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Abstract. The reconstruction of an object from a single 2D projection of a 3D wireframe model is a vision
problem with applications in CAD/CAM and computer graphics. We propose an algorithm for the interpretation of
wireframe projections based on assigning semantic and numerical depth labels to lines. This method allows us to
state necessary and sufficient conditions for the physical realisability of a wireframe projection of a curved object.
The presence of linear features provides further constraints on the positions of object vertices. For example, each
straight line gives rise to a coplanarity constraint between a set of object vertices.

We show that extra information, such as vanishing points, parallel lines or user-entered depth-parity information,
is sufficient to uniquely determine the face-circuits in wireframe projections of polyhedra with simple trihedral
vertices. In fact, a polyhedron with simple trihedral vertices can be unambiguously reconstructed from its 3D
wireframe model.

Keywords: wireframe model, hidden-line drawing, physical realisability, impossible object, Necker cube, Penrose
triangle

1. Introduction

The interpretation of line drawings of opaque objects
is a classic problem in computer vision. Necessary and
sufficient conditions have been given for the physi-
cal realisability of line drawings of polyhedral objects
(Sugihara, 1986) and for curved objects with C3 sur-
faces (Cooper, 1999). The computational complexity
of testing the realisability of a line drawing has also
been extensively studied. Although the most general
problem is NP-complete (Kirousis and Papadimitriou,
1988; Cooper, 1999, 2001), the problem is solvable in
linear time under certain restrictions on the drawings
(knowledge of all vanishing points (Parodi and Torre,
1994; Cooper, 1999), absence of straight lines (Cooper,
1997, 1999) or possibility of contrast failure between
parallel surfaces (Cooper, 2001)).

In a line drawing of opaque objects, only visible lines
are shown. This is appropriate for traditional vision ap-
plications. However, for the reconstruction of the 3D
shape of a human-entered object-model, a more appro-
priate input is a line drawing in which both visible and
hidden lines are shown. Let the depth of a 3D edge E
denote the number of surfaces lying between E and the
viewpoint. Visible lines represent edges of depth zero.
Sugihara (1986) and Alevizos (1991) have studied the
interpretation of line drawings in which solid lines rep-
resent edges of even depth and broken lines represent
edges of odd depth. A wireframe projection is a pro-
jection of all 3D edges (visible or not) in which no
information concerning the depth of lines is explicitly
given. When extra information is provided in the form
of the 3D coordinates of each object vertex we call
this a 3D wireframe model. The reconstruction of an
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object from several wireframe projections has been ex-
tensively studied (Kuo, 1998; Wesley and Markowsky,
1981) as has the problem of converting a 3D wireframe
model into a surface-based 3D model (Agarwal and
Waggenspack, 1992; Jain, 1999; Leclerc and Fischler,
1992; Lipson and Shpitalni, 1996; Markowsky and
Wesley, 1980; Shpitalni and Lipson, 1996; Vosniakos,
1997, 1998). Although the reconstruction of a 3D ob-
ject from a user-entered wireframe is the most stud-
ied problem, other interesting applications exist, such
as the indexing of technical line drawing databases
(Syeda-Mahmood, 1999).

In this paper we study the interpretation of wire-
frame projections. We give necessary and sufficient
conditions for the physical realisability of a wireframe
projection when no depth information is given (in
terms of depth of lines or 3D coordinates of vertices).
These necessary and sufficient conditions involve not
only semantic labels (convex, concave, occluding,
extremal), first introduced by Huffmann (1971) and
Clowes (1971) and generalised to wireframe projec-
tions by Sugihara (1978, 1986), but also numerical la-
bels representing the number of surfaces in front of and
behind the corresponding 3D edge. Labelling lines by
their depth was first suggested by Huffmann (1971),
one of the pioneers in this field.

We restrict our study to wireframe projections from
a general viewpoint of objects with C3 edges and sur-
faces meeting non-tangentially at trihedral vertices.
This is a first step towards a more general scheme al-
lowing objects with discontinuities of surface curva-
ture (Cooper, 1993, 1997) or tetrahedral vertices (Var-
ley and Martin, 2001). Figure 1(a) shows two drawings
which can be shown to be physically unrealisable by
semantic line labelling alone. In each case there would
have to be an illegal label transition along the line AB.
Figure 1(b) shows three drawings which require numer-
ical depth labels as well as semantic labels to demon-
strate their non-realisability. Although a consistent la-
belling exists in terms of semantic labels alone, they
are clearly spatially incoherent.

If the drawing contains linear features such as
straight lines, parallel lines or colinear lines, then fur-
ther constraints can be deduced concerning the 3D po-
sitions of object vertices. These constraints give rise
to linear equations or linear inequalities between the
depths zi of object vertices (in the case of orthographic
projection) or between the inverses ti = 1/zi of these
depths (in the case of perspective projection) (Cooper,
2000). In a standard technique, pioneered by Sugihara
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Figure 1. Examples of line drawings which do not have legal
labellings.
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Figure 2. Two drawings which are impossible due to linear
constraints.

(1986), the drawing is physically realisable if and only
if the resulting linear programming problem has a
solution.

Figure 2 shows two examples of drawings which
have legal labellings (both semantic and numerical) but
which are impossible by linear constraints. We assume
a general viewpoint and orthographic projection, which
imply that parallel lines in the drawing are projections
of parallel lines in 3D. The existence of legal labellings
follows from the fact that these drawings can be trans-
formed into the drawings of a cube and a tetrahedron
(shown in Fig. 2) by changes to positions of junctions
which do not alter the configuration of the drawings.
In Fig. 2(a), coplanarity constraints deduced from as-
sumptions about the formation of straight edges imply
that A, B, C, D are coplanar. However, using the con-
straint that parallel lines in the drawing are projections
of parallel 3D edges, it is possible to deduce that B
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does not lie in the same plane as A, D, C. As another
example, the presence of parallel lines imples that the
object represented in Fig. 2(b) is completely flat which
contradicts the fact that all lines, including the two diag-
onals, are supposed to be projections of surface-normal
discontinuities.

In the machine reconstruction of a 3D object model
from a human-entered drawing, it is essential that the
drawing be unambiguous. Wireframe models are often
said to be ambiguous (see, for example, (Mortenson,
1997)) because they do not contain surface information
(as in B rep models) nor volume information (as in
CSG models). However, we will show that wireframe
models of polyhedra containing only simple trihedral
vertices are, in fact, unambiguous.

2. Semantic and Numerical Line Labels

We make the following simplifying assumptions:

1. Objects are regular solids bounded by C3 surfaces
separated by C3 edges (discontinuities of surface
orientation).

2. Object vertices are trihedral, i.e. formed by the inter-
section of 3 surfaces. The edges and surfaces meet-
ing at a vertex meet non-tangentially.

3. If the scene contains more than one object, then the
objects are in general relative position: a small per-
turbation in their relative position does not alter the
configuration of the drawing (such as the presence
of junctions, straight lines or parallel lines).

4. The drawing is a projection of object edges (includ-
ing viewpoint dependent edges such as the side of
a cylinder) from a general viewpoint, i.e. a small
perturbation in the viewpoint position does not alter
the configuration of the drawing.

These assumptions exclude certain classes of inter-
esting drawings, such as those involving objects with
smooth edges or non-trihedral vertices. This prelimi-
nary paper presents basic results which we hope will
serve as a foundation for later work on more complex
objects.

Each line L joining two junctions in the drawing can
be assigned

(a) a semantic label from the 6 possible labels+, −, ←
, →, ⇐, ⇒ according to the form of the 3D edge
E projecting into L

m,n m,n m,n m,n

(a)

(b)

Figure 3. (a) The four distinct line labels; (b) cross-sections of the
corresponding 3D edges.

(b) a pair of numerical labels m, n representing the
number of surfaces m lying between the view-
point and E , and the number of surfaces n lying
behind E .

The meaning of the semantic labels +, −, →, ⇒ are
demonstrated by their cross-sections shown in Fig. 3. In
the example cross-sections of Fig. 3(b): m = 3 and n =
2 for the lines labelled ‘+’ and ‘−’; m = 3 and n = 3
for the lines labelled ‘→’ and ‘⇒’. The label ‘+’ means
that the two surfaces meeting at E subtend an angle
greater than π when observed from the viewpoint. The
label ‘−’ means that this angle is less than π .

We say that an edge E is visible if there is no surface
lying betwen E and the viewpoint. An edge which is not
visible is called hidden. A 3D edge E is called convex
(concave) if the two object faces which intersect to form
E subtend an angle less than π (greater than π ) in the
interior of the obejct. If a line L labelled ‘+’ (‘−’) is
the projection of a visible edge E then E is a convex
(concave) edge. Note that this is not necessarily the case
for hidden edges. In fact, the label (+, m, n) represents
a convex edge if m is even and a concave edge if m is
odd. Similarly, the label (−, m, n) represents a concave
edge if m is even and a convex edge if m is odd.

The semantic label → means that the correspond-
ing edge is the intersection of two object faces both
of which project onto the right hand side of the line
as we follow the direction of the arrow. The label →
represents a surface-normal discontinuity, i.e. the inter-
section of two non-tangential object surfaces, whereas
the label⇒ represents a viewpoint-dependent edge (ex-
tremal edge) which is the locus of points at which the
line of sight is tangential to an object surface. Again
the object surface projects onto the right hand side of
the line as we follow the direction of the arrow. For
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Figure 4. (a),(c) Two wireframe drawings of the 3D opaque objects
illustrated in (b),(d), respectively.

example, a sphere projects into a circle labelled ⇒.
Note that, purely for typographical reasons, extremal
edges are labelled by a double-headed arrow in the fig-
ures but by the symbol ⇒ in the text of the paper.

Figures 4(a) and (c) show two wireframe drawings
of objects with holes. Figures 4(b) and (d) are drawings
of the corresponding 3D solid opaque objects in which
only visible edges are shown. Note that the lines AB
and BC in Fig. 4(a) and line DE in Fig. 4(c) all represent
boundaries of holes and it is the hole which lies to the
right of the line as we follow the direction of the arrow.

Figure 5 shows a simple wireframe projection with
a legal labelling of each line segment. According to the
labelling of Fig. 5, we can deduce that the 3D edge CD
lies in front of the 3D edge AB. Note that the line AB in
Fig. 5(b) is labelled ‘−’ even though it is the projection
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0,00,11,0
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0,1
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D

Figure 5. A simple wireframe projection labelled with both seman-
tic and numerical labels.

of a convex 3D edge since its depth m = 1 is odd.
Junctions in a wireframe projection can be classified

as follows. Let J be a junction at which three lines
L1, L2, L3 meet non-tangentially and let E1, E2, E3

be the 3D edges which project into L1, L2, L3. Assume
that the lines are numbered so that the angles between
L1, L2 and between L2, L3 are both less than π . If the
angle between L3, L1 is greater than π , then J is a W
junction, otherwise J is a Y junction. If E1 lies behind
the plane of E2, E3 then J is classified as a W (+) or
Y (+) junction, otherwise a W (−) or Y (−) junction.
When two lines cross they form an X junction. At 2-
tangent and 3-tangent junctions, two or three lines meet
tangentially.

Figure 6 shows a labelled wireframe projection in-
volving curved lines. In this figure, junctions have been
identified by their junction-type (2-tangent, 3-tangent,
W (+), W (−), etc.). Although a labelled wireframe pro-
jection is still ambiguous, since we do not know the
depth of any point on any object surface, the labels
provide valuable local shape information at each edge
and vertex as well as topological information concern-
ing object faces.
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Figure 6. An example of a labelled wireframe projection.
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Figure 7. The six basic vertices formed by the intersection of three
non-tangential surfaces.

3. Necessary and Sufficient Conditions
for Realisability

When three surfaces meet non-tangentially at a point to
form a 3D vertex, their tangents divide space into eight
octants. Each octant may be empty or filled with mat-
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Figure 8. (a) The labelled junctions which can occur in a wireframe projection of vertex B in Fig. 7; (b) a wireframe projection demonstrating
the physical realisability of each the these labellings.

ter. Figure 7 shows the six possible trihedral vertices
thus obtained by this classic technique (Clowes, 1971;
Huffman, 1971). (There is, in fact, a seventh vertex
which is not shown since it is simply a reflected ver-
sion of the vertex C). The viewpoint may be situated
in any of the eight octants, including those filled with
matter. By exhaustion, we obtained the list of all se-
mantically and numerically labelled projections of the
vertices in Fig. 7 from all possible viewpoints. For ex-
ample, the vertex B in Fig. 7 projects into the 8 labelled
junctions of Fig. 8(a). To obtain the numerical labels,
we assume that any number of object surfaces can lie in
front of or behind the vertex. Thus the numbers m, n are
arbitrary non-negative integers. A physical realisation
of each of these 8 labellings is shown in the wireframe
projection of a holed cube shown in Fig. 8(b). The com-
plete catalogue of labelled junctions representing pro-
jections of trihedral vertices is given in Figs. 9 and 10
under the headings W (+), W (−), Y (+), Y (−), X (=),
snowflake.

Even if the drawing contains only a single object, one
edge may pass in front of another without intersecting it
in 3D space. The resulting junction is known as an X (�=)
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Figure 9. Catalogue of labelled W and Y junctions in wireframe projections.

junction (as opposed to an X (=) junction which is the
projection of a vertex at which two edges intersect, such
as vertex C in Fig. 7). An example of an X (�=) junction
is shown in Fig. 6. We call the projection of vertex D in
Fig. 7 a snowflake junction. Note that certain workers
have chosen not to include the vertices which project
into X (=) and snowflake junctions in the list of possible
vertices.

The distinction between W (+) and W (−) junctions
and between Y (+) and Y (−) junctions was first made
by Parodi and Torre (1994). We can classify, for exam-
ple, a W junction as W (+) or W (−) if we have informa-

tion about the relative directions of the corresponding
3D edges, obtained from vanishing points. If such in-
formation is not available, then the set of labellings for
a W junction is simply the union of the sets of labellings
for W (+) and W (−) junctions. Purely for compactness
of presentation, we have omitted from the list of legal
labellings for Y, X and snowflake junctions those la-
bellings which can be obtained by a simple rotation
of those given in Figs. 9 and 10. After incorporating
these rotated versions, a Y (+) junction, for example,
has exactly the same number of labellings as a W (+)
junction.
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Figure 10. Catalogue of labelled X and snowflake junctions in wireframe projections.

Finally, curved surfaces give rise to viewpoint-
dependent junctions involving projections of extremal
edges. Examples of the resulting types of junction,
known as 2-tangent and 3-tangent, are illustrated in
Fig. 6. The legal labellings of 2-tangent and 3-tangent
junctions are listed in Fig. 11. At a 3-tangent junction
J , two of the lines meeting at the junction form a C3

curve L which passes through J , whereas the third line
L ′ terminates at J and exhibits a discontinuity of cur-
vature with L . The line L ′ is shown as a horizontal
straight line in Fig. 11, but may be curved (Cooper,
1993; Malik, 1987). Again purely for compactness of
presentation, we have also omitted a reflected version
of the 3-tangent junction in which the line L ′ goes off
to the right instead of to the left.

In the catalogue of labelled junctions in Figs. 9–
11, the numbers m and n are non-negative in-

tegers. A further unary constraint exists on each
line label (s, m, n). This unary constraint, which
follows directly from the reasonable assumption
that the viewpoint lies outside all objects and that
no object is of infinite extent, can be stated as
follows:

Parity constraint :

if s = ‘ + ’ or ‘ − ’ then m + n is odd;

if s = ‘ → ’ or ‘ ⇒ ’ then m + n is even.

If we assume that the wireframe projection is a pro-
jection of the whole 3D scene, in the sense that all
3D edges and surfaces are completely visible and not
clipped by the picture boundary, then we have the fol-
lowing stronger constraint.
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Figure 11. Catalogue of labelled 2-tangent and 3-tangent junctions in wireframe projections.

Outer boundary constraint:

all lines on the outer boundary of the wireframe
projection are labelled (↑, 0, 0) or (⇑, 0, 0), since they
correspond to occluding edges of objects.

As an example of the strength of these constraints,
consider the wireframe projection in Fig. 12. Its bound-
ary has been labelled in accordance with the Outer
Boundary Constraint. From the list of labellings for
W junctions, we see that each of the lines AD, BE,
CF must have label (+, 0, 1) or (−, 1, 0), and hence
two of these lines must have the same label. Without
loss of generality, suppose that lines AD and BE are
both labelled (+, 0, 1). But then the labelling of junc-
tion X is illegal according to the catalogue of Fig. 10.
Similarly, each of the wireframe projections in Fig. 1

A B

C

DE

F

0,1 0,1
X

0,0

0,0

0,0

0,0

0,0

0,0

Figure 12. An example of an impossible wireframe projection.

are physically impossible, since none of them have a
semantic and numerical labelling satisfying the above
constraints.

There is also another constraint which is necessary
when a wireframe projection can be decomposed into
several connected components. To state this new con-
straint, we require the following definition.

Definition 3.1. In a wireframe projection (considered
as a planar graph G), let R be a connected region (i.e.
face of G) containing holes H1, . . . , Hg (i.e. connected
components of G entirely surrounded by R). The fron-
tier of R is defined as the list of line segments forming
the outer perimeter of R (visited in clockwise order)
together with the lists of line segments forming the
perimeters of H1, . . . , Hg (each visited in anticlock-
wise order).

Region constraint:

if line segments L1, L2 form part of the frontier of
the same connected region R, then fR(L1) = fR(L2),
where fR(L) is the number of surfaces projecting into
the region to the right of the line L and is given by:

fR(L) = m + n + 1 if L is labelled (+, m, n)
or (−, m, n);

fR(L) = m + n + 2 if L is labelled (↑, m, n)
or (⇑, m, n);

fR(L) = m + n if L is labelled (↓, m, n)
or (⇓, m, n).
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Figure 13. An impossible wireframe projection. For example, the
labelling shown violates the region constraint on lines L1, L2 of
region R.

Note that the region constraint is redundant if L1, L2

belong to the same connected component of the wire-
frame projection. This is because, by construction of
our catalogue from projections of physically realisable
vertices, the region constraint holds for lines L1, L2

meeting at a junction (and forming part of the frontier
of the same region) and hence, by induction, for such
lines L1, L2 joined by a sequence of junctions. Nev-
ertheless, the region constraint is essential. Figure 13
shows an example of an impossible wireframe projec-
tion whose impossibility would not be detected if the
region constraint were not applied.

Note that it can easily be shown that the parity con-
straint is redundant if the outer boundary and the region
constraints are both applied.

Definition 3.2. A labelling of a wireframe projection
is legal if each junction labelling occurs in the cata-
logue of Figs. 9–11 and the outer-boundary and region
constraints are also satisfied.

Theorem 3.3. A line drawing of curved objects is
realisable as the wireframe projection of a 3D scene
satisfying the conditions 1, 2, 3, 4 (given in Section 2)
if and only if it has a legal labelling.

Proof: The catalogue was constructed by listing all
types of 3D vertices allowed by conditions 1, 2, 3, 4 and
studying all possible projections from different view-
points. It follows immediately that each junction in a
wireframe projection must have a labelling in the cata-
logue. This shows that the catalogue represents a neces-
sary condition for realisability. Similarly, the necessity

of the outer-boundary and region constraints have also
been shown above.

To show that the existence of a legal labelling is
a sufficient condition for realisability, note firstly that
all labellings have been included in the catalogue be-
cause they are projections of allowed vertices. There-
fore, taken separately, all labelled junctions are realis-
able as projections of 3D vertices satisfying conditions
1, 2, 3, 4. It remains to show that we can join these
vertices together to form a 3D object.

Consider the drawing as a partition of the plane into
non-intersecting regions. For each region A, calculate
n the number of surfaces which project into A. This
number is well-defined by the region constraint. Lay
n rubber sheets of the same 2D shape as A on top of
each other and on the region A in the drawing. For
each line segment L in the drawing, create a convex,
concave, occluding or extremal edge according to the
semantic label s of L at the depth given by the numerical
label m, n of L as follows: if s is ‘+’ or ‘−’ then this
means creating a convexity or concavity in the rubber
sheet which lies at depth m + 1; if s is ‘↑’ or ‘⇑’ then
this means joining the rubber sheets lying at depths
m + 1 and m + 2 in the region to the right of L to
create either a surface-normal discontinuity edge or an
extremal edge. The rubber sheets partition 3D space
into non-overlapping subsets. It only remains to specify
which subsets should be filled with matter and which
left empty. For any region R of the drawing, there will
be matter between sheets at depth m = 2i and m =
2i + 1 (for all i). The parity constraint ensures that
the resulting 3D scene constructed from a wireframe
projection will be of finite depth.

Theorem 3.3 not only generalises Sugihara’s ground-
breaking work (Sugihara, 1978) to curved objects, but
we have also considerably simplified the expression
of his original constraints. As an example of the use
of Theorem 3.3, consider the wireframe projection of
Fig. 14(a) (adapted from an example given by Ernst
(1986)). The given labelling is legal and hence this is
a physically realisable wireframe projection. The cor-
responding opaque object is shown in Fig. 14(b) and
a method of constructing it from a flexible tube with
triangular cross-section is shown in Fig. 14(c).

4. All Wireframes are Ambiguous

It is well-known that wireframe projections can be am-
biguous (Markowsky and Wesley, 1980; Mortenson,
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Figure 14. (a) A legally labelled wireframe projection, (b) the corresponding opaque object, (c) how to construct the object.

1997). In this section we prove a negative result con-
cerning the ubiquity of ambiguity, which will help
us to put into perspective the positive results of later
sections.

Theorem 4.1 (Depth Reversal Theorem). Consider a
legal labelling of a wireframe projection P. If we have
no depth information (such as the identification of a W
junction as a W (+) or a W (−) junction), then another
legal labelling of P can be obtained by the following
depth-reversal operation: (1) change all ‘+’ labels to
‘−’ and vice-versa, (2) change all numerical labels
m, n to n, m.

Proof: The proof is trivial by exhaustion over all
labellings in the catalogue. For example, the first la-
belling for the W (+) junction in Fig. 9 is transformed
into the first labelling for the W (−) junction by the
above operation. It is trivial to check that the outer-
boundary and region constraints cannot be invalidated
by the depth-reversal operation.

When the object represented by the wireframe pro-
jection is a cube, then this result corresponds to the
famous Necker cube ambiguity. Interestingly, no junc-
tion labelling in our catalogue can be transformed into
itself by the depth-reversal operation. This leads to the
following result.

Lemma 4.2. The only physically possible wireframe
projections which are not subject to a depth-reversal
ambiguity are those involving no junctions and in which
all lines are labelled ‘→’ or ‘⇒’.

Theorem 4.3. All physically possible wireframe pro-
jections are ambiguous.

Proof: Lemma 4.2 tells us that the only case to con-
sider is when the wireframe projection contains no
junctions. But in this case any curve C may be labelled
‘→’ or ‘⇒’. For example, a circle may be the projec-
tion of a sphere or a disk-shaped object.

Imagine a drawing consisting of n mutually inter-
secting circles. There are at least 2nn! interpretations
of the drawing as a wireframe projection of a 3D scene,
since each circle could be the projection of either a
sphere or a disk and there are n! possible depth order-
ings of the n objects.

There is another form of systematic ambiguity in
wireframe projections which we call matter/space am-
biguity. This occurs when it cannot be determined
whether a subset of 3D space bounded by a set of sur-
faces represents an object or a hole. For example, in a
wireframe projection consisting of just two concentric
circles, the inner circle could represent a sphere in front
of or behind another larger sphere, or could represent
a hole inside an outer sphere.
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5. Identifying Faces

An essential part of the interpretation of a wireframe
projection is the identification of object faces. First of
all we require a formal definition of a face.

From our assumptions on object shape in Section 2,
a 3D edge E is the intersection of two 3D surfaces with
distinct surface normals at every point of E . Each edge
has a direction. As we walk along E in this direction
and on the exterior of the object, let SL (E) represent
the surface on our left and SR(E) the surface on our
right.

Definition 5.1. Let B = (E1, . . . , Er ) be a circuit of
3D edges such that, for i = 1, . . . , r, Vi is the end-
point of Ei and the start-point of Ei+1 (where Er+1 is
understood to mean E1). Then B is a 3D face-boundary
if, for i = 1, . . . , r, Ei+1 is the first edge leaving Vi

which lies to the right of Ei on SR(Ei ).

By this definition, SR(Ei ) = SR(Ei+1) at each Vi

and hence B is a boundary of the face which lies to its
right.

Definition 5.2. A face of a 3D object is a closed con-
nected C3 surface patch P bounded by non-intersecting
3D face-boundaries B1, . . . , Bh for some h ≥ 0.

If the face is planar, then one of B1, . . . , Bh is the
outer boundary and the others are boundaries of holes.
For curved surfaces, no such distinction can be made.
For example, the curved surface of a cylinder has two
circular 3D face-boundaries, neither of which is the
outer boundary. A sphere has a single face with no 3D
face-boundary (i.e. h = 0 in Definition 5.2). Note that
a face may touch itself at a point (as does surface S1
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Figure 15. S1, S2, S3, S4 are examples of faces.

in Fig. 15(a)) or along an edge (as does surface S4 in
Fig. 15(b)). According to Definition 5.2, the surfaces
S2 and S3 of Fig. 15(a) cannot be merged to constitute
a single face. Furthermore, the 3D face-boundary of S1

is necessarily (a, b, c, d, e, f, g, h, i, j); it is not possible
to interpret (e, f, g, h) as a hole boundary and (a, b, c,
d, i, j) as an outer boundary.

Definition 5.3. A face-circuit in a wireframe projec-
tion is a circuit of line segments which are the projection
of the 3D face-boundary of an object face.

The identification of face-circuits is a major step
in converting a wireframe model into a surface-based
model such as a B rep (Lipson and Shpitalni, 1996;
Shpitalni and Lipson, 1996; Vosniakos, 1997, 1998).
In fact, we will show that face-circuits can be unam-
biguously deduced from the labelling of a wireframe
projection.

Each labelled junction in Figs. 9–11 is the projection
of a 3D vertex. (In fact, each labelled junction corre-
sponds to two distinct vertices, due to the matter/space
ambiguity, but such ambiguity does not affect face-
circuits.) By reconstructing a 3D vertex projecting into
each labelled junction, we deduced the face-circuit in-
formation given in Figs. 16–18. In these figures, thick
lines represent lines present in the wireframe projec-
tion, whereas thin lines represent fragments of face-
circuits. The face-circuit line drawn on the left (right)
of a line L labelled ‘+’ or ‘−’ corresponds to the face
projecting into the region to the left (right) of L . For
a line labelled ‘↑’, the two face-circuit lines are both
drawn to the right of L: the face-circuit line which is
nearer to (farther from) L corresponds to the face which
is nearer to (farther from) the viewpoint.

For brevity of presentation, X (�=) junctions are not
given in Fig. 17. The presence of a X (�=) junction on
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W(+)

W(-)

Y(+) Y(-)

 

Figure 16. Catalogue of W and Y junctions with face-circuit fragments.

X(=)

snowflake

Figure 17. Catalogue of X and snowflake junctions with face-circuit fragments.

3-tangent

Figure 18. Catalogue of 3-tangent junctions with face-circuit fragments.

a line L has no effect on the face-circuit lines of L .
Note that since extremal lines (i.e. lines labelled ⇑)
are not projections of 3D edges, they do not belong to
any face-circuit. This explains why we don’t need to

include 2-tangent junctions in Fig. 18. For clarity of
presentation, the numerical labels are not shown on the
lines in Figs. 16–18 but can be read off directly from
the corresponding labelled junction in Figs. 9–11.
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Theorem 5.4. Given a legal labelling of a wireframe
projection, we can uniquely determine the face-circuits
of the corresponding 3D scene in linear time.

Proof: Denote the wireframe projection by P . Each
junction in a legal labelling of P uniquely determines
face-circuit fragments, as illustrated by Figs. 16–18.
It is then possible to determine complete face-circuits
by concatenating these fragments. There is no possible
ambiguity in the face-circuits in the construction. In the
case of curved objects, Theorem 3.3 guarantees that a
3D scene exists which projects into P .

Figure 19 shows an example of the determination of
face-circuits of a wireframe projection. The wireframe

(a)

(b)

Figure 19. (a) A legally labelled wireframe projection; (b) its face-
circuits derived from the catalogue of Figs. 16–18.

projection in Fig. 19(a) has only two legal labellings.
One legal labelling is shown in Fig. 19(a) and the other
is its depth-reversal. For clarity of presentation, the nu-
merical labels have been omitted (although they are
essential in eliminating certain physically impossible
labellings). Using the face-circuit constraints given in
Figs. 16–18, we easily obtain the face-circuits shown
in Fig. 19(b).

As another example, consider again the wireframe
projection of Fig. 14(a). From the legal labelling given
in the figure, the catalogue of Fig. 18 allows us to de-
duce that the corresponding object has just two 3D face-
boundaries. In fact, as can be seen in Fig. 14(c), this
object has a single face and is a version of the Möbius
strip with a triangular cross-section.

Our approach consists in finding all possible seman-
tic and numerical labellings of a wireframe projection
(of which there may be an exponential number) and
then determining the face-circuits for each such legal
labelling. This can be compared with the traditional
face-based approach (Markowsky and Wesley, 1980;
Shpitalni and Lipson, 1996; Vosniakos, 1997, 1998).
For example, Shpitalni and Lipson (1996) determine a
set of possible face-circuits and then find maximal con-
sistent sets of face-circuits. Their algorithm has worst-
case time complexity which is exponential in the num-
ber of putative face-circuits, which is itself a poten-
tially exponential function of the size of the drawing.
We have thus reduced a doubly exponential complexity
to a simple exponential complexity.

However, Definition 5.2 tells us that the projection
of a face is, in fact, a set of face-circuits. In order
to identify projections of faces, rather than just face-
circuits, we use the same construction as in the proof of
Theorem 3.3. Suppose we are given a legally labelled
wireframe projection with regions R1, . . . , Rt . For each
region Ri , we can easily determine the total number of
faces f (Ri ) projecting into Ri . We can then, for each
Ri , create f(Ri ) copies Ri,1, Ri,2, . . . of Ri which we
call patches. To group together patches belonging to
the same face it suffices to apply the following rule un-
til convergence: patches Ri,u , R j,v are merged when-
ever (1) Ri , R j are adjacent regions separated by a
line L with numerical label (m, n) and u = v ≤ m
or f (Ri ) − u = f (R j ) − v < n (i.e. Ri,u, R j,v corre-
spond to the same face which either passes in front of
or behind the 3D edge projecting into L), or (2) i = j ,
u = m + 1, v = m + 2 where the region Ri has a line
L with label (⇒, m, n) on its boundary (with Ri to the
right of L as we follow the direction of the ⇒ arrow).
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Figure 20. A generic W/Y junction pair (J1, J2). Note that lines
1–5 may be curved and the angles α, β, γ , δ may also be acute or
reflex.

Each patch Ri,u is a subset of a face (the projection of a
face into region Ri ). The set of patches thus represents
an oversegmentation of the 3D object surfaces. Two
adjacent patches seperated by a line L can be merged
if L is the projection of a 3D edge lying on neither of
the patches (case (1) above). Two patches can also be
merged if they correspond to the same 3D face which
folds over itself to form an extremal edge (case (2)).

6. Common-Surface Constraints

Instead of calculating face-circuits from legal la-
bellings, it is sometimes possible to deduce face-circuit
information directly without exhausting over all legal
labellings. We will show in this section that face-circuit
fragments can be directly determined given informa-
tion concerning pairs of adjacent junctions. This infor-
mation may be obtained, for example, from vanishing
points or by applying local consistency operations to
the labelling constraints of Section 3.

Remember that W and Y junctions can be classified
as + or − depending on the relative 3D orientations of
the edges which meet at the vertex which projects into

P P
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1,0

0,1
1,1

1,0
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0,0
0,00,0

0,0

(a) (b)

Figure 21. (a) A labelled wireframe projection involving a +/− label transition at P; (b) a view of the corresponding opaque object.

the junction J. Knowledge of the vanishing points of
the three lines which meet at J is sufficient to classify
J as + or − (Parodi and Torre, 1994; Cooper, 2000).
The following theorem tells us that knowing whether
two W/Y junctions joined by a line are classified as
the same or opposite sign allows us to determine two
distinct triples of consecutive lines in face-circuits.

Consider a pair of junctions (J1, J2) joined by a line,
where each of J1, J2 is either a W or a Y , as illustrated
in Fig. 20. We call this a W/Y junction pair. Each of the
lines 1-5 may be straight or curved and there may be any
number of X ( �=) or 3-tangent junctions on line 3 (but
no X (=) junctions). Let nrefl(J1, J2) be the number of
the angles α, β, γ, δ which are reflex (i.e. greater than
π ); let n3t (J1, J2) be the number of 3-tangent junctions
lying on line 3; let n+(J1, J2) be the number of the
junctions J1, J2 which are + (i.e. W (+) or Y (+)).

Theorem 6.1 (Common-surface constraint). Let
(J1, J2) be a W /Y junction pair in a wireframe pro-
jection. If p = (nrefl(J1, J2) + n3t (J1, J2)+n+(J1, J2))
mod 2, then both (1, 3, 5 − p) and (2, 3, 4 + p) are
triples of consecutive lines in a face-circuit, where line-
numbers are as in Fig. 20.

Proof: The result follows by simple exhaustion over
all legal labellings of junction-pairs followed by recon-
struction of the corresponding surfaces as in the proof
of Theorem 5.4.

It is important to note that, by our assumption that ob-
ject edges are surface-normal discontinuities, we have
implicitly disallowed a concave/convex transition on
an edge. An example of such a transition is the point
P in Fig. 21. In fact, the faces which intersect to form
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1 2

3 4 5
A B

Figure 22. The coplanarity of lines 1, 3, 4 can be deduced despite
the fact that they do not lie on the same face.

the edge are tangential at P (Cooper, 1997). Theorem
6.1 is no longer valid if +/− transitions can occur on
line 3 of Fig. 20.

7. Coplanarity Constraints

The presence of straight lines in a wireframe projec-
tion can provide information about the 3D positions
of object vertices, provided we make the following as-
sumption about object shape.

Straight-edge formation assumption: any straight
object edge is formed by the intersection of two lo-
cally planar surfaces.

This assumption was first stated in Cooper (2000)
in the context of the interpretation of line drawings of
opaque objects. It is clearly not always valid in man-
made objects, but it allows us to extend techniques de-
veloped for polyhedral objects to a large class of curved
objects. Under this assumption, neither 3-tangent junc-
tions nor +/− transitions (as in Fig. 21) can occur on
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Figure 23. (a) a wireframe projection; (b) a part of a legal labelling; (c) the visible lines corresponding to this labelling.

straight lines. Most importantly, together with the gen-
eral viewpoint assumption that we have already made,
this new assumption means that straight lines in a wire-
frame projection can provide coplanarity constraints on
edges. For example, the straight-edge formation con-
straint implies that if line-segments L1, L2, L3 are con-
secutive line-segments in a face-circuit and L1, L2, L3

are straight lines, then the 3D edges E1, E2, E3 pro-
jecting into L1, L2, L3 are coplanar. (Even if L1 and
L3 are curved, we can still obtain a constraint, but this
time involving the tangents to E1 and E3 at the vertices
where they meet E2. See Cooper (2000) for details.)

Thus Theorem 6.1 immediately provides coplanarity
constraints provided that line 3 in Fig. 20 is a straight
line. Note however, that we can say more: the copla-
narity of a set of 3D edges may be detected even when
the edges do not lie on the same face-circuit. Figure 22
shows an example. In this wireframe projection, know-
ing that A and B are both W (+) junctions allows us to
deduce that lines 1,3,4 are coplanar (as are lines 2,3,5).
By exhausting over all cases, we discovered that the
presence of any number of X (=), X ( �=) or snowflake
junctions on line 3 in the W /Y junction-pair of Fig. 20
does not invalidate the coplanarity constraint, which
we state formally as follows.

Theorem 7.1 (Coplanarity constraint). Suppose that
lines 1-5 of the W /Y junction-pair (J1, J2) in Fig. 20
are straight lines and there are any number of X or
snowflake junctions on line 3. If p = (nrefl(J1, J2) +
n+(J1, J2)) mod 2, then both (1, 3, 5-p) and (2, 3, 4 +
p) are triples of coplanar lines.

As an example of the strength of the coplanarity
constraint, consider the wireframe projection shown
in Fig. 23(a). The wireframe projection has two legal
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labellings, one of which is the depth reversal of the
other. The bottom left corner of one of these legal la-
bellings is illustrated in Fig. 23(b). The visible lines of
this labelling corresponds to the famous Penrose trian-
gle (Penrose and Penrose, 1958) shown in Fig. 23(c).
The physical impossibility of the wireframe projection
follows from the coplanarity constraint. In both legal
labellings, junction pairs B, C and C, D are both of
opposite sign. It follows from Theorem 7.1 that both
A, B, C, D and B, C, D, E are projections of sets of
coplanar points. Hence A, B, C, D, E are projections
of coplanar points. By symmetry, E, D, F, G, H are
projections of coplanar points, as are H, G, I, B, A.
These three planes should then meet at a point in 3D
space, which implies that the lines AB, E D and H G,
when extended, should meet at a point in the draw-
ing. Since this is clearly not the case, the wireframe
projection is physically impossible.

To obtain necessary and sufficient conditions for the
realisability of a wireframe projection of curved ob-
jects involving straight lines, we require not only the
coplanarity constraints deduced from Theorem 7.1, but
also inequality constraints expressing the fact that the
nearer line passes in front of the distant line at each
X ( �=) junction and that the two faces meeting at each
concave (convex) edge subtend an angle less (greater)
than π (Sugihara, 1986; Cooper, 2000). This leads to
a linear programming problem P . However, a realis-
able wireframe projection may give rise to a problem P
which has no solution due to rounding errors or small
user errors in the positions of junctions. Different so-
lutions have been proposed to overcome this problem
of superstrictness (Sugihara, 1986; Ros and Thomas,
2002; Cooper, 2000). It should be noted that testing
the realisability of a wireframe projection still involves
solving a linear programming problem for each of a
possibly exponential number of legal labellings.

8. Unambiguous Wireframes

Although all physically realisable wireframe projec-
tions are ambiguous by Theorem 4.3, we show in this
section that the presence of extra information, together
with some further restrictions on the class of 3D scenes,
can eliminate all ambiguity either in the determination
of the face-circuits or in the complete interpretation of
the wireframe.

Definition 8.1. A vertex V is simple if none of the
edges which meet at V continues through V .

Thus vertices which project into X (=) or snowflake
junctions are not simple.

Definition 8.2. A wireframe projection is simple poly-
hedral if it is a projection of a collection of polyhedral
objects with simple vertices satisfying conditions 1, 2,
3, 4 (of Section 2).

Theorem 8.3. Let P be a simple polyhedral wire-
frame projection. If for each W /Y junction pair
(J1, J2), we know whether J1, J2 are of the same or
of opposite signs, then the face-circuits of P can be
unambiguously identified in linear time.

Proof: Since P is simple polyhedral, it only contains
junctions of type W, Y, X (�=). X (�=) junctions have no
effect on face-circuits. The common-surface constraint
of Theorem 6.1. allows us to construct without ambigu-
ity the face-circuits of P . This can clearly be acheived
in linear time, by extending face-circuit fragments until
a closed circuit is obtained and restarting this procedure
until each line is has been placed in two distinct face-
circuits.

Corollary 8.4. Let P be a simple polyhedral wire-
frame projection. If for each line L in P, we know the
position of the vanishing point of L, then the face-
circuits of P can be unambiguously identified in linear
time.

Proof: By the assumption of a polyhedral scene, all
edges are straight lines. The position of the vanishing
point of each line L in P allows us to determine whether
each W /Y vertex J of P is + or − (Parodi and Torre,
1994; Cooper, 2000). Thus, by Theorem 8.3, the face-
circuits of P can be determined in linear time.

Sugihara (1978, 1986) and Alevizos (1991) both
study a specific type of wireframe projection in which
the user specifies, for each line L , whether L is of even
or odd depth. In other words, if (m, n) represents the
numerical label of L , the user must specify whether m
is even or odd. We say that such a wireframe projection
has depth-parity information.

Consider a W /Y junction pair as illustrated in Fig. 20.
Recall that nrefl(J1, J2) is the number of the angles
α, β, γ, δ in Fig. 20 which are greater than π . We say
that a W /Y junction pair has even (odd) angle-parity
if nrefl(J1, J2) is even (odd). Given the depth-parity of
each of the lines 1, 2, 4, 5 in a W /Y junction pair, we
can also clearly determine the parity of the sum s of
the depths of the lines 1, 2, 4, 5; we say that a W /Y
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junction pair has even (odd) depth-parity if s is even
(odd). Having established the necessary notation, we
can now state the following lemma.

Lemma 8.5. Let (J1, J2) be a W /Y junction pair
in a wireframe projection formed under assumptions
1, 2, 3, 4 of Section 2. If the angle-parity of (J1,J2) is
the same as its depth-parity, then J1, J2 are of the same
sign; otherwise J1, J2 are of opposite sign.

Proof: The proof is simple, although tedious, by ex-
haustion over all possible labellings of all possible con-
figurations of W /Y junction pairs.

Thus, depth-parity information for each line al-
lows us to deduce for each W /Y junction pair
(J1, J2), whether J1, J2 are of the same or of oppo-
site signs. Theorem 8.3 then provides us with a simple
proof of the following result first stated by Alevizos
(1991).

Corollary 8.6. Let P be a simple polyhedral wire-
frame projection with depth-parity information. Then
the face-circuits of P can be unambiguously identified
in linear time.

Under perspective projection, the vanishing points of
all lines provide sufficient information to identify the
sign of W /Y junctions. Under orthographic projection,
on the other hand, the sign of W /Y junctions is inher-
ently ambiguous, as illustrated by the depth-reversal
phenomenon (see Section 4) in which all W /Y junc-
tions change sign. However, we can use the fact that,
under orthographic projection, if two lines L1, L2 in the
wireframe projection are parallel then, by the general
viewpoint assumption, L1, L2 are projections of par-
allel lines in 3D. If, in the generic W /Y junction pair
shown in Fig. 20, all lines are straight lines and lines
i and J are parallel (where i ∈ {1, 2} and j ∈ {4, 5}),
then it follows that lines i, 3, j are coplanar and hence,
by the straight-edge formation assumption, that i, 3, j
is a face-circuit fragment.

Corollary 8.7. Let P be a simple polyhedral wire-
frame projection formed by orthographic projection. If
all lines of P are parallel to one of only three directions,
then the face-circuits of P can be uniquely determined
in linear time.

Proof: Since all lines of P are parallel to one of only
three directions, at each W /Y junction pair there must

be two pairs of parallel lines (either (1, 4), (2, 5) or (1, 5),
(2, 4) where the numbers refer to the lines in Fig. 20).
From the discussion above, at each W /Y junction pair,
we can thus determine two face-circuit fragments (ei-
ther (1, 3, 4), (2, 3, 5) or (1, 3, 5), (2, 3, 4)). The result
then follows by the same argument as in the proof of
Theorem 8.3.

Theorem 8.8. Let P be a simple polyhedral wire-
frame projection. If, for each vertex V in P, we know
the 3D coordinates of the point which projects into V
(i.e. we have a 3D wireframe model), then the semantic
and numerical labelling of P is unique. Furthermore,
the physical realisability of P can be checked and the
semantic and numerical labelling of P can be found in
quadratic time.

Proof: From the 3D positions of vertices we can de-
termine for each W /Y junction J in P whether J is +
or −. Theorem 8.3 then tells us that we can uniquely de-
termine the face-circuits of P . Since we know the 3D
coordinates of all vertices, we can then easily deter-
mine the 3D face-boundaries projecting into the face-
circuits of P . In order to identify faces, it only remains
to determine for each 3D face-boundary B, whether
B is the outer boundary of a face or the boundary of a
hole. Consider only those 3D face-boundaries B1,. . . Br

which lie in the same plane Q B as B. Let HB be a half-
line from a point on B to infinity within the plane Q B

such that HB does not intersect any object vertex. Then
B is an outer boundary (hole boundary) if the num-
ber of intersections of HB with the 3D face-boundaries
B1, . . . Br is even (odd). (Note that here we do not need
to consider any intersections of HB with faces which
are not coplanar with B, which renders this operation
much simpler than when it is performed as a means of
identifying face-circuits (Jain, 1999; Markowsky and
Wesley, 1980)).

For each line L in P , it is then trivial to determine
the semantic label of L from the resulting set of faces.
Furthermore, by tracing a ray R from the viewpoint
through an arbitrary point on the 3D edge EL which
projects into L , and counting the number of faces which
R intersects in front of and behind EL , allows us to
deduce the numerical label (m, n) of L .

To check the physical realisability of P we only need
to determine for each pair of faces F1, F2, whether
F1, F2 intersect. If they do, then this intersection must
correspond to an edge on the 3D face-boundaries of
both F1 and F2.
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Figure 24. An example of an impossible 3D wireframe model of a
polyhedral object.

As an example, Fig. 24 shows a physically impossi-
ble 3D wireframe model. It is illegal because the two
faces ABCD and EFGH intersect along an edge whose
projection is not present in the model. Note, on the other
hand, that this wireframe model is physically realisable
if the surface ABCD may be curved.

9. Discussion

It is worthwhile studying wireframe projections in
which the assumptions of the uniqueness theorems of

Figure 25. Examples of ambiguous wireframe projections.

Section 8 have been relaxed, in order to see which kinds
of ambiguity can occur. The simple polyhedral wire-
frame projection to the left of Fig. 25(a) is a perspec-
tive projection of a pair of cubes. Purely for illustrative
purposes, certain lines have been drawn thicker than
others, but no such distinction is actually present in
the wireframe projection. We assume that the position
of the three vanishing points (not shown in the fig-
ure) is known. By Corollary 8.4, all face circuits can
be uniquely determined. However, we cannot deter-
mine whether one cube lies in front of, behind or inside
the other. Thus the numerical labelling of lines is not
unique. Furthermore, neither the semantic labelling nor
the faces are unique, since if one cube lies inside the
other then the bottom of the inner cube may be a face
or a hole (as illustrated to the right of Fig. 25(a).

Under orthographic projection, the face-circuits of
the wireframe projection shown to the left of Fig. 25(b)
can be uniquely determined (by Corollary 8.7) provided
X (=) junctions cannot occur. This is despite depth-
reversal ambiguity as well as relative depth ambiguity
between the two objects. However, if X (=) junctions
may occur, then the wireframe projection may be inter-
preted as either of the two distinct cross-shaped objects
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(formed by sticking two rectangular objects together)
shown to the right of Fig. 25(b). These two interpreta-
tions, as well as a third interpretation as two separate
objects, all give rise to distinct sets of face-circuits.

Finally, the wireframe projection shown on the left
of Fig. 25(c) is a classic example (Markowsky and
Wesley, 1980; Mortenson, 1997) of an ambiguous 3D
wireframe model with non-trihedral vertices. Two pos-
sible interpretations are shown to the right of Fig. 25(c).
These interpretations clearly do not have the same face-
circuits.

The main source of ambiguity in wireframe projec-
tions remains the missing depth dimension. Different
heuristics have been proposed to choose among differ-
ent interpretations of a wireframe projection, favour-
ing commonly occurring features of man-made objects
such as planarity, symmetry, orthogonality, equality of
angles or lengths (Marill, 1991; Leclerc and Fischler,
1992; Lipson and Shpitalni, 1996). Leclerc and Fischler
(1992) state an interesting condition for evaluating the
psychological plausibility of a reconstructed object O ,
namely that the same object O be produced by the re-
covery algorithm from a wireframe projection of O
from a different viewpoint.

10. Conclusion

A wireframe projection provides a convenient means
of representing a 3D object from a single view. How-
ever, it is well-known that, even given complete depth
information about lines, a wireframe model of a poly-
hedron is ambiguous. We have shown, however, that
a 3D wireframe model of a polyhedron with simple
trihedral vertices is unambiguous.

When a wireframe projection is human-entered, it is
important to test its physical realisability. In the case of
curved objects, we have given necessary and sufficient
conditions for the physical realisability of a wireframe
projection. These conditions are based on a novel la-
belling scheme involving the number of surfaces in
front of and the number of surfaces behind each edge.
When the wireframe projection contains linear features
this leads to further constraints. Each straight line gives
rise to a coplanarity constraint between object vertices.

Further research is necessary to extend the cata-
logue of labelled junctions to non-trihedral vertices
(Varley and Martin, 2001), vertices at which surfaces
or edges meet tangentially (Cooper, 1997) and non-
manifold objects. Another possible extension of the
labelling scheme would be to allow extra lines rep-

resenting discontinuities of surface curvature, as has
already been done for line drawings of opaque objects
(Cooper, 1993, 1997).
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