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What this tutorial i1s about

e In focus
— the tableaux method
— ... for logics with possible worlds semantics
— ... and combinations thereof
— ... as a computerized proof system (LOTREC)

e not in focus:
— tableaus
— proof theory, sequent calculi (cf. course on LDS)
— completeness proofs
— efficiency issues



Overview

possible worlds semantics: quickstart
tableaux systems: basic ideas
tableaux systems: basic definitions
tableaux for simple modal logics
tableaux for transitive modal logics
tableaux for intuitionistic logic
tableaux for other nonclassical logics

tableaux for modal logics with transitive closure and
other modal and description logics

tableaux for 1st order logic
some implemented tableaux theorem provers



Possible worlds

e possible world =»
valuation of classical
logic

w |- P iff

V,(P) =1, for P in Atoms

w||- ACB iff
(W ||- A and w ||- B)



Possible worlds models

e possible worlds model
= labeled graph
= transition system

* node = possible world / \

— valuation of classical logic

— not every valuation appears /
(some logically possible \
worlds are not actually
possible)

~ V,,=V, does not imply w = u

* link = accessibility relation R



Possible worlds models:
accessibility relations

temporal
Rwu iff uis in the future of w

alethic
Rwu iff uis possible, given the actual world w
epistemic
Rwu iff uis possible for agent i, given the actual world w
deontic
Rwu iff uis an ideal version of w
dynamic
R,wu iff uis a possible result of the execution of program/action a in w

comparative (preferential, ...)
Rwu iff wis smaller than u
R,wu iff wis smaller than u, given v

reading of R = properties of R



Possible worlds models:
properties of R

 monomodal e multimodal
— serial: forall w exists u Rwu — Ry included in R,
— reflexive - R, = R,UR,
— transitive - R,=(R)?
— Euclidian (transitive closure)
— confluent (Church-Rosser) = Ry =(Ry)*
_ dense (transitive closure)

- R,°R, = R,°R,

— well-founded (not FO- — Church-Rosser
definable!) - ..



Language:
modal operators

express intensional concepts (belief, time,
action, obligation, ...)

non truth functional

schema: op(ay,...,a,), where op Is the name of
the operator, and a; some argument

generic form:

— [JA = Ais necessary (true in all possible worlds)
— <>A = Ais possible

In general: [[A same as ~<>~A

— except in substructural logics (intuitionistic, ...)



Language:
modal operators

temporal
— [JA = henceforth A (true in all future time points)
— <>A =eventually A
deontic
— [JA = Ais obligatory (true in all ideal worlds)
— <>A = Als permitted (~<>A = As forbidden)
epistemic
— [JA =iDbelieves A (true in all worlds possible for i)
- <A = .
dynamic
— [a]JA = Als true after (every possible way of) executing a
— <a>A =
conditional
— A=>B = ifAthenB
proof of A can be transformed into proof of B (intuitionistic)
if A was true then B would be true (counterfactual)



Interpreting the language:
truth conditions

classical connectives

w |- P iff V,(P)=1, for P in Atoms

w ||- ACB iff (w ||- Aand w ||- B)
Interpretation of non-classical connectives
— via accessiblility relation R
schema:

w ||- op(a,,...,a,) iff Cond(op,a,,...,a,,w,R)

the basic modal operators:

w ||- [JA iff forall u: Rwu implies u ||- A
w |- <>A Iff exists u: Rwu andu |- A
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Examples of truth conditions

 multimodal operators
w ||- [JA Iff forall u: Rwu implies u ||- A
w |- <>A iff ...

 relation algebra operators

w |- []tA iIff forall u: R-lwu implies u ||- A
w[-[lig;A  iff forall u: (RURy)wu implies u [|- A
w |- [TTA iIff forall u: R*'wu implies u [|- A)

e non-normal operators
w |- <>A Iff forall R, exists u: Rwu and u ||- A

w ||- [JA Iff exists R, forall u ...
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Examples of truth conditions:
temporal operators

R —

%\
\

e branching time operators

w ||- OXA iff [R in Paths(w): R(w) ||- A
(Paths(w) = the set of paths going through w)
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Examples of truth conditions:
temporal operators

R —

%\
\

e branching time operators

w ||- OXA iff [R in Paths(w): R(w) ||- A
(Paths(w) = the set of paths going through w)

w ||- O<>A iff OR in Paths(w) [h R(w) ||- A
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Examples of truth conditions:
temporal operators

e binary temporal operators
w [[- A Until B iff exists u: R'wu and u ||- B and
forall u” (R'wu’ and R*vu’ implies u’ ||- A)

w ||- A Since B iff ...

w ||- (A Until B) iff forall R in Paths(w) ...
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Examples of truth conditions:
iImplications

e Intuitionistic implication

w ||- A=>B iff forall u: Rwuimpliesul|-A - B
e conditional operator

w |[- A=>B iff forall u: R,wu implies u ||- B

* relevant implication
w ||- A=>B iff forall u,u’
Rwuu’ implies (u ||- A implies u’ ||- B)
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Models

e modelM = (W,R,V)
— W nonempty set
— R: Ops - (WxW)
-V:W - (Atoms - {0,1})
e pointed model (W,R,V),w)
—winW
e extension of A in M
[Alyy, = {win W :w ||- A}

(possible worlds)
(accessibility relation)

(valuation)

(actual world)
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Validity and satisfiability

« K = the set of all models (Kripke)

e AisvalidinK iff [Aly, =W forall MinK (|=¢ A)

examples: [N(P v ~P)

J(PQ) ~ OPLIQ
jpPaIQ - [I(PLQ)

« Ais satisfiable in K iff [A], nonempy for some M in K

examples: P
P[P
PL]~P
IPOIP
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Validity and satisfiability
In a class of models C

Cls some subset of K

Aisvalid in Cls iff [A]y,=WforallMinCls (|=¢.A)

examples: [P - P invalid in K
[IP - P valid in the class of reflexive models
<>P - <><>P valid in transitive models

A is satisfiable in Cls iff [A],, nonempy for some M in Cls

examples: PLH[]P satisfiable in K
P[~[]JP unsatisfiable in reflexive models

A is valid in Cls iff ~A is unsatisfiable in Cls
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Classes of models: examples

e {M: card(W) =1}

=cs <A - 1A
e {M: card(W) = 2}

=ais <>(ADB) O<>(~ADB) - [IB
o {M: card(W) finite}

e {M: R([]) reflexive} = KT
= DA - A

 {M: R([]) transitive} = K4
|=kq <A S <A

 {M: R([]) equivalence relation} = S5
=ss A - [I<>A
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Reasoning problems

 model checking

given A, M and w, do we have w ||- A?
o validity

given A and Cls, is A valid in Cls?
o satisfiablility

given A and Cls, does there exist M in Cls and w In
M such that w ||- A?

How can we solve them automatically?
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Overview

possible worlds semantics: quickstart
tableaux systems: basic ideas
tableaux systems: basic definitions
tableaux for simple modal logics
tableaux for transitive modal logics
tableaux for intuitionistic logic
tableaux for other nonclassical logics

tableaux for modal logics with transitive closure and other modal and
description logics

tableaux for 1st order logic
some implemented tableaux theorem provers
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The basic idea

for classical logic [Beth]

 try to find M and w by applying the truth
conditions (“tableau rules”)

w ||- ALB = addw||-A,and add w ||- B
wll-AvB =>» add either w ||- A, or add w ||- B (nondet.)
w |- ~A = “don’tadd w ||- A7 ?7??

—w|-~~A > addw |- A

— w |- ~(Av B) = add w ||- ~A, and add w ||- ~B

— w ||- ~(ALB) =» add either w ||- ~A, or add w ||- ~B

o apply while possible (“downwards saturation™)

e |s this a model?

NO if both w ||- P and w ||- ~P (“tableau is closed”)
ELSE: for every w, if w ||- P put V (P) =1, else putV,(P) =0
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The basic idea;

example for classical logic
A = PC~(PCQ)

applying truth conditions:
1. w |- P~(PLQ)
2. w|- PL~(PLQ), w [|- P, w [|- ~(PLIQ)
3. wl||- PLH(PLQ), w ||- P, w ||- ~(PLIQ), w ||- ~P (nondet.)

no more truth condition applies

can’t be a model:
bothw |- P and w ||- ~P

backtrack on nondeterministic choices
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The basic idea:
example for classical logic (ctd.)

e 1st downward saturated
graph for
A = P~(PLQ)
=> not a model
(contains P and ~P!)
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The basic idea:
example for classical logic (ctd.)

£ |LOTREC

e 1st downward saturated
set for

A=P 0O~PLQ)
=» not a model
(contains P and ~P!)

 2nd downward saturated
set for

A — P |:| ~(P|:|Q) P & ~{P & Q)

p

= s a model of A

~Q




The basic idea
for modal logics

e apply truth conditions = build a graph
— create nodes
— add links between nodes
— add formulas to nodes

e the basic cases

w |- [JA =» forall u such that Rwu, add u ||- A

w ||- <>A =» add some new u, add Rwu, add u ||- A
w |- ~[JA = add some new u, add Rwu, add u [|- ~A
W |- ~<>A > ..

e “downwards saturated graph”: is this a model?
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The basic idea;

example for modal logic
A=PO~]P

applying tableau rules:
1. w |- P[P
2. wl- PP, w |- P, w |- ~[IP
3. wl|- PLH[IP, w [|- P, w [|- ~[]P, Rwu, u ||- ~P
no more tableau rule applies
=>» never both w [|- A and w ||- ~A (“open tableau”)

model can be built: M = (W,R,V)
set of worlds W: W = {w,u}
accessibility relation R: Rywu
valuation V: vV,(P)=1,V,(P)=0
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The basic idea:
example for modal logic (ctd.)

£ L OTREC [Z] [E] [g]

e premodel for
A=P0O~[P

=» not closed
=» IS a model of A
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A remark on tableaux
and truth tables

 Tableaux are a more convenient presentation of
the familiar truth table analysis” [Beth]

e “Tableaux are more efficient than truth tables.”
[folklore]

e ... hot exactly [d’Agostino]:

(P1vP2vP3)0OP1vP2v~P3)1d(P1v~P2vP3)0...
there are formulas with n atoms of length O(2")

=» truth tables have 2" rows

=>» at least n! closed tableaux, and n! grows faster than 2"
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Historical remarks

* the early days (1950-80): handwritten proofs
— Beth, Gentzen

— relation to sequent calculus
“tableau proof = sequent proof backwards”

— Kripke: explicit accessibility relation
— Smullyan, Fitting: uniform notation

e today: mechanized systems

— fast provers exist
FaCT [Horrocks]
K-SAT [Giunchiglia&Sebastiani]
Importance of strategies

— applications exist: BDI logics, description logics
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Overview

possible worlds semantics: quickstart
tableaux systems: basic ideas
tableaux systems: basic definitions
tableaux for simple modal logics
tableaux for transitive modal logics
tableaux for intuitionistic logic
tableaux for other nonclassical logics

tableaux for modal logics with transitive closure and other modal and
description logics

tableaux for 1st order logic
some implemented tableaux theorem provers
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Informal definition of tableau rules

 Tableau rules expand directed graphs by
— adding formulas
— adding nodes
— adding links
— duplicating the graph
e rule(G) ={Gy,...,G.}
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Informal definition of tableau rules

Tableau rules expand directed graphs by
— adding formulas

— adding nodes

— adding links

— duplicating the graph

rule(G) = {G4,...,G.}

application ofaruleto G =
application to every formula in every node of G.
rule({G4,...,G,}) = rule(GyU...Orule(G,)
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Tableau rules: syntax

e general form: e example conditions:
rule ruleName if hasElement node formula
if cond; if isLinked node, node, R
... (more to come)
if cond,
do action, « example actions:
_ do stop
do action, do addElement node formula

do newNode node

do link node, node, R
do duplicate node, [...]
... (more to come)
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Example: tableau rules
for classical logic

the
LoTREC

tableau
prover

File Theory Strategy Examples

1 Lotrec #1

3% Connectors and Rules | 1.4 Strategies | &3 Formula_|

¥ CLASSICAL PROPOSITIONAL LOGIC with "not" and "and"

connector not 1 false "-_" 5
connector and 2 true "_&_" 4
rule Stop

if hasElement node0 (variable A)

if hasElement node0 not {variable A)
do add node0 FALSE

do stop nodeD

end

rule NotMNot
if hasElement node0 not not (variable A)
do add node0 ({variable A)

end

rule And
if hasElement node0 and (variable A) {variable B)
do add node0 (variable A)
do add node0 (variable B)

end

rule NotAnd

if hasElement node0 not and (variable A) (variable B)
do duplicate node0 begin node0 node1 end

do add node0 not {variable A)
do add node1 not {variable B)
end
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Example: tableau rules
for classical logic

declaration of connectors:
negation and conjunction only

File Theory Strategy Examples

1 Lotrec #1

3% Connectors and Rules | 1.4 Strategies | &3 Formula_|

¥ CLASSICAL PROPOSITIONAL LOGIC with "not" and "and"

connector not 1 false "-_" 5
connector and 2 true "_&_" 4
rule Stop

if hasElement node0 (variable A)

if hasElement node0 not {variable A)
do add node0 FALSE

do stop nodeD

end

rule NotMNot
if hasElement node0 not not (variable A)
do add node0 ({variable A)

end

rule And
if hasElement node0 and (variable A) {variable B)
do add node0 (variable A)
do add node0 (variable B)

end

rule NotAnd

if hasElement node0 not and (variable A) (variable B)
do duplicate node0 begin node0 node1 end

do add node0 not {variable A)
do add node1 not {variable B)
end
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Example: tableau rules
for classical logic

rule Stop:
if there is an explicit contradiction
then stop exploring the tableau

\

< LOTREC
File Theory Strategqy Examples

1 Lotrec #1 |

3% Connectors and Rules | 1.4 Strategies | &3 Formula_|

¥ CLASSICAL PROPOSITIONAL LOGIC with "not" and "and"

connector not 1 false "-_" 5
connector and 2 true "_&_" 4
rule Stop

if hasElement node0 (variable A)

if hasElement node0 not {variable A)
do add node0 FALSE

do stop nodeD

end

rule NotMNot
if hasElement node0 not not (variable A)
do add node0 ({variable A)

end

rule And
if hasElement node0 and (variable A) {variable B)
do add node0 (variable A)
do add node0 (variable B)

end

rule NotAnd

if hasElement node0 not and (variable A) (variable B)
do duplicate node0 begin node0 node1 end

do add node0 not {variable A)
do add node1 not {variable B)
end
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Example: tableau rules
for classical logic

rule NotNot:
replaces ~~A by A

\

File Theory Strategy Examples

1 Lotrec #1

3% Connectors and Rules | 1.4 Strategies | &3 Formula_|

¥ CLASSICAL PROPOSITIONAL LOGIC with "not" and "and"

connector not 1 false "-_" 5
connector and 2 true "_&_" 4
rule Stop

if hasElement node0 (variable A)

if hasElement node0 not {variable A)
do add node0 FALSE

do stop nodeD

end

rule NotMNot
if hasElement node0 not not (variable A)
do add node0 ({variable A)

end

rule And
if hasElement node0 and (variable A) {variable B)
do add node0 (variable A)
do add node0 (variable B)

end

rule NotAnd

if hasElement node0 not and (variable A) (variable B)
do duplicate node0 begin node0 node1 end

do add node0 not {variable A)
do add node1 not {variable B)
end
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rule And:
if
then

Example: tableau rules
for classical logic

A & B is in a node
add A and B to node

\

File Theory Strategy Examples

1 Lotrec #1

3% Connectors and Rules | 1.4 Strategies | &3 Formula_|

¥ CLASSICAL PROPOSITIONAL LOGIC with "not" and "and"

connector not 1 false "-_" 5
connector and 2 true "_&_" 4
rule Stop

if hasElement node0 (variable A)

if hasElement node0 not {variable A)
do add node0 FALSE

do stop nodeD

end

rule NotMNot
if hasElement node0 not not (variable A)
do add node0 ({variable A)

end

rule And
if hasElement node0 and (variable A) {variable B)
do add node0 (variable A)
do add node0 (variable B)

end

rule NotAnd

if hasElement node0 not and (variable A) (variable B)
do duplicate node0 begin node0 node1 end

do add node0 not {variable A)
do add node1 not {variable B)
end
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Example: tableau rules
for classical logic

rule NotAnd:
if ~(A&B) is in a node
then duplicate tableau,
add ~A to the first tableau
add ~B to the second tableau

< LOTREC
File Theory Strategqy Examples

1 Lotrec #1

3% Connectors and Rules | 1.4 Strategies | &3 Formula_|

¥ CLASSICAL PROPOSITIONAL LOGIC with "not" and "and"

connector not 1 false "-_" 5
connector and 2 true "_&_" 4
rule Stop

if hasElement node0 (variable A)

if hasElement node0 not {variable A)
do add node0 FALSE

do stop nodeD

end

rule NotMNot
if hasElement node0 not not (variable A)
do add node0 ({variable A)

end

rule And
if hasElement node0 and (variable A) {variable B)
do add node0 (variable A)
do add node0 (variable B)

end

rule NotAnd

if hasElement node0 not and (variable A) (variable B)
do duplicate node0 begin node0 node1 end

do add node0 not {variable A)
do add node1 not {variable B)
end
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Definition of strategies

* A strategy defines some order of
application of the tableau rules:
firstrule rule, ... rule, end

“apply first applicable rule and stop”

allrules rule, ... rule, end
“apply all applicable rules in order”

repeat strategy end
“repeat until no rule applicable”

e Strategy stops if no rule is applicable.
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Strategy
for classical logic

£ LOTREC

strategy CPLStrategy o ey Sy oo

3 Lotrec #1 :

ﬂ Connectors and Rules r i} Strategies r i} Formula |

re peat al I R u I eS 7 CLASSICAL PROPOSITIONAL LOGIC with "not" and "and"

connector not 1 false "~_" 5
Sto connector and 2 true "_&_" 4
p rule Stop

if hasElement node0 (variable A)

N OtN Ot if hasElement node0 not (variable A)

do add node0 FALSE
do stop nodeO

And end

rule MotMNot
if hasElement node0 not not {variable A)
N OtAn d do add node0 (variable A)
end

end end rule And

if hasElement node0 and (variable A) (variable B)
do add nodel (variable A)

d do add node0 (variable B)
e n end

rule NotAnd
if hasElement node0 not and (variable A) (variable B)
do duplicate node0 begin node0 node1 end
do add node0 not (variable A)

9 “fai r Strategy” e:z add node1 not (variable B)
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Strategy for classical logic:
example

CPLStrateqy(P&~(P&Q))

£ LOTREC
File Theory Strategy Examples

< LOTREC
File Theory Strategqy Examples

Lotrec #1

] Lotrec #1

( 2:} Connectors and Rules r {:} Strategies r 2:} Formula |

ff STRATEGY FOR CLASSICAL
ff PROPQOSITIONAL LOGIC with ~, &

strategy CPLStrategy
repeat allRules
Stop
NotNot
And
NotAnd
end end
end

ﬂ Connectors and Rules r i} Strategies

Y CLASSICAL PROPOSITIONAL LOGIC with "not" and "and"
connector not 1 false "~_" 5
connector and 2 true "_&_" 4

rule Stop
if hasElement node0 (variable A)
if hasElement node0 not (variable A)
do add node0 FALSE
do stop nodeO
end

rule MotMNot
if hasElement node0 not not {variable A)
do add noded (variable A)

end

rule And
if hasElement node0 and (variable A) (variable B)
do add nodel (variable A)
do add node0 (variable B)

end

rule NotAnd
if hasElement node0 not and (variable A) (variable B)
do duplicate node0 begin node0 node1 end
do add node0 not (variable A)
do add node1 not {variable B)
end

43



Strategy for classical logic:
example (ctd.)

CPLStrategy(P&~(P&Q)) =

(T1

FEX




Definition of tableaux

The set of tableaux for A with strategy S Is
the set of graphs
obtained by applying the strategy S
to an initial single-node graph
whose root contains only A.

e notation: S(A)

— Remark
our tableau = “tableau branch” in the literature
(sounds odd to call a graph a branch)
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Tableaux: open or closed?

e A node is closed Iff it contains FALSE.
e A tableau is closed iff it has a closed node.
e A set of tableaux is closed

Iff all its elements are.

An open tableau is a premodel:
=» build a model
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Formal properties

to be proved for each strategy:

e Termination
For every A, S(A) terminates.

e Soundness

If S(A) Is closed then A is unsatisfiable.

 Completeness
If S(A) Is open then A is satisfiable.
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Termination

 For every A, CPLTableaux(A) terminates.

 Proof:

— Every tableau rule only adds strict
subformulas.

— This can only be done a finite number of
times, then the strategy stops.
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Soundness

o |f CPLTableaux(A) is closed
then A Is unsatisfiable.

e Proof:

— Every tableau rule is “guaranteed” by the truth
conditions:
If G is CPL-satisfiable
then there is G, in rule(G) that is CPL-satisfiable

— Hence if every graph is closed
then the original A cannot be satisfiable.
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Completeness

o If CPLTableaux(A) is open then A is satisfiable.

e Proof:
— Take some open tableau G in CPLTableaux(A).

50



Completeness

o If CPLTableaux(A) is open then A is satisfiable.

e Proof:
— Take some open tableau G in CPLTableaux(A).

— G is a downwards closed set (“Hintikka set”):
if ~~A in node then A in node
if A&B in node then A in node and B in node
if ~(A&B) in node then ~A in node or ~B in node
(because allRules strategy is fair: every rule eventually applies)
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Completeness

o If CPLTableaux(A) is open then A is satisfiable.

e Proof:
— Take some open tableau G in CPLTableaux(A).

— G is a downwards closed set (“Hintikka set”):
if ~~A in node then A in node
if A&B in node then A in node and B in node
if ~(A&B) in node then ~A in node or ~B in node
(because allRules strategy is fair: every rule eventually applies)
— Build a CPL model from G:
V,oee(P) =1 iff P appears in node
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Completeness

o If CPLTableaux(A) is open then A is satisfiable.

e Proof:
— Take some open tableau G in CPLTableaux(A).

— G is a downwards closed set (“Hintikka set”):
if ~~A in node then A in node
if A&B in node then A in node and B in node
if ~(A&B) in node then ~A in node or ~B in node
(because allRules strategy is fair: every rule eventually applies)

— Build a CPL model from G:
V,oee(P) =1 iff P appears in node

— Prove by induction on the form of A:
for every Ain node, V, 4. (A) =1
(“fundamental lemma”)

53



In general ...

soundness proof ...
termination proof ...
completeness proof ...

easy
difficult
very difficult
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In general ...

soundness proof: easy
termination proof: difficult
completeness proof: very difficult

... but soundness + termination of strategy Is
practically sufficient:

apply strategy to A

take an open tableau and build pointed model (M,w)
check if M in model class

check if M,w ||- A

e\
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Overview

possible worlds semantics: quickstart
tableaux systems: basic ideas
tableaux systems: basic definitions
tableaux for simple modal logics
tableaux for transitive modal logics
tableaux for intuitionistic logic
tableaux for other nonclassical logics

tableaux for modal logics with transitive closure and
other modal and description logics

tableaux for 1st order logic
some implemented tableaux theorem provers
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The basic modal logic K

* the basic modal operators:

w ||- [JA Iff forall u: Rwu implies u ||- A
w |- <>A Iff existsu: Rwuandu |- A
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Tableau rules for K

connectors: not, and, nec

[some rules for classical logic...]
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Tableau rules for K

£ LOTREC
connectors: not, and, nec -
Lotrec #1
S Comectors oo | (FSotopes | 53 rorma
[some rules for classical logic...] | £ comnectarsand s
teS . /MNodal Rules

crea € UCCGSSO_Y. . rule createSuccessor

If not nec A is in node0 if hasElement node0 not nec {variable A)

then create new node nodel — do newNode node1

link it to nodeO do link node0 node1 R

do add node1 not (variable A)

add not A to nodel

end
end
rule propagateNec

if hasElement nodeQ nec (variable A)
if isLinked node0 node1 R

do add node1 (variable A)

59



Tableau rules for K

£ LOTREC
connectors: not, and, nec .
Lotrec #1
. . r{:}Cunnectnrs and Rules ’ﬁﬁ
[some rules for classical logic...]

/Modal Rules
rule createSuccessor
if hasElement nodeQ not nec {variable A)
do newNode node1
do link nodel node1 R
do add node1 not (variable A)

end

rule propagateNec
if hasElement nodeQ nec (variable A)

propagateNec: if isLinked node0 node1 R
if nec Aisinnode0 —— doadd  nodel (variable A)
nodeO is linkednodel R end
then add nodel A
end
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Tableaux for K

... plus rules for the definable connectives

o KStrategy(<>P & <>0Q & [](R v <>S))
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Modal logic KT

« accessiblility relation is reflexive

 Idea: integrate this into truth condition
— w ||- [JA iff w |- A and forall u: Rwu implies u ||- A

62



Tableaux
for modal logic KT

[connectors as for K...]

[rules as for K...]
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Tableaux
for modal logic KT

[connectors as for K...]

[rules as for K...]

plus: “when [JA is in a node
then add A to it”

o KTStrateqy(P & [][]~P)

£ | OTREC

File Theory Strategy Examples
[ Lotrec #1

r {:} Connectors and Rules ’/ {:} Strategies r {:} Formula ‘
rule createSuccessor

if hasElement node0 not nec (variable A)
do newNode node1

do link nodel node1 R
do add node1 not {variable A)
end

rule propagateMNec
if hasElement node0 nec {variable A)
if isLinked node0 node1 R

do add node1 ({variable A)
end

/f rule for reflexivity
rule addNec

if hasElement node0 nec {variable A)

do add nodel (variable A)
end
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Tableaux
for modal logic S5

accessiblility relation is
equivalence relation

can be supposed to be
a single equivalence
class

optimized tableau rules
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Tableau rules for S4

accessibility relation is reflexive and transitive

tableau rules for S4:

e [connectors as for KT...]

e [rules as for KT...]

e ... and take into account transitivity:
“when [JA Is In a node
then add []A to all children”
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Tableau rules for S4

accessibility relation is reflexive and transitive

tableau rules for S4:

e [connectors as for KT...]

e [rules as for KT...]

e ... and take into account transitivity:
“If [JAIs In a node
then add []A to all children”

problem: find a terminating strategy
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Tableau rules for S4

 Example: w ||- [[~[]P
—add w ||- ~[]P (by rule for reflexivity)
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Tableau rules for S4

 Example: w ||- []~[]P
—add w ||- ~[]P (by rule for reflexivity)
— create u, add Rwu, add u ||- ~P
(by createSuccessor)
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Tableau rules for S4

 Example: w ||- []~[]P
—add w ||- ~[]P

(by rule for reflexivity)

— create u, add Rwu, add u ||- ~P

—add u |- [I-IP

(by createSuccessor)
(by rule for transitivity)
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Tableau rules for S4

 Example: w ||- []~[]P
—add w ||- ~[]P

(by rule for reflexivity)

— create u, add Rwu, add u ||- ~P

—add u |- []~[IP
_addu |- ~[|P

(by createSuccessor)
(by rule for transitivity)
(by rule for reflexivity)
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Tableau rules for S4

 Example: w ||- []~[]P
—add w ||- ~[]P

(by rule for reflexivity)

— create u, add Rwu, add u ||- ~P

—add u |- []-[IP
—addu ||- ~[]P
— Create u’

(by createSuccessor)
(by rule for transitivity)
(by rule for reflexivity)
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Tableau rules for S4

 Example: w ||- []~[]P
—add w ||- ~[]P (by rule for reflexivity)
— create u, add Rwu, add u ||- ~P
(by createSuccessor)

—add u ||- []~[IP (by rule for transitivity)
—addu ||- ~[]P (by rule for reflexivity)
— Create U’

put a looptest into the rules!
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Tableau rules for S4 (ctd.)

£ LOTREC

principle: Fie. Theoey

Lotrec #1 :

® If a nOde IS |nC|Ud6d |n 53 Connectors and Rules | 54 Strategies | 14 Formula |
an ancestor i o v

if hasElement node0 nec (variable A)

then mark |’[ if isLinked node0 node1 R

do add node1 nec {variable A)
end

rule createSuccessor
if hasElement node0 not nec {(variable A)
if isNotMarked nodeD CONTAINED|
do newMNode node’l
do link node0 node1 R
do add node1 not {(variable A)
end

Y inclusion test
rule loopTest

if isNewMNode node1

if isAncestor node0 node1

if contains node0 node1

do mark node1 CONTAINED
end
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Tableau rules for S4 (ctd.)

principle:

If a node is included In
an ancestor

then mark Iit.

If a node is marked

then block the
createSuccessor rule

/

S4Strateqgy([]~[]P)

< LOTREC
File Theory Strate,

Lotrec #1 &5

53 Connectors and Rules | 54 Strategies | 14 Formula |

/f rule for transitivity
rule copyMNec
if hasElement node0 nec (variable A)
if isLinked node0 node1 R
do add node1 nec {variable A)
end

rule createSuccessor
if hasElement node0 not nec {(variable A)
if isNotMarked nodeD CONTAINED|
do newMNode node’l

do link node0 node1 R
do add node1 not {(variable A)
end

Y inclusion test
rule loopTest

if isNewMNode node1

if isAncestor node0 node1

if contains node0 node1

do mark node1 CONTAINED
end
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S4Strategy
(<>l (P v Q) & []<>~P & <>[]-Q)

o B
] Lotrec #1 ©
* tableau1/s
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Intuitionistic logic

no modal operators, but different semantics for
implication and negation

aim: invalidate

(~P=>FALSE) => P ex falso quodlibet
Pv~P tertio non datur
(~Q =>~P) => (P => Q) contraposition

R Is reflexive, transitive and hereditary:
If Rwu and V,(P) =1thenV,(P)=1

similar to S4

truth condition
w [[- A=>B iff forall u: Rwu impliesu ||-A-B
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Tableaux rules for
Intuitionistic logic

e follow translation from LJ to S4:

P’ = [P (inheritance)
(A=>B)’ = [I(A" - B)
(~A) = [[~(A)

e tableaux similar to S4

e signed formulas
T(P) “P is true”
F(P) “P is false”
F(P) #~P
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Tableaux rules for
Intuitionistic logic

£ LOTREC

® Create Successor File Theory Strategy Examples
. [ Latrec #1
make A:>B false In W ({:}Cunnemnrsandﬂules rﬂstrategies I/{:}Furmula |
create u, add link Rwu, k
ule createSuccessor
make A false |n u if hasElement node0 fimp {variable A) (variable B)

if isNotMarked nodeQ CONTAINED
. \ do newNode node
make B true in u dolink  node0 nodel R
do add node1 t (variable A)
do add node1 f (variable B)
end

// rule for inheritance of atoms
rule propagateAtoms
if hasElement node0 taP
ifisLinked node0 node1 R
do add hodel taP
end
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Tableaux rules for
Intuitionistic logic

£ LOTREC

® Create Successor File Theory Strategy Examples
] [ Latrec #1
make A:>B false |n W ({:}Cunnemnrsandﬂules rﬂstrategies I/{:}Furmula |
create u, add link Rwu, k
ule createSuccessor
make A false |n u if hasElement node0 fimp {variable A) (variable B)

if isNotMarked nodeQ CONTAINED
do newNode node1

make B true in u dolink  node0 nodel R

do add node1 t (variable A)
do add node1 f (variable B)
end

® |n herltan Ce /f rule for inheritance of atoms

rule propagateAtoms

|f W ”- P and RWU ’ if hasElement node0 taP
if isLinked node0 node1 R

then add u ||- P doadd  nodel taP

end
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Tableaux rules for
Intuitionistic logic: ~~P=>P

LJStrateqy(((P=>False)=>False)=>P) =» 4 tableaux, 1 open

£ LOTREC
File Theory Strategqy Examples

Lotrec #1

tableaud

root Fi(aP -> False) -> False) -> aP

\

T{aP -*> False) -> False

nodeld FaP

s o ¥
FaP -» False R FFalse

node1
T{aP -> False) -> False

TaP

FaP -» False B
R TaP

FFalse
hode2
TiaP -=> False) -> False

FaP -> False
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Relevant logics
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Paraconsistent logics
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Linear Temporal Logic

two modal operators:
[] = always
X = next

R(X) Is serial and deterministic

R([) = R(X))*

R([]) linear order

mixX axioms:
A ~ AOX]A
<SA o Av X<>A

Induction axiom:
ALI(A-XA) - []A

decidable, EXPTIME complete
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Tableau rules for
Linear Temporal Logic

how take induction into account?

e solution: don’t care, and only apply the mix axioms:

rewrite [JA to A OX[JA
rewrite <>A to Av X<>A

e only create successors for X, never for <>

e termination: use the looptest from transitive modal logics
— nodes only contain subformulas of orig. formula
— looptest succeeds at most at polynomial depth
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Tableau rules for
Linear Temporal Logic: example

« Example: w ||- []P

add w [|- PLIX[][P  (by mix axioms)

add w [|- P, w [|- X[]P

create u, add Rywu, add u ||- [|P

(by propagation rule for X)

add u ||- PLX[]P (by mix axioms)

add u [|- P, u |]- X[IP

w contains u: mark u “contained”
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Tableau rules for
Linear Temporal Logic (ctd.)

e may result in ‘nonstandard’ models of <>P
= “P never fulfilled”

=» check If all <> are fulfilled!
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Tableau rules for
Linear Temporal Logic: example

e Example: LTLStrategy(<>P)

wJ- <>P
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Tableau rules for
Linear Temporal Logic

e Example: LTLStrategy(<>P)
w ||- <>P
W |- P v X<>P (by mix)
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Tableau rules for
Linear Temporal Logic

 Example: LTLStrateqy(<>P)
w |- <>P
w ||- P v X<>P (by mix)
—
w |- <>P,w[|-P W’ ||- <>P, w' ||- X<>P
(nothing applies)
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Tableau rules for
Linear Temporal Logic

 Example: LTLStrateqy(<>P)
w |- <>P
w ||- P v X<>P (by mix)
—
w |- <>P,w[|-P W’ ||- <>P, w' ||- X<>P
(nothing applies) Rw'u’, U’ ||- <>P
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Tableau rules for
Linear Temporal Logic

e Example: LTLStrategy(<>P)

w |- <>P
w ||- P v X<>P (by mix)
—
w |- <>P,w[|-P W’ ||- <>P, w' ||- X<>P
(nothing applies) Rw'u’, U’ ||- <>P

u'||- P v X<>P (by mix)
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Tableau rules for
Linear Temporal Logic

e Example: LTLStrategy(<>P)

w |- <>P
w ||- P v X<>P (by mix)
—
w |- <>P,w[|-P W’ ||- <>P, w' ||- X<>P
(nothing applies) Rw'u’, U’ ||- <>P
u'||- P v X<>P (by mix)
—

ull-P u” ||- X<>P
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Tableau rules for
Linear Temporal Logic

e Example: LTLStrategy(<>P)

w |- <>P
w ||- P v X<>P (by mix)
— T
w |- <>P,w[|-P W’ ||- <>P, w' ||- X<>P
(nothing applies) Rw'u’, U’ ||- <>P
u'||- P v X<>P (by mix)
—
u||- P u" |- X<>P

(nothing applies) contained in w’
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Tableau rules for
Linear Temporal Logic

e Example: LTLStrategy(<>P)

w |- <>P
w ||- P v X<>P (by mix)
— T
w |- <>P,w[|-P W’ ||- <>P, w' ||- X<>P
(nothing applies) Rw'u’, U’ ||- <>P
u'||- P v X<>P (by mix)
—
u' |- P u" |J- X<>P
(nothing applies) u” contained in w’

<>P not fulfilled
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Propositional dynamic logic (PDL)

e two kinds of expressions
— formulas:
A:=P|~A|ADB | [rIA
— programs:
m=a| ;T | mm , | | A?
* In the models: R interprets programs
R(m;m) = R(M);R(T)
R(m ,) = R(mM)UR(TL)
R(™) = (R(m)*
R(A?) = {<w,w>:w||- A}
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Tableaux for PDL

e similarto LTL.:
— expand [T]A to A L[r[r*]A
— don’t apply createSuccessor to formulas ~[1*]A
— mark nodes that are included in some ancestor
— don’t apply createSuccessor to formulas ~[mA if node

IS marked
— expand the other program expressions:
[T TR)A - [m][m]A
[y ,]A o [m]A O[m]A

[A?]B - A_B
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Description logics

“roles” and “concepts”
— more expressive than classical propositional logic
— less expressive than 1st order logic

focus on decidable logics

applications:
— databases
— software engineering

— web-based information systems
description of medical terminology

— ontology of the semantic web
standards: DAML+OIL, OWL

— description of web services
WSDL, OWL-S
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Description logics:

concepts and roles

e roles = binary relations
hasChild
hasHusband

e concepts = unary relations = properties

Person
Female
Parent N Female
Father U Mother

~Parent

[hasChild.Female “Individuals having a female child”
[ThasChild.Female :

>1 hasChild. T “Individuals having more than 1 child”

« set of concepts = “assertion box” (ABox)
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Description logics:
TBoxes

 set of relations between concepts and
roles

=> “terminological box” (TBox)

— restricted to concept abbreviations
(sometimes: fixpoint definitions)

Mother = Person N Female
— are expanded away = TBox =0
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Description logics:
reasoning tasks

satisfiability of a concept C
subsumption of C, by C,

same as: C,MN~ C, unsatisfiable

equivalence of C, by C,
same as: C, subsumes C, and C, subsumes C,

disjointness of C, and C,
[1 subsumes C,NC,

=» all reasoning tasks reduce
to concept satisfiability
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Description logics

 translation of concepts into modal logics

[hasChild.Female = <hasChild>Female
[ThasChild.Female = [hasChild.Female]
Parent N Female = Parent 0 Female
Father U Mother = Father v Mother

<2 hasChild.T = [hasChild], T
>2 hasChild. T = <hasChild>, T

...modal logics with number restrictions
[Fattorosi&Barnaba, van der Hoek]
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Description logics

description logic ALC:
~C
C,NC,
C,UC,
R.C
OR.C
= multimodal K

description logic ALC,, =
ALC + reqgular expressions on roles
= PDL

all description logic reasoning tasks reduce
to satisfiability checking in modal logics
tableaux used as optimal decision procedures
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Logics of action and knowledge

e 2 modal operators
Knw; A “agent i knows that A”

[a] A “after execution of action a, A holds”

e “product logics”:
Riemi Ra = R Ry (permutation)
if wR,,,uandwR_v then exists t such that uR_t and VRt

(confluence)

e axiomatically:
Knw[a]A  [a]KnwA
<a>KnwA - Knw<a>A

tableaux: ...
=» problem: combination with transitivity
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Belief-Desire-Intention logics

e [Bratman, Rao&Georgeft]
« 3 modal operators

Bel A “agent i believes that A”
Desire; A “agent | desires that A”
Intend; A “agent | intends that A”

e plus branching time logic
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Modal logics with density

e accessibility relation Is dense
If Rwu then exists v : Rwv and Rvu
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Non-normal modal logics

* no accessiblility relation, but neighborhood

functions: N: W - 22W
w ||- [JA iff exists U in N(w) foralluin U: u||- A
non-normal modal logic EM

e can be represented by a set of relations
w ||- [JA 1Iff exists R, forall u (Rwu implies u ||- A)
 logic EM: “non-normal”

not valid: [[PL]Q - [[(PUQ)
but valid: [[(PUQ) - [[PLI]Q
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Tableau rules for EM
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1st order logic

 How should we handle the quantifiers?
[Ix p(x) O~p(a) is unsatisfiable
[Ix p(x) LI x ~p(X) is unsatisfiable

e naive implementation [Beth, Smullyan]:
if hasElement nodeO forall x A(x)

do createTerm t (doesn't exist in LOTREC yet)
do add nodeO A(t)

if hasElement node exists x A(X)
do createNewConstant ¢
do add node A(c)

=» problem: loops for satisfiable formulas
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Herbrand Tableaux for
1st order logic

e 1st solution: restrict instantiation to Herbrand universe
if hasElement nodeO forall x A(x)

do createHerbrandTerm t (doesn't exist in LOTREC yet)
do add nodeO A(t)

o ex.. X p(x,x) LxOy ~p(x,y)) satisfiable

1. X p(X,X)

2. IxUy ~p(x,y)

3. Oy ~p(a,y) (2), new constant

4. ~p(a,a) (3), only Herbrand term
5. p(b,b) (1), new constant

6. ~p(a,b) (3), Herbrand term

no further instantiation of (3) is possible
« decision procedure for formulas without positive [...[]
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Herbrand Tableaux for
1st order logic

e counterexample: LxLy p(x,y) satisfiable

1. OxDy p(x.y)

2. Ly p(@ay) (1), Herbrand term
3. p(a,b) (2), new constant
4. Ly p(b,y) (1), Herbrand term
5. p(b,c) (4), new constant
6. ...

=>» loops
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Free-variable tableaux
with unification

e 2nd solution: don’t instantiate at all
— work with free variables
— runtime skolemization of existential quantifiers
— term unification

o ex.:xOy p(x,y) LI xCy ~p(x,y)) satisfiable

1. OxCy p(x.y)

2. OxLy ~p(X,y)

3. Oy p(X1,Y) from (1), replace x by free x;
4. Oy ~p(X,,Y) from (2), replace x by free x,
5. p(X1,f(xy)) from (3), Skolem function f(x,)
6. ~p(X,,9(X5)) from (4), Skolem function g(x,)

stops: (5) and (6) don’t unify

e ... but does not terminate in all cases (sure)
else 1st order logic would be decidable
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LOTREC

IRIT-CNRS Toulouse (Sahade, Gasquet,
Herzig); accessible through www

general theorem prover
explicit accessiblility relations

easy to implement logics with symmetric
accessibility relations etc.

— back-and-forth rules
Inefficient
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TableauxWorkBench (TWB)

Australian National U. (Abate, Goré)
general theorem prover

close to Gentzen sequents
accessiblility relations remain implicit

hard to implement logics with symmetric
accessiblility relations

— temporal logic with future and past
— converse of programs
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LogicWorkBench (LWB)

« U. Bern (Jager, Heuerding); accessible
through www

o efficient algorithms for all the basic modal
and temporal logics

e hard to Implement a new logic
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FaCT

e U. Manchester (Horrocks); open source

o fast decision procedure for description
logics with inverse roles and gqualified
number restrictions

= multimodal K + converse + number restrictions

e optimized backtracking: “backjumping”
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KSAT

« U. Trento (Giunchiglia, Sebastiani)

e combines tableaux method with fast SAT solvers
for classical propositional logic

— call a SAT solver, where subformulas [JA, <>B are
viewed as atomic

— SAT solver returns a tentative valuation

— use modal tableau rules to generate children
If inconsistent then there is no model
else iterate

« very efficient
» exists for all basic modal logics
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KSAT (ctd.)

¢ KSAT([J(P&Q) & <>~P)
— call SAT with set of clauses {[J(P&Q), <>~P}
— SAT returns:

V([I(P&Q)) =1
V(<>~P) =1

— apply createOneSuccessor and propagateNec:
w ||- [(P&Q), w [|- <>~P, Rwu, u [|- ~P, u [|- P&Q
— call SAT with set of clauses {P,Q,~P}

— SAT returns:
set of clauses unsatisfiable

— [J(P&Q) & <>~P is unsatisfiable in K
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Conclusion

search for models = exploit the truth
conditions

tableaux work both ways:
— finding a model
— refuting

termination = decidability
tableaux as optimal decision procedures
=» description logics
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