \min(\alpha, \beta_i)\). Moreover, the rule \(a \land \neg a_1' \rightarrow b\) is at least as certain as \(a \rightarrow b\) by monotonicity of necessity measure (see Annex A), so we can take \(\gamma = \alpha\).

Example 5 If we consider the following uncertain default base \(U\Delta\), describing the fact that birds generally fly with certainty \(\alpha_3\), wounded birds generally do not fly with certainty \(\alpha_2\), and birds generally have legs with certainty \(\alpha_3\): \(\{(b \sim f, \alpha_1), (b \land w \sim \neg f, \alpha_2), (b \sim l, \alpha_3)\}\).

Then the possibilistic knowledge base \(D_\pi\) associated with \(U\Delta\) by the first method is the following (at this step, the ignored certainty levels are kept between parentheses): \(\{(b \rightarrow f, 1/3 (\alpha_1)), (b \land w \rightarrow \neg f, 2/3 (\alpha_2)), (b \rightarrow l, 1/3 (\alpha_3))\}\).

Let \(FC = \{b \land w, 1\}\), meaning that we are considering a wounded bird. As previously computed, \(Inc(D_\pi \cup FC) = 1/3\). Hence the final uncertain base \(UD\) contains only the uncertain formula \((b \land w \rightarrow \neg f, \alpha_2)\). So \(UD \cup FC \not\vdash (\neg f, \alpha_2)\). It means that it is certain at level \(\alpha_2\) that a wounded bird is unable to fly, but we cannot conclude anything about its legs.

The second method rejects the rule \(b \rightarrow f\), since it admits exceptions in the given

\(^2\) \(\Pi(b|a)\) is defined as the largest solution of the equation \(\Pi(a \land b) = \min(\Pi(b|a), \Pi(a))\) applying the minimal specificity principle, which favors the greatest possibility degrees that are in agreement with the constraints. It yields: \(\Pi(b|a) = 1\) if \(\Pi(a \land b) > \Pi(a \land \neg b)\) and \(\Pi(b|a) = \Pi(a \land b)\) otherwise. Then \(N(b|a) = 1 - \Pi(\neg a|b)\) if \(N(a \rightarrow \neg b) > N(a \rightarrow b)\) and \(N(b|a) = N(a \rightarrow b)\) otherwise.
context $b \land w$, leading to the resulting base: $\{(b \land w \rightarrow \neg f, \alpha_2), (b \rightarrow l, \alpha_3)\}$. It means that it is certain at level α_2 that a wounded bird is unable to fly, and at α_3 that it has legs.

The third method gives the following knowledge base $D: \{(b \land w \rightarrow \neg f, \alpha_2), (b \land \neg w \rightarrow f, \alpha_1), (b \rightarrow l, \alpha_3)\}$, together with the uncertain completion rule base $\{(b \rightarrow \neg w, \text{min}(\alpha_1, \alpha_2))\}$, hence, in the context $FC = \{(b, 1)\}$, the completion rule is consistent with FC and D, so it allows us to deduce f with certainty $\text{min}(\alpha_1, \alpha_2)$ and l with certainty α_3. However, the use of methods 1 or 2 would have permitted to get a better lower bound of the necessity measure of f, namely α_1. This poorer lower bound is the price paid for the computational simplicity of method 3 (compared to method 2). In the context $FC = \{(b \land w, 1)\}$ we cannot add the completion rule since it is inconsistent with FC so we can conclude $\neg f$ with certainty α_2 and l with α_3.

Note that the possibilistic setting also allows us to process uncertain factual contexts, namely formulas in FC may have certainty levels less than 1.

5 Application to persistence modeling

The ability of handling uncertain default rules is useful for representing dynamical systems. Indeed, default reasoning can help solving the “frame” and “qualification” problems. The “frame problem” pertains to the quasi-impossibility to enumerate every fluent that is not changed by an action. The “qualification problem” refers to the difficulty to exactly define all the preconditions of an action. An idea common to many proposals for solving the frame problem is to use default comportment descriptions for expressing persistence. Stating default transitions may be also useful for coping with the qualification problem. Besides, the available knowledge about the way a real system under study can evolve may be incomplete. This is why uncertainty should also be represented, at least in a qualitative way.

In this section, the variables set \mathcal{V}, on which the representation language \mathcal{L} is built, may contain occurrences of action. More formally, let \mathcal{A} be the set of action symbols. We consider that the variables set \mathcal{V} contains in addition to the symbols representing facts all the symbols $\text{do}(a)$ where $a \in \mathcal{A}$, representing action occurrences. When there is ambiguity, variables may be indexed by a number representing the time point in which it is considered. We denote by f_t the formula f in which all variables are indexed by time point t. The evolution of the world is described by uncertain default rules of the form $(a_t \sim b_{t+k}, \alpha)$ with $k \geq 1$, meaning that if a is true at time t then b is generally true at time $t + k$ with a certainty level of α.

In order to handle the frame problem, we choose to define a frame axiom. Among all the kinds of fluents, we can distinguish persistent fluents (for which a change of value is surprising), from non persistent ones (which are also called
dynamic [17]). Here, we assume that a set of non persistent literals NP is defined. Note that occurrences of actions are clearly non persistent fluents: \{do(a)\} $a \in \mathcal{A}$ $\subseteq NP$.

Definition 7 (frame axiom) $\forall f \in \mathcal{V}$, if $f \notin NP$ then $(f_t \leadsto f_{t+1}, p(f))$ and if $\neg f \notin NP$ then $(\neg f_t \leadsto \neg f_{t+1}, p(\neg f))$ where $p(f)$ is the persistence degree of f.

The persistence degree depends on the nature of the fluent, for instance, the fluent asleep is persistent but it is less persistent than deaf.

Given the description of an evolving system composed of a set of uncertain default transition rules Δ describing its behavior (Δ contains pure dynamic laws and default persistence rules (coming from the frame axiom)) and a possibilistic knowledge base FC_t that describes the initial state of the world, we can study the problem of predicting the next state FC_{t+1} of the world. The following example inspired from [18] shows how to describe a coffee machine behavior with uncertain default transition rules.

Example 6 Let us consider a coffee machine that may be working (w), have enough money in it (m), have a goblet under the tap (g). Its normal behavior is roughly described by:

$\varphi_1 : m_t \leadsto g_{t+1} \land \neg m_{t+1}$ 0.9
$\varphi_2 : m_t \land \neg w_t \leadsto \neg g_{t+1}$ 0.9

where φ_1 means that if the machine has money in it then in the next step a goblet is under the tap and the money is spent. This first rule describes the intended coffee machine behavior supposing that it is working correctly. But it admits an exception described by φ_2. The agent is able to perform only one action on this machine: “give money” (gm). This action has an uncertain effect since giving money may fail if the coin is faked money (f).

$\varphi_3 : do(gm)_t \leadsto m_{t+1}$ 0.8
$\varphi_4 : do(gm)_t \land f_t \leadsto \neg m_{t+1}$ 0.7

We consider m as the only non persistent fluent (as soon as m is true, it becomes false because of the rule φ_1): $NP = \{m\}$. Hence, persistence is encoded as follows (for the simplicity of the example, we have put the same level of persistence for all rules, but it is not compulsory):

$\varphi_5 : g_t \leadsto g_{t+1}$ 0.9
$\varphi_6 : w_t \leadsto w_{t+1}$ 0.9
$\varphi_7 : f_t \leadsto f_{t+1}$ 0.9
$\varphi_8 : \neg m_t \leadsto \neg m_{t+1}$ 0.9
$\varphi_9 : \neg g_t \leadsto \neg g_{t+1}$ 0.9
$\varphi_{10} : \neg w_t \leadsto \neg w_{t+1}$ 0.9
$\varphi_{11} : \neg f_t \leadsto \neg f_{t+1}$ 0.9

In the initial state the agent is not absolutely sure that the coffee machine is working but he puts money in it (he thinks it is not faked money). $FC_t = \{(do(gm)_0, 1), (\neg m_0, 1), (\neg g_0, 1), (\neg f_0, 0.9)\}$, there is no money, no goblet, and it is almost certain that the money is not faked.

From a set of uncertain default transition rules of the form ($a_t \leadsto b_{t+1}, \alpha$), we can apply the methods presented in the previous section in order to obtain a set D of uncertain transition rules of the form ($a_t \rightarrow b_{t+1}, \alpha$). From D and a
knowledge base FC_t describing the initial state, the next state can be computed syntactically as follows:

$$FC_{t+1} = \{ (b_{t+1}, \alpha) | \exists (a_t, \gamma) \text{ s.t. } (a_t \rightarrow b_{t+1}, \beta) \in D \text{ and } FC_t \vdash_\gamma (a_t, \gamma) \text{ and } \alpha = \min(\beta, \gamma) \}$$

More generally, the resulting state can be computed by considering the extended set of rules D' that correspond to all the possible states of knowledge about the initial state of the system [18]:

$$D' = \{ (\forall I (\land J a_i) \rightarrow \forall I (\land J b_i), \min_{i \in I \cup J} \alpha_i) | \forall (a_t \rightarrow b_t, \alpha_t) \in D \}$$

where I and J are any independent sets of indices of rules in D.

Example 7 System Z gives three strata for example 6: $\Delta_0 = \{ \varphi_1, \varphi_3, \ldots, \varphi_{11} \}$, $\Delta_1 = \{ \varphi_2, \varphi_3 \}$ and $\Delta_2 = \{ \varphi_4 \}$. Applying the first method leads to compute Inc$(FC_0 \cup D_\pi)$ where D_π is the possibilistic knowledge base associated with Δ. Then delete all the rules of D_π that have a smaller specificity level. Only three rules are kept:

- $\varphi_2 : (m_t \land \neg w_t \rightarrow \neg g_{t+1}, 0.9)$
- $\varphi_3 : (do(gm)_t \rightarrow m_{t+1}, 0.8)$
- $\varphi_4 : (do(gm)_t \land f_t \rightarrow \neg m_{t+1}, 0.7)$

Hence, we can deduce $(m_{t+1}, 0.8)$ meaning that the machine has money in it in the next state.

The above example shows a drawback of the first method: all the persistence rules are drowned. Hence we are not able to determine the value of the fluents that are not concerned by transitions. The third method has not this drawback and preserves the following larger rule base where the modified parts of rules are in bold:

Example 8 $\varphi_4 : (do(gm)_t \land f_t \rightarrow \neg m_{t+1}, 0.7)$; $\varphi_2 : (m_t \land \neg w_t \rightarrow \neg g_{t+1}, 0.9)$; $\varphi_3 : (do(gm)_t \land \neg f_t \rightarrow m_{t+1}, 0.8)$; $\varphi_1 : (m_t \land w_t \land \neg (do(gm)_t \land \neg f_t) \rightarrow g_{t+1} \land \neg m_{t+1}, 0.9)$; $\varphi_5 : (g_t \land \neg (m_t \land \neg w_t) \rightarrow g_{t+1}, 0.9)$; $\varphi_6 : (w_t \rightarrow w_{t+1}, 0.9)$; $\varphi_7 : (f_t \rightarrow f_{t+1}, 0.9)$; $\varphi_8 : (\neg m_t \land \neg (do(gm)_t \land \neg f_t) \rightarrow m_{t+1}, 0.9)$; $\varphi_9 : (\neg g_t \rightarrow g_{t+1}, 0.9)$; $\varphi_{10} : (\neg w_t \rightarrow \neg w_{t+1}, 0.9)$; $\varphi_{11} : (\neg f_t \rightarrow \neg f_{t+1}, 0.9)$.

Note that exceptions to persistence laws correspond to occurrences of actions, as expected. If the initial knowledge base FC_t is $\{(do(gm)_t, 1), (\neg m_t, 1), (\neg g_t, 1)\}$, completion rules are: $\{(do(gm)_t \rightarrow \neg f_t, \min(0,8,0.7) = 0.7), (m_t \land w_t, 0.9), (m_t \rightarrow \neg (do(gm)_t \land \neg f_t, 0.8), (g_t \rightarrow \neg (m_t \land \neg w_t), 0.9) \}$. So at time point $t + 1$, FC_{t+1} contains $(m_{t+1}, 0.7), (\neg g_{t+1}, 0.9), (\neg f_{t+1}, 0.9)$, meaning that there is money (with a certainty degree of 0.7) in the machine, no goblet and the coin is not faked (with a certainty degree of 0.9).

One noticeable advantage of the third method is that the deduction can be iterated without recompilation of the default base (whereas it would be necessary with the second method).
The two non-monotonic inference relations “Contextual rational entailment” and “Rewriting entailment”, that we have proposed in this paper, and used in method 2 and method 3 respectively, are new. They are both “rational closure” entailments, and allow us to deduce more conclusions than “System Z” [4] entailment (or its equivalent “best-out” entailment [19]). There has been other proposals for “rational closure” inference from defaults, among them, the “lexicographic entailment” [19,20] is an approach that is recognized to give good results, in particular, as our two approaches, it avoids “blocking of inheritance problems”. Meanwhile it has a drawback, it is sensitive to direct or indirect redundancy since it is based on a counting of the rules, while our two methods are not:

Example 9 (variations on Nixon example)

Direct redundancy: \(\{ q \leadsto p, q \leadsto p, r \leadsto \neg p \} \), what can be said about \(q \land r \)?

Indirect redundancy: \(\{ q \leadsto p, r \leadsto \neg p, e \leadsto p \} \) where the last rule means that “ecologists are generally pacifists”. What can be said about \(q \land r \land e \)?

Lexicographic entailment allows us to conclude pacifist in the two redundancy cases, meanwhile in these two cases “rational contextual entailment” concludes to an inconsistency and “rewriting entailment” cannot conclude neither to pacifist nor to not pacifist. This ambiguity preservation seems to be a desirable conclusion in such an example.

There has been very few works handling both defeasibility and uncertainty, up to the noticeable exception of system \(Z^+ [1] \) that handles default rules having strengths modeled in the setting of Spohn ordinal condition functions [21], and their exploitation by maximum entropy principle, taking advantage of the probabilistic interpretation of Spohn functions [22]. In system \(Z^+ \), a default rule \((a \leadsto b) \) is extended with a parameter representing the degree of strength or firmness of the rule and denoted by \((a \rightarrow_{\delta} b) \). This is interpreted as a constraint of the form \(\kappa(a \land b) < \kappa(a \land \neg b) + \delta \) where \(\kappa \) is a Spohn kappa function associating any set of interpretations with an integer value that expresses impossibility (thus 0 means full possibility and \(\infty \) means full impossibility).

Translated in possibilistic terms, it amounts to deal with constraints of the form \(\Pi(a \land b) > k.\Pi(a \land \neg b) \) with \(k \geq 1 \), using the standard transformation between kappa functions and possibility measures [23]. Thus, the \(k \)'s are like uncertainty odds. In \(Z^+ \), the ranking of defaults is obtained by comparing sums of strength degrees, somewhat mixing the ideas of specificity and strength. Separate scales for specificity and certainty are not used in this approach, so certainty levels are introduced in the computation of the levels reflecting specificity ordering. This leads to an interaction between the two notions. For instance, encoding our Example 1 in a \(Z^+ \) formalism, we get: \(r_1 : b \rightarrow_{\delta_1} f \) and \(r_2 : b \land w \rightarrow_{\delta_2} \neg f \), where \(\delta_1 \) and \(\delta_2 \) are non negative integers. System \(Z^+ \) generates the following ranking on the two interpretations \(\{ b, w, f \} \) and
As shown on the following example, the way system Z^+ handles defeasibility and certainty in a mixed way may not always yield the expected conclusion.

Example 10 Consider the following default base stating that birds generally fly, birds generally are not palmate, wounded birds generally do not fly, and that duck birds generally are palmate.

$$\{b, w, \neg f\}: \kappa(\{b, w, f\}) = Z^+(r_2) = \delta_1 + \delta_2 + 1 \text{ and } \kappa(\{b, w, \neg f\}) = Z^+(r_1) = \delta_1. \text{ Thus in } Z^+, \text{ the strengths of the defaults are combined for determining their respective specificity level, and paradoxically, not really for computing the certainty levels of the conclusions. The approach presented here distinguishes more carefully between specificity and certainty.}$$

System Z^+ associates to these defaults the following respective ranks δ_1, δ_2, $\delta_1 + \delta_3 + 1$, $\delta_2 + \delta_4 + 1$. Assume that the values of the δ_i’s are such that $\delta_1 < \delta_1 + \delta_3 + 1 < \delta_2 < \delta_2 + \delta_4 + 1$ (which does not correspond to a refinement of the Z ordering!). Then, from a wounded duck bird, System Z^+ concludes that it is palmate but cannot conclude that it cannot fly as System Z will do.

Another interesting approach handling both defeasibility and uncertainty has been proposed in [2] in a setting where probabilistic logic is combined with default reasoning. Lukasiewicz proposes a framework that can handle simultaneously strict propositional rules, probabilistic formulas and default formulas. A basic difference with our proposal is that default formulas are classical default rules, meanwhile in this paper a new kind of default rules that are also pervaded with uncertainty is considered. Recently, Lukasiewicz and Schellhase [24] have proposed a setting for representing variable strength conditional preferences where a default contextual preference is stated together with a strength, in the spirit of system Z^+. Our setting could be also used in that perspective keeping the handling of the default nature of preferences separate from the processing of the strengths.

Nicolas et al. [3,25] also present an approach that deals with defeasibility and uncertainty in a possibilistic framework. But, they combine possibilistic logic with Answer Set Programming rather than using the same setting for default and uncertainty handling. Certainty levels are used in order to help to restore consistency of a logic program by removing rules that are below a level of inconsistency. As our first method, this approach does not avoid the drowning problem, while our two other methods do.

Using an uncertain framework in order to describe an evolving system has been done by many authors, for instance in a probabilistic setting. But reasoning in this setting implies to dispose of many a priori probabilities, this is why using defeasibility may help to reduce the size of information for representing the system. Besides, it is a common idea to define a frame axiom in terms of default rules (see [26] for an overview). But, as far as we know, frame rules are either
considered as default rules (see [27,28] for instance), or are associated with low priority levels (see [29]), but do not involve both default and uncertainty feature.

7 Conclusion

We have proposed a representation framework that allows us to handle rules which are both uncertain and defeasible. Three inference methods have been presented, which have two steps: first building a set of non defeasible rules that can be used in the current context, and then processing the uncertainty of the identified rules in the setting of possibility theory. Two of these methods avoid the blocking of inheritance effect. In the “rewriting entailment” method, only a small part of the set of rules (namely, the “completion” rules stating by default that we are not in an exceptional situation) depends on the context. This contrasts with the other new method proposed, namely the “contextual rational entailment”, in which all the rules must be reexamined when the context changes. Besides, the “rewriting entailment” where defaults are rewritten by mentioning explicit exceptions is reminiscent of techniques used in circumscription-based approaches. Moreover, it could be interesting to study how to cast the “rewriting entailment” into a logic programming setting to solve the drowning problem encountered in [25].

We have suggested that uncertain default rules may be of interest in the context of dynamic systems for handling the “frame” and the “qualification” problems, thanks to default transition rules. The approach allows us to introduce different levels of persistence. It would be even possible to deal with decreasing persistence (i.e., the value of the persistence level depends on the time spent). This could be processed by using fuzzy default rules, encoded in a possibilistic manner as in [8] (where the level of uncertainty is a membership degree whose value depends on the instantiation of variable(s) appearing in the first order logic part of possibilistic formulas).

Besides, the use of the approach for handling fuzzy default rules may also find applications for handling default inheritance in fuzzy description logic in a possibilistic logic setting [30].

Annex A: Background on possibility theory

Possibility theory [10] associates to a formula \(f \) two measures, namely its possibility \(\Pi(f) \) which measures how unsurprising the formula \(f \) is (\(\Pi(f) = 0 \) means that \(f \) is bound to be false) and its dual necessity \(N(f) = 1 - \Pi(\neg f) \) (\(N(f) = 1 \) means that \(f \) is bound to be true). Necessity obeys to the characteristic axiom \(N(f \land g) = \min(N(f), N(g)) \). A possibilistic knowledge base is a set \(K = \{(\varphi_i, \alpha_i), i = 1 \ldots n\} \).
where \(\varphi_i \) is a propositional formula of \(L \) and its certainty level (or weight) \(\alpha_i \) is such that \(N(\varphi_i) \geq \alpha_i \), \(N \) being a necessity measure.

The resolution rule [31] is valid in possibilistic logic: \((a \lor b, \alpha); (\neg a \lor c, \beta) \vdash (b \lor c, \min(\alpha, \beta))\), where \(\vdash \) denotes the syntactic inference of possibilistic logic. Classical resolution is retrieved when all weights are equal to 1. The resolution rule allows us to compute the maximal certainty level that can be attached to a formula according to the constraints expressed by the base \(K \). This can be done by adding to \(K \) the clauses obtained by refuting the proposition to evaluate, with a necessity level equal to 1. Then it can be shown that any lower bound obtained on \(\perp \), by resolution, is a lower bound of the necessity of the proposition to evaluate. Let \(\text{Inc}(K) = \max\{\alpha | K_\alpha \vdash \perp\} \) with \(K_\alpha = \{f | (f, \beta) \in K \text{ and } \beta \geq \alpha\} \), with the convention \(\max(\emptyset) = 0 \). In case of partial inconsistency of \(K \) (\(\text{Inc}(K) > 0 \)), a refutation carried out in a situation where \(\text{Inc}(K \cup \{\neg f, 1\}) = \alpha > \text{Inc}(K) \) yields the nontrivial conclusion \((f, \alpha)\), only using formulas whose certainty levels are strictly greater than the inconsistency level of the base. This is the syntactic possibilistic entailment, noted \(\vdash_\pi \).

Annex B: Background on default rules

A default rule is an expression \(a \sim b \) where \(a \) and \(b \) are propositional formulas of \(L \) and \(\sim \) is a new symbol. \(a \sim b \) translates, in the possibility theory framework, into the constraint \(\Pi(a \land b) > \Pi(a \land \neg b) \) which expresses that having \(b \) true is strictly more possible than having it false when \(a \) is true [32]. The use of default rules has two main interests. First, it simplifies the writing: it allows us to express a rule without mentioning every exceptions to it. Second, it allows us to reason with incomplete descriptions of the world: if nothing is known about the exceptional character of the situation, it is assumed to be normal, and reasoning can be completed. Several authors [13,33] have developed an approach for handling reasoning with default rules based on postulates stating the characteristic properties of a non-monotonic consequence relations. In this setting, two inferences are defined: a cautious one named “preferential” and a more adventurous one named “rational closure inference”.

Pearl [4] provides an algorithm which gives a stratification of a set of default rules in a way that reflects the specificity of the rules. Roughly speaking, the first stratum contains the most specific rules, i.e., which do not admit exceptions (at least, expressed in the considered default base), the second stratum has exceptions only in the first stratum and so on.

Definition 8 (System Z stratification) A default rule \(a \sim b \) is tolerated by a set of default rules \(\Delta \) if it exists an interpretation \(\omega \) such that \(\omega \models a \land b \) and \(\forall a_i \sim b_i \in \Delta, \omega \models \neg a_i \lor b_i \). This definition allows us to stratify \(\Delta \) into \((\Delta_0, \Delta_1, \ldots, \Delta_n)\) such that \(\Delta_0 \) contains the set of rules of \(\Delta \) tolerated by \(\Delta \), \(\Delta_1 \) contains the set of rules of \(\Delta \setminus \Delta_0 \) tolerated by \(\Delta \setminus \Delta_0 \) and so on. The number \(Z(r) \) corresponds to the rank of the stratum in which the rule \(r \) is.

It has been shown [32] that each default rule \(r = a \sim b \) of a default base \(\Delta \), can be associated with a possibilistic formula \((a \rightarrow b, \sigma)\), where \(\sigma \) represents its specificity level \(\sigma = \frac{Z(r)+1}{n+2} \), \(n \) being the index of the last stratum in the system Z stratification.
of Δ. Applying possibilistic inference to the possibilistic base associated with a
default base in this sense is equivalent to compute the rational closure inference
[13,33] of the original default base [32].

Annex C: proofs of Propositions 3, 7 and 8

Proof :[of Proposition 3]

Reflexivity: Since $\sim_{R,\Delta}$ is a rational entailment relation, $a \mid \sim_{R,\Delta} a$, hence using
Proposition 2, $a \mid \sim_{R,\Delta} a$.

Left logical equivalence if $\vdash a \rightarrow b$ then using Proposition 1 with $a \vdash b$ and $b \vdash a$,
we get $\Sigma_a = \Sigma_b$. So, if $\vdash a \leftrightarrow b$ and $a \mid \sim_{R,\Delta} c$ (i.e., $\Sigma_a \cup \{a \mid c\}$ then $\Sigma_b \cup \{b \mid c\}$
(i.e., $b \mid \sim_{R,\Delta} c$)

Right weakening: $c \mid \sim_{R,\Delta} a$ means that $\Sigma_c \cup \{c\} \vdash a$, hence, if $a \vdash b$ then $\Sigma_c \cup \{c\} \vdash b$,
i.e., $c \mid \sim_{R,\Delta} a$

Cut: Using Proposition 1 with $a \land b \vdash a$, we get $\Sigma_{a \land b} \subseteq \Sigma_a$, hence $\Sigma_a \vdash \Sigma_{a \land b}$. If
$a \mid \sim_{R,\Delta} b$ (i.e., $\Sigma_a \cup \{a \mid b\}$) then $\Sigma_a \cup \{a \mid \sim_{R,\Delta} b\}$, so if $a \land b \mid \sim_{R,\Delta} c$
(i.e., $\Sigma_{a \land b} \cup \{a \land b \mid c\}$) then $a \mid \sim_{R,\Delta} c$

Cautious monotony: Let us suppose that $\Sigma_a \cup \{a\} \vdash b$ (H1) and that $\Sigma_a \cup \{a\} \vdash c$
(H2). Let us consider a formula $a_i \rightarrow b_i \in \Sigma_a$. If it does not belong to $\Sigma_{a \land b}$ then it means that

(1) either $a_i \land a \land b \land b_i$ is inconsistent, but due to (H1) it entails that $\Sigma_a \cup \{a\} \mid \neg a_i$, then it means that $a_i \rightarrow b_i$ is not used to prove c in (H2),

(2) or $a_i \land a \land b \mid \sim_{R,\Delta} \neg b_i$, then using Proposition 2, we get $\Sigma_{a_i \land a \land b} \subseteq \Sigma_a$, hence $\Sigma_a \cup \{a_i \land a \land b \mid \neg b_i\}$.

Moreover, (H1) entails that $\Sigma_a \cup \{a_i \land a_i\} \vdash b_i$, it entails that $\Sigma_a \cup \{a_i \land a_i\} \vdash b_i$.

Since $a_i \rightarrow b_i \in \Sigma_a$, it means that $\Sigma_a \cup \{a_i \land a_i\}$ is inconsistent which is impossible since we are in the case $\Sigma_a \cup \{a\} \not\neg a_i$.

Hence, any formula $a_i \rightarrow b_i$ such that $\Sigma_a \cup \{a\} \not\neg a_i$ is in $\Sigma_{a \land b}$. Now, since (H2)
$\Sigma_a \cup \{a\} \vdash c$ then $\Sigma_a \cup \{a_i \rightarrow b_i \in \Sigma_a, \Sigma_a \cup \{a\} \mid \neg a_i\} \cup \{a\} \mid c$, it means that
$\Sigma_{a \land b} \cup \{a \mid c\}$ hence, $\Sigma_{a \land b} \cup \{a \land b \mid c\}$.

Or: Using Proposition 1 with $a \lor a \land b$, we get $\Sigma_a \subseteq \Sigma_{a \lor b}$ and $\Sigma_b \subseteq \Sigma_{a \lor b}$, hence
$\Sigma_{a \lor b} \vdash \Sigma_a \cup \Sigma_b$. If $a \mid \sim_{R,\Delta} c$ (i.e., $\Sigma_a \cup \{a \mid c\}$ and $b \mid \neg_{R,\Delta} c$ (i.e., $\Sigma_b \cup \{b \mid c\}$) then
$\Sigma_{a \lor b} \cup \{a \mid c\} \cup \Sigma_b \cup \{b \mid c\}$ hence $a \lor b \mid \sim_{R,\Delta} c$.

Rational monotony: We reason in a similar way as for Cautious monotony, we first suppose that $\Sigma_a \cup \{a\} \mid b$ (H1) and that $\Sigma_a \cup \{a\} \not\neg c$ (H2). We consider a formula
$a_i \rightarrow b_i \in \Sigma_a$. If it does not belong to $\Sigma_{a \land c}$ then it means that either (1) $a_i \land a \land c \land b_i$ is inconsistent, but since (H1) it entails that $\Sigma_a \cup \{a\} \mid \neg a_i$, or (2) $a_i \land a \land c \mid \sim_{R,\Delta} \neg b_i$, then using Proposition 2, we get $\Sigma_{a_i \land a \land c} \cup \{a_i \land a \land c \mid \neg b_i\}$, using Proposition 1 with $a_i \land a \land c \mid a$, we get $\Sigma_a \cup \{a_i \land a \land c \mid \neg b_i\}$. Since $a_i \rightarrow b_i \in \Sigma_a$, it means that $\Sigma_a \cup \{a \mid c\} \mid \neg a_i$. Hence, any formula $a_i \rightarrow b_i$ such that $\Sigma_a \cup \{a\} \mid \neg a_i$ and $\Sigma_a \cup \{a \mid c\} \mid \neg a_i$ is in $\Sigma_{a \land c}$. Now, since (H2) $\Sigma_a \cup \{a\} \vdash \Sigma_{a \land c} \cup \{a \mid c\}$ and also $\Sigma_a \cup \{a \mid c\} \vdash \Sigma_{a \land c}$, hence $\Sigma_{a \land c} \cup \{a \land c \mid \neg a_i\}$ it means that $\Sigma_{a \land c} \cup \{a \land c \mid b\}$.

□

Proof :[of Proposition 7]

Reflexivity: by monotony of \vdash, $\forall CR \subseteq CR$, $\{a\} \cup D \cup CR \vdash a$.

Left logical equivalence if $\vdash a \leftrightarrow b$ then any subset of CR maximal consistent with a
is also maximal consistent with b. Hence, if $\forall CR_a \subseteq CR$, CR_a maximal consistent
with \(\{a\} \cup D \), \(\{a\} \cup D \cup CR_a \vdash c \) then \(\forall CR_b \subseteq CR \), \(CR_b \) maximal consistent with \(\{b\} \cup D \), \(\{a\} \cup D \cup CR_b \vdash c \). Since \(a \leftarrow b \), we get the result.

Right weakening: if \(a \vdash b \) and \(\forall CR_c \subseteq CR \), \(CR_c \) maximal consistent with \(\{c\} \cup D \), \(\{c\} \cup D \cup CR_c \vdash a \) then by transitivity of \(\vdash \), \(\{c\} \cup D \cup CR_c \vdash b \).

Cut: Let us suppose that \(\forall CR_{a\land b} \), where \(CR_{a\land b} \) is a maximal subset of \(CR \) consistent with \(\{a \land b\} \cup D \), \(CR_{a\land b} \cup D \cup \{a \land b\} \vdash c \) (H1) and that \(\forall CR_a \), where \(CR_a \) is a maximal subset of \(CR \) consistent with \(\{a\} \cup D \), \(CR_a \cup D \cup \{a\} \vdash b \) (H2). Note that (H2) means that if \(CR_a \) is a maximal subset of \(CR \) consistent with \(\{a\} \cup D \), then it is consistent with \(b \). Hence it is a maximal subset of \(CR \) consistent with \(\{a \land b\} \cup D \). Hence by H1 we get that \(CR_a \cup D \cup \{a \land b\} \vdash c \). Moreover, (H2) implies that \(CR_a \cup D \cup \{a\} \vdash CR_a \cup D \cup \{a \land b\} \vdash c \). Hence, \(CR_a \cup D \cup \{a\} \vdash c \).

Cautious monotony: Let us suppose that \(\forall CR_a \), where \(CR_a \) is a maximal subset of \(CR \) consistent with \(\{a\} \cup D \), \(CR_a \cup D \cup \{a\} \vdash b \) (H1) and that \(\forall CR_a \cup D \cup \{a\} \vdash c \) (H2). Suppose that it exists a subset of \(CR \), \(CR_{a\lor b} \) maximal consistent with \(\{a \lor b\} \cup D \) which is not maximal consistent with \(\{a\} \cup D \), it means that it exists a subset consistent with \(\{a\} \cup D \) that contains strictly \(CR_{a\land b} \), let us consider the maximal subset consistent with \(\{a\} \cup D \) containing strictly \(CR_{a\land b} \) then using H1 it is consistent with \(b \), which means that \(CR_a \) could not be maximal. So this supposition was absurd and we get that \(CR_{a\lor b} \) should be maximal consistent with \(a \cup D \). Hence using H2, we get \(\forall CR_{a\lor b} \), where \(CR_{a\lor b} \) is a maximal subset of \(CR \) consistent with \(\{a \land b\} \cup D \), \(CR_{a\lor b} \cup D \cup \{a \land b\} \vdash c \). Hence using H1, \(CR_{a\lor b} \cup D \cup \{a \land b\} \vdash c \), hence \(\omega \) can not satisfy \(\sim c \). Using a similar reasoning, we get that \(\omega \models b \) is also impossible. Hence the supposition was absurd, it means that for any subset of \(CR \), \(CR_{a\lor b} \) maximal consistent with \(\{a \lor b\} \cup D \), \(CR_{a\lor b} \cup \{a \lor b\} \vdash c \).

Rational monotony: Let us show that if \(a \sim_{RW} b \) and \(a \not\vdash_{RW} c \) then \(a \land c \sim_{RW} b \). By showing that if \(a \sim_{RW} b \) and \(a \land c \vdash_{RW} b \) then \(a \sim_{RW} c \). Let us suppose that \(\forall CR_a \), where \(CR_a \) is a maximal subset of \(CR \) consistent with \(\{a\} \cup D \), \(CR_a \cup D \cup \{a\} \vdash b \) (H1) and that it exists \(CR_{a\land c} \), where \(CR_{a\land c} \) is a maximal subset of \(CR \) consistent with \(\{a \land c\} \cup D \), such that \(CR_{a\land c} \cup D \cup \{a \land c\} \cup \{b\} \) is consistent (H2). If it exists a subset of \(CR \), \(CR_a \) which is maximal consistent with \(\{a\} \cup D \) and such that \(CR_{a\land c} \subseteq CR_a \), it means that \(CR_a \) is not consistent with \(c \) (else \(CR_{a\land c} \) would be not be maximal). It means that for all \(CR_a \) maximal consistent with \(\{a\} \cup D \), \(CR_a \cup \{a\} \cup D \vdash c \) if there is no such \(CR_a \) (maximal consistent with \(\{a\} \cup D \) and such that \(CR_{a\land c} \subseteq CR_a \)), it means that \(CR_{a\land c} \) is maximal consistent with \(\{a\} \cup D \), hence using H1, we get \(CR_{a\land c} \cup D \vdash \{a\} \vdash b \) which is in contradiction with H2. Hence the second case never happens.

Proof: of Proposition 8

\[\vdash \neg_{RW} \Delta \] is based on the use of classical entailment from the set \(\Sigma_f \cup \{fc\} \) in a given context \(fc \), meanwhile \(\vdash_{RW, \Delta} \) uses classical entailment from the set \(D \cup CR' \) where \(D \) is the set of rewritten rules from \(\Delta \) and \(CR' \) is a maximal subset of completion

22
rules that is consistent with $FC \cup D$ (see Definitions 4 and 6). Hence, in order to compare the two entailments it is enough to compare the two sets Σ_{fc} and $D \cup CR'$. Let us consider a given rule $a_i \leadsto b_i$ of the initial default base Δ. Let $E(a_i \leadsto b_i, D)$ be its set of exceptions in D.

- if $\{a_i \land b_i\} \cup FC$ is consistent then
 - if $\{a_i\} \cup FC \not\models_{R,\Delta} \lnot b_i$ then $a_i \rightarrow b_i$ will be present in Σ_{fc}. Moreover it means that for any exception a' of the initial rule, $FC \cup \{a_i\} \not\models a'$. Indeed assume that $FC \cup \{a_i\} \models a'$ and a' being an exception, we have $\{a' \land a_i\} \cup D \models \lnot b_i$. This would imply that $FC \cup \{a_i\} \cup D \models \lnot b_i$, which is in contradiction with our starting hypothesis. Hence, finally, $FC \cup \{a_i\}$ is consistent with every completion rule associated to $a_i \leadsto b_i$, so also consistent with the rewritten condition part of this rule. Hence, the conclusion b_i can also be drawn by method 3.
 - else $\{a_i\} \cup FC \not\models_{R,\Delta} \lnot b_i$ so $a_i \rightarrow b_i \notin \Sigma_{fc}$.

Note that it implies that $\exists a' \in E(a_i \leadsto b_i, D)$ such that $FC \cup \{a_i\} \models a'$ (by reasoning in a similar way as above). Hence there is a completion rule, namely, $a_i \rightarrow \lnot a'$, belonging to the set of completion rules associated to $a_i \leadsto b_i$ that is not consistent with FC. Hence the initial rule $a_i \leadsto b_i$ whose condition part has been rewritten, will not be fired in method 3, in this case.

- else $\{a_i \land b_i\} \cup FC$ is inconsistent. In this case, for method 2, $a_i \rightarrow b_i$ will not be present in Σ_{FC}. For method 3, there are two cases
 - either $\{\bigwedge_{x \in E(a_i \leadsto b_i, D)} \lnot x\} \cup FC$ is inconsistent. It means that the explicit rule $a_i \land \bigwedge_{x \in E(a_i \leadsto b_i, D)} \lnot x \rightarrow b_i$ could not be used, leading to the same result as in method 2.
 - or $\bigwedge_{x \in E(a_i \leadsto b_i, D)} \lnot x$ is consistent with FC. It means that the rule $a_i \land \bigwedge_{x \in E(a_i \leadsto b_i, D)} \lnot x \rightarrow b_i$ is inconsistent with FC. Then the third method will face an inconsistency in $FC \cup D$, hence, every proposition and its negation will belong to the set of possible conclusions.

\[\Box\]

References

