Tableaux Systems

Tutorial at 1st School on Universal Logic Montreux, 26-27 March 2005

Andreas Herzig
IRIT-CNRS
Toulouse
http://www.irit.fr/~Andreas.Herzig/

What this tutorial is about

- in focus
- the tableaux method
- ... for logics with possible worlds semantics
- ... and combinations thereof
- ... as a computerized proof system (LoTREC)
- not in focus:
- tableaus
- proof theory, sequent calculi (cf. course on LDS)
- completeness proofs
- efficiency issues

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1st order logic
- some implemented tableaux theorem provers

Possible worlds

- possible world \rightarrow valuation of classical logic

Possible worlds models

- possible worlds model
= labeled graph
= transition system
- node = possible world
- valuation of classical logic
- not every valuation appears (some logically possible worlds are not actually possible)
$-\mathrm{V}_{\mathrm{w}}=\mathrm{V}_{\mathrm{u}}$ does not imply $\mathrm{w}=\mathrm{u}$

- link = accessibility relation R

Possible worlds models: accessibility relations

- temporal

Rwu iff u is in the future of w

- alethic

Rwu iff u is possible, given the actual world w

- epistemic
$R_{i} w u$ iff u is possible for agent i, given the actual world w
- deontic

Rwu iff u is an ideal version of w

- dynamic
$R_{\mathrm{a}} w u$ iff u is a possible result of the execution of program/action a in w
- comparative (preferential, ...)

Rwu iff w is smaller than u
$R_{v} w u$ iff w is smaller than u, given v
reading of $R \rightarrow$ properties of R

Possible worlds models: properties of R

- monomodal
- serial: forall w exists u Rwu
- reflexive
- transitive
- Euclidian
- confluent (Church-Rosser)
- dense
- ..
- well-founded (not FOdefinable!)
- ...
- multimodal
$-R_{1}$ included in R_{2}
$-R_{1}=R_{2} \cup R_{3}$
$-R_{2}=\left(R_{1}\right)^{-1}$
(transitive closure)
$-R_{2}=\left(R_{1}\right)^{*}$
(transitive closure)
$-R_{1}{ }^{\circ} R_{2}=R_{2}{ }^{\circ} R_{1}$
- Church-Rosser
- ...

Language: modal operators

- express intensional concepts (belief, time, action, obligation, ...)
- non truth functional
- schema: op $\left(a_{1}, \ldots, a_{n}\right)$, where op is the name of the operator, and a_{i} some argument
- generic form:
-[] $\mathrm{A}=\mathrm{A}$ is necessary (true in all possible worlds)
$-<>A=A$ is possible
- in general: []A same as ~<>~A
- except in substructural logics (intuitionistic, ...)

Language: modal operators

- temporal
- []A = henceforth A (true in all future time points)
- $<>A=$ eventually A
- deontic
-[] $\mathrm{A}=\mathrm{A}$ is obligatory (true in all ideal worlds)
$-<>A=A$ is permitted \quad ($\sim>A=A$ is forbidden)
- epistemic
- []; $\mathrm{A}=\mathrm{i}$ believes A (true in all worlds possible for i)
- $<>_{i} A=$..
- dynamic
- [a]A = A is true after (every possible way of) executing a
- $<a>A=\ldots$
- conditional
- $A=>B=$ if A then B proof of A can be transformed into proof of B (intuitionistic) if A was true then B would be true (counterfactual)

Interpreting the language: truth conditions

- classical connectives

$$
\begin{array}{ll}
w \|-P & \text { iff } V_{w}(P)=1, \text { for } P \text { in Atoms } \\
w \|-A \wedge B & \text { iff }(w \|-A \text { and } w \|-B)
\end{array}
$$

- interpretation of non-classical connectives
- via accessibility relation R
- schema:

$$
\left.w \|-o p\left(a_{1}, \ldots, a_{n}\right) \text { iff Cond(op, } a_{1}, \ldots, a_{n}, w, R\right)
$$

- the basic modal operators:

$$
\begin{array}{ll}
w \|-[] A & \text { iff forall u: Rwu implies u \|- A } \\
\text { w \|- <>A } & \text { iff exists } u: \text { Rwu and u } \|-A
\end{array}
$$

Examples of truth conditions

- multimodal operators

$$
\begin{array}{ll}
w \|-[] i A & \text { iff forall u: } R_{i} w u \text { implies } u \|-A \\
w \|-<>_{i} A & \text { iff } \ldots
\end{array}
$$

- relation algebra operators

$$
\begin{array}{ll}
w \|-[]^{-1} A & \text { iff forall } u: R^{-1} \text { wu implies u \|- A } \\
w \|-[]_{i} \cup A & \text { iff forall } u:\left(R_{i} \cup R_{j}\right) \text { wu implies } u \|-A \\
w \|-[]^{*} A & \text { iff forall } \left.u: R^{*} w u \text { implies } u \|-A\right)
\end{array}
$$

- non-normal operators

$$
\begin{array}{ll}
w \|-<>A & \text { iff forall } R_{i} \text { exists } u \text { : } R_{i} w u \text { and } u \|-A \\
w \|-[] A & \text { iff exists } R_{i} \text { forall } u \ldots
\end{array}
$$

Examples of truth conditions: temporal operators

- branching time operators
w ||- ヨXA iff $\exists \mathrm{R}$ in Paths(w): R(w) ||- A
(Paths $(w)=$ the set of paths going through $w)$

Examples of truth conditions: temporal operators

- branching time operators
w ||- ヨXA iff $\exists \mathrm{R}$ in Paths(w): R(w) ||- A
(Paths $(w)=$ the set of paths going through $w)$
w \|- $\forall<>A$ iff $\forall R$ in Paths(w) $\exists n R^{n}(w) \|-A$

Examples of truth conditions: temporal operators

- binary temporal operators w II- A Until B iff exists u : R'wu and $u \|-B$ and forall u' (R*wu' and R+vu' implies u' \|- A)
w ||- A Since B iff ...
w ||- \forall (A Until B) iff forall R in Paths(w) ...

Examples of truth conditions: implications

- intuitionistic implication

$$
\text { w \|- A => B iff forall u: Rwu implies u \|- A } \rightarrow B
$$

- conditional operator

$$
w \|-A=>B \text { iff forall u: } R_{[A]} w u \text { implies } u \|-B
$$

- relevant implication

$$
w \|-A=>B \text { iff forall } u, u^{\prime}:
$$

Rwuu' implies (u ||- A implies u' ||- B)

Models

- model $\mathrm{M}=(\mathrm{W}, \mathrm{R}, \mathrm{V})$
- W nonempty set
-R : Ops \rightarrow (WxW)
$-\mathrm{V}: \mathrm{W} \rightarrow$ (Atoms $\rightarrow\{0,1\})$
(possible worlds)
(accessibility relation)
(valuation)
- pointed model ((W,R,V),w)
- w in W
(actual world)
- extension of A in M

$$
[A]_{M}=\{w \text { in } W: w \|-A\}
$$

Validity and satisfiability

- $\mathrm{K}=$ the set of all models (Kripke)
- A is valid in K iff $[A]_{M}=W$ for all M in $K \quad\left(\mid={ }_{K} A\right)$

```
examples: [](P v ~ P)
    [](P\wedgeQ)->[]P^[]Q
[]P^[QQ }->[](P\wedgeQ
```

- A is satisfiable in K iff $[A]_{M}$ nonempy for some M in K $\begin{array}{ll}\text { examples: } & P \\ & P \wedge \sim[] P \\ & P \wedge[] \sim P \\ & [] P \wedge \sim[]] P\end{array}$

Validity and satisfiability in a class of models C

- Cls some subset of K
- A is valid in Cls iff $[\mathrm{A}]_{M}=\mathrm{W}$ for all M in $\mathrm{Cls} \quad\left(\mid==_{\mathrm{Cls}} \mathrm{A}\right)$

$$
\begin{array}{ll}
\text { examples: } & {[] P \rightarrow P \text { invalid in } K} \\
& \begin{array}{ll}
{[] P \rightarrow P} & \text { valid in the class of reflexive models } \\
& <>P \rightarrow<><>P \text { valid in transitive models }
\end{array} .
\end{array}
$$

- A is satisfiable in Cls iff $[A]_{M}$ nonempy for some M in Cls

```
examples:
\(P_{\wedge} \sim[] P\) satisfiable in \(K\)
\(\mathrm{P} \wedge \sim[] \mathrm{P}\) unsatisfiable in reflexive models
```

A is valid in Cls iff $\sim \mathrm{A}$ is unsatisfiable in Cls

Classes of models: examples

- $\{\mathrm{M}: \operatorname{card}(\mathrm{W})=1\}$

$$
\mid={ }_{c \mathrm{cs}}<>A \rightarrow[\mathrm{~A}
$$

- $\{\mathrm{M}: \operatorname{card}(\mathrm{W})=2\}$

$$
\mid={ }_{\text {cis }}<>\left(\mathrm{A}^{\prime} \mathrm{B}\right) \wedge<>(\sim \mathrm{A} \wedge \mathrm{~B}) \rightarrow[] \mathrm{B}
$$

- \{M: card(W) finite\}
- $\{\mathrm{M}: \mathrm{R}([])$ reflexive $\}=\mathrm{KT}$
$1=\kappa \tau] A \rightarrow A$
- $\{\mathrm{M}: \mathrm{R}([])$ transitive $\}=\mathrm{K} 4$

$$
\mid=_{k_{4}}<><>A \rightarrow<>A
$$

- $\{\mathrm{M}: \mathrm{R}([\mathrm{l})$ equivalence relation $\}=\mathrm{S} 5$

$$
\mid={ }_{s 5} \mathrm{~A} \rightarrow\left[j^{\prime}>\mathrm{A}\right.
$$

Reasoning problems

- model checking given A, M and w, do we have $w \|-A$?
- validity
given A and Cls , is A valid in Cls?
- satisfiability
given A and Cls , does there exist M in Cls and w in M such that w \|- A ?

How can we solve them automatically?

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1 st order logic
- some implemented tableaux theorem provers

The basic idea for classical logic [Beth]

- try to find M and w by applying the truth conditions ("tableau rules")

$$
\begin{array}{llc}
w \|-A \wedge B & \rightarrow & \text { add } w \|-A, \text { and add } w \|-B \\
w \|-A v B & \rightarrow & \text { add either } w \|-A, \text { or add } w \|-B \text { (nondet.) } \\
w \|-\sim A & \rightarrow & \text { "don't add } w \|-A " ? ? ? \\
-w \|-\sim \sim A & \rightarrow \text { add } w \|-A \\
-w \|-\sim(A v B) & \rightarrow \text { add } w \|-\sim A, \text { and add } w \|-\sim B \\
-w \|-\sim(A \wedge B) & \rightarrow \text { add either } w \|-\sim A, \text { or add } w \|-\sim B
\end{array}
$$

- apply while possible ("downwards saturation")
- is this a model?

NO if both w \|- P and w \|- ~P ("tableau is closed")
ELSE: for every w, if $w \|-P$ put $V_{w}(P)=1$, else put $V_{w}(P)=0$

The basic idea: example for classical logic

$$
A=P \wedge \sim(P \wedge Q)
$$

- applying truth conditions:

1. $w \|-P \wedge \sim(P \wedge Q)$
2. $w\|-P \wedge \sim(P \wedge Q), w\|-P, w \|-\sim(P \wedge Q)$
3. $w\|-P \wedge \sim(P \wedge Q), w\|-P, w\|-\sim(P \wedge Q), w\|-\sim P \quad$ (nondet.)

- no more truth condition applies
- can't be a model:
both w \|- P and w \|- ~P
- backtrack on nondeterministic choices

The basic idea: example for classical logic (ctd.)

- 1st downward saturated graph for
$A=P \wedge \sim(P \wedge Q)$
\rightarrow not a model (contains P and ~P!)

The basic idea: example for classical logic (ctd.)

- 1st downward saturated set for $A=P \wedge \sim(P \wedge Q)$
\rightarrow not a model (contains P and $\sim \mathrm{P}$!)
- 2nd downward saturated set for
$A=P \wedge \sim(P \wedge Q)$
\rightarrow is a model of A

The basic idea for modal logics

- apply truth conditions = build a graph
- create nodes
- add links between nodes
- add formulas to nodes
- the basic cases

$$
\begin{array}{ll}
\mathrm{w} \|-[] A & \rightarrow \text { forall } u \text { such that Rwu, add } u \|-\mathrm{A} \\
\mathrm{w} \|-<>A & \rightarrow \text { add some new } u, \text { add Rwu, add } u \|-A \\
\mathrm{w} \|-\sim[] \mathrm{A} & \rightarrow \text { add some new } u, \text { add Rwu, add } u \|-\sim A \\
\mathrm{w} \|-\sim<>A & \rightarrow \ldots
\end{array}
$$

- "downwards saturated graph": is this a model?

The basic idea: example for modal logic
 $$
\mathrm{A}=\mathrm{P} \wedge \sim[] \mathrm{P}
$$

- applying tableau rules:

1. $w \|-P_{\wedge} \sim[] P$
2. $w\|-P \wedge \sim[] P, w| |-P, w\|-\sim[] P$
3. w ||- $\mathrm{P} \wedge \sim[] P, w\|-P, w\|-\sim[] P, R w u, u \|-\sim P$
no more tableau rule applies
\rightarrow never both w \|- A and w \||- ~A ("open tableau")

- model can be built: $\mathrm{M}=(\mathrm{W}, \mathrm{R}, \mathrm{V})$
set of worlds W : $\quad W=\{w, u\}$
accessibility relation R : $R_{[0} w u$
valuation V :
$V_{w}(P)=1, V_{u}(P)=0$

The basic idea: example for modal logic (ctd.)

- premodel for
$\mathrm{A}=\mathrm{P} \wedge \sim[] \mathrm{P}$
\rightarrow not closed
\rightarrow is a model of A

A remark on tableaux and truth tables

- Tableaux are a more convenient presentation of the familiar truth table analysis" [Beth]
- "Tableaux are more efficient than truth tables." [folklore]
- ... not exactly [d'Agostino]:
$(\mathrm{P} 1 \vee \mathrm{P} 2 \vee \mathrm{P} 3) \wedge(\mathrm{P} 1 \vee \mathrm{P} 2 \vee \sim \mathrm{P} 3) \wedge(\mathrm{P} 1 \vee \sim \mathrm{P} 2 \vee \mathrm{P} 3) \wedge \ldots$
there are formulas with n atoms of length $O\left(2^{n}\right)$
\rightarrow truth tables have 2^{n} rows
\rightarrow at least n ! closed tableaux, and n ! grows faster than 2^{n}

Historical remarks

- the early days (1950-80): handwritten proofs
- Beth, Gentzen
- relation to sequent calculus "tableau proof = sequent proof backwards"
- Kripke: explicit accessibility relation
- Smullyan, Fitting: uniform notation
- today: mechanized systems
- fast provers exist

FaCT [Horrocks]
K-SAT [Giunchiglia\&Sebastiani]
importance of strategies

- applications exist: BDI logics, description logics

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1 st order logic
- some implemented tableaux theorem provers

Informal definition of tableau rules

- Tableau rules expand directed graphs by
- adding formulas
- adding nodes
- adding links
- duplicating the graph
- $\operatorname{rule}(G)=\left\{G_{1}, \ldots, G_{n}\right\}$

Informal definition of tableau rules

- Tableau rules expand directed graphs by
- adding formulas
- adding nodes
- adding links
- duplicating the graph
- $\operatorname{rule}(G)=\left\{G_{1}, \ldots, G_{n}\right\}$
- application of a rule to $G=$ application to every formula in every node of G.
- $\operatorname{rule}\left(\left\{\mathrm{G}_{1}, \ldots, \mathrm{G}_{\mathrm{n}}\right\}\right)=\operatorname{rule}\left(\mathrm{G}_{1}\right) \cup \ldots \cup \operatorname{rule}\left(\mathrm{G}_{\mathrm{n}}\right)$

Tableau rules: syntax

- general form:
rule ruleName
if cond $_{1}$
if cond $_{n}$
do action $_{1}$
do action $_{k}$
- example conditions:
if hasElement node formula
if isLinked node $_{1}$ node $_{2} R$
... (more to come)
- example actions:
do stop
do addElement node formula
do newNode node
do link node node $_{2} R$
do duplicate node ${ }_{1}$ [...]
... (more to come)

Example: tableau rules for classical logic

the
LoTREC
tableau
prover

Example: tableau rules for classical logic

Example: tableau rules for classical logic

rule Stop:
if there is an explicit contradiction then stop exploring the tableau

Example: tableau rules for classical logic

rule NotNot:
replaces $\sim \sim A$ by A

Example: tableau rules for classical logic

Example: tableau rules for classical logic

Definition of strategies

- A strategy defines some order of application of the tableau rules:
firstrule rule $e_{1} \ldots$ rule $_{n}$ end
"apply first applicable rule and stop"
allrules rule ${ }_{1} \ldots$ rule $_{n}$ end
"apply all applicable rules in order"
repeat strategy end
"repeat until no rule applicable"
- Strategy stops if no rule is applicable.

Strategy for classical logic

strategy CPLStrategy
repeat allRules
Stop
NotNot
And
NotAnd
end end
end

Strategy for classical logic: example

CPLStrategy(P\&~(P\&Q))

| LOTREC |
| :--- | :--- | :--- |
| File Iheory Strategy Examples |
| LI STRATEGY FOR CLASSICAL |
| |
| strategy CPLStrategy |
| repeat allRules |
| Stop |
| NotNot |
| And |
| NotAnd |
| end end |
| end |

Strategy for classical logic: example (ctd.)

CPLStrategy $(\mathrm{P} \& \sim(\mathrm{P} \& \mathrm{Q}))=$
\{ T1
,
T2 \}

Definition of tableaux

The set of tableaux for A with strategy S is the set of graphs obtained by applying the strategy S to an initial single-node graph whose root contains only A.

- notation: S(A)
- Remark
our tableau = "tableau branch" in the literature (sounds odd to call a graph a branch)

Tableaux: open or closed?

- A node is closed iff it contains FALSE.
- A tableau is closed iff it has a closed node.
- A set of tableaux is closed iff all its elements are.

An open tableau is a premodel:
\rightarrow build a model

Formal properties

to be proved for each strategy:

- Termination

For every $A, S(A)$ terminates.

- Soundness

If $\mathrm{S}(\mathrm{A})$ is closed then A is unsatisfiable.

- Completeness

If $S(A)$ is open then A is satisfiable.

Termination

- For every A, CPLTableaux(A) terminates.
- Proof:
- Every tableau rule only adds strict subformulas.
- This can only be done a finite number of times, then the strategy stops.

Soundness

- If CPLTableaux (A) is closed then A is unsatisfiable.
- Proof:
- Every tableau rule is "guaranteed" by the truth conditions:
If G is CPL-satisfiable
then there is G_{i} in rule(G) that is CPL-satisfiable
- Hence if every graph is closed then the original A cannot be satisfiable.

Completeness

- If CPLTableaux (A) is open then A is satisfiable.
- Proof:
- Take some open tableau G in CPLTableaux(A).

Completeness

- If CPLTableaux(A) is open then A is satisfiable.
- Proof:
- Take some open tableau G in CPLTableaux(A).
- G is a downwards closed set ("Hintikka set"):
if $\sim \sim A$ in node then A in node
if $A \& B$ in node then A in node and B in node
if $\sim(A \& B)$ in node then $\sim A$ in node or $\sim B$ in node
(because allRules strategy is fair: every rule eventually applies)

Completeness

- If CPLTableaux(A) is open then A is satisfiable.
- Proof:
- Take some open tableau G in CPLTableaux(A).
- G is a downwards closed set ("Hintikka set"):
if $\sim \sim A$ in node then A in node
if $A \& B$ in node then A in node and B in node
if $\sim(A \& B)$ in node then $\sim A$ in node or $\sim B$ in node
(because allRules strategy is fair: every rule eventually applies)
- Build a CPL model from G:
$V_{\text {node }}(P)=1$ iff P appears in node

Completeness

- If CPLTableaux(A) is open then A is satisfiable.
- Proof:
- Take some open tableau G in CPLTableaux(A).
- G is a downwards closed set ("Hintikka set"):
if $\sim \sim A$ in node then A in node
if $A \& B$ in node then A in node and B in node
if $\sim(A \& B)$ in node then $\sim A$ in node or $\sim B$ in node
(because allRules strategy is fair: every rule eventually applies)
- Build a CPL model from G:
$V_{\text {node }}(P)=1$ iff P appears in node
- Prove by induction on the form of A :
for every A in node, $V_{\text {node }}(A)=1$
("fundamental lemma")

In general ...

- soundness proof ... easy
- termination proof ... difficult
- completeness proof ... very difficult

In general ...

- soundness proof:
- termination proof:
- completeness proof:
easy
difficult
very difficult
- ... but soundness + termination of strategy is practically sufficient:

1. apply strategy to A
2. take an open tableau and build pointed model (M, w)
3. check if M in model class
4. check if $\mathrm{M}, \mathrm{w} \|-\mathrm{A}$

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1st order logic
- some implemented tableaux theorem provers

The basic modal logic K

- the basic modal operators:

w ||- []A
w ||- <>A
iff forall u: Rwu implies u ||- A
iff exists u: Rwu and u \|- A

Tableau rules for K

connectors: not, and, nec
[some rules for classical logic...]

Tableau rules for K

connectors: not, and, nec
[some rules for classical logic...]
createSuccessor:
if not nec A is in node0
then create new node node1 \qquad
link it to node0 add not A to node1
end

Tableau rules for K

connectors: not, and, nec
[some rules for classical logic...]
propagateNec:
if nec A is in node0 node0 is linkednode1 R
then add node1 A
end

Tableaux for K

- ... plus rules for the definable connectives
- KStrategy($<>$ P \& $<>$ Q \& []$(R$ $v<>S))$

Modal logic KT

- accessibility relation is reflexive
- idea: integrate this into truth condition
- w ||- []A iff w ||- A and forall u: Rwu implies u ||- A

Tableaux for modal logic KT

[connectors as for K...]
[rules as for K...]

Tableaux for modal logic KT

[connectors as for K...]
[rules as for K...]

	LOTREC	$\square \square$
File ITheory Strategy Examples		
	Lotrec \#1	\square^{5}
mj^{M} Connectors and Rules mu^{3} Strategies ${ }^{3}$		
```rule createSuccessor if hasElement nodeO not nec (variable A) do newNode node1 do link nodeO node1 R do add node1 not (variable A) end```		
	```rule propagateNec if hasElement nodeO nec (variable A) if isLinked node0 node1 R do add node1 (variable A) end```	
	// rule for reflexivity rule addNec if hasElement node0 nec (variable A) do add node0 (variable A) end	

Tableaux for modal logic S5

accessibility relation is equivalence relation

can be supposed to be a single equivalence class
optimized tableau rules
...

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1st order logic
- some implemented tableaux theorem provers

Tableau rules for S4

accessibility relation is reflexive and transitive
tableau rules for S4:

- [connectors as for KT...]
- [rules as for KT...]
- ... and take into account transitivity:
"when []A is in a node
then add []A to all children"

Tableau rules for S4

accessibility relation is reflexive and transitive
tableau rules for S4:

- [connectors as for KT...]
- [rules as for KT...]
- ... and take into account transitivity:
"if []A is in a node
then add []A to all children"
problem: find a terminating strategy

Tableau rules for S4

- Example: w ||- []~[]P
- add w ||- ~[]P
(by rule for reflexivity)

Tableau rules for S4

- Example: w ||- []~[]P
- add w ||- ~[]P
(by rule for reflexivity)
- create u, add Rwu, add u ||- ~P
(by createSuccessor)

Tableau rules for S4

- Example: w ||- []~[]P
- add w ||- ~[]P
(by rule for reflexivity)
- create u, add Rwu, add u \||- ~P
(by createSuccessor)
- add u ||- []~[]P (by rule for transitivity)

Tableau rules for S4

- Example: w ||- []~[]P
- add w ||- ~[]P
(by rule for reflexivity)
- create u, add Rwu, add u \|- ~P
(by createSuccessor)
- add u II- []~[]P (by rule for transitivity)
- add u ||- ~[]P
(by rule for reflexivity)

Tableau rules for S4

- Example: w ||- []~[]P
- add w ||- ~[]P
(by rule for reflexivity)
- create u, add Rwu, add u \||- ~P
(by createSuccessor)
- add u II- []~[]P (by rule for transitivity)
- add u ||- ~[]P
(by rule for reflexivity)
- create u'

Tableau rules for S4

- Example: w ||- []~[]P
- add w ||- ~[]P (by rule for reflexivity)
- create u, add Rwu, add u \|- ~P
(by createSuccessor)
- add u ||- []~[]P
(by rule for transitivity)
- add u ||- ~[]P
(by rule for reflexivity)
- create u'
put a looptest into the rules!

Tableau rules for S4 (ctd.)

principle:

- if a node is included in an ancestor then mark it.

3 LOTREC			- $\square^{\text {a }}$
File Iheory Strategy Examples			
Lotrec \#1			$\square^{5} \square^{7}$
$\mathrm{m}^{3} \mathrm{~m}$ Connectors and Rules	$\mathrm{m}^{3} \mathrm{strategies}$	$\sum_{3}{ }^{3}$ Formula	
// rule for transitivity rule copyNec if hasElement node0 nec (variable A) if isLinked node0 node1 R do add node1 nec (variable A) end			
rule createSuccessor			
if hasElement node0 not nec (variable A)			
if isNotMarked node0 CONTAINED\|			
do newNode node1			
do link node0 node1 R			
do add node1 not (variable A)			
end			
// inclusion test			
rule looptest			
if isNewNode node1			
if isAncestor node0 node1			
if contains node0 node1			
do mark node1 CONTAINED			
end			

Tableau rules for S4 (ctd.)

principle:

- if a node is included in an ancestor then mark it.
- if a node is marked then block the createSuccessor rule
- S4Strategy([]~[]P)

S4Strategy

([]<>[] (P $\vee \mathrm{Q}) \&[]<>\sim \mathrm{P}$ \& <>[]~Q)

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1st order logic
- some implemented tableaux theorem provers

Intuitionistic logic

- no modal operators, but different semantics for implication and negation
- aim: invalidate

$$
\begin{array}{ll}
(\sim P=>F A L S E)=>P & \text { ex falso quodlibet } \\
P \vee \sim P & \text { tertio non datur } \\
(\sim Q=>\sim P)=>(P=>Q) & \text { contraposition }
\end{array}
$$

- R is reflexive, transitive and hereditary:
if Rwu and $V_{w}(P)=1$ then $V_{u}(P)=1$
- similar to S4
- truth condition
$w \|-A=>B$ iff forall u : Rwu implies u ||- $A \rightarrow B$

Tableaux rules for intuitionistic logic

- follow translation from LJ to S4:

$$
\begin{array}{ll}
P^{\prime} & =[] P \\
(A=>B)^{\prime} & =[]\left(A^{\prime} \rightarrow B^{\prime}\right) \\
(\sim A)^{\prime} & =[] \sim\left(A^{\prime}\right)
\end{array}
$$

(inheritance)

- tableaux similar to S4
- signed formulas

$$
\begin{aligned}
& T(P) \text { " } P \text { is true" } \\
& F(P) \text { " } P \text { is false" } \\
& F(P) \neq \sim P
\end{aligned}
$$

Tableaux rules for intuitionistic logic

- create successor make $A=>B$ false in w: create u, add link Rwu, make A false in u, make B true in u

```
= LOTREC
File Theory Strategy Examples
OLotrec#1
    \square口
Nu/ Connectors and Rules m
rule createSuccessor
    if hasElement node0 f imp (variable A) (variable B)
    if isNotMarked node0 CONTAINED
    do newNode node1
    do link node0 node1 R
    do add node1 t (variable A)
    do add node1 f(variable B)
    end
// rule for inheritance of atoms
rule propagateAtoms
    if hasElement node0 ta P
    if isLinked node0 node1 R
    do add node1 taP
end
```


Tableaux rules for intuitionistic logic

- create successor make $A=>B$ false in w:
create u, add link Rwu, make A false in u, make B true in u
- inheritance
if $w \|-P$ and Rwu \longrightarrow then add $u \|-P$

Tableaux rules for intuitionistic logic: $\sim \sim P=>P$

LJStrategy $(((\mathrm{P}=>$ False $)=>$ False $)=>\mathrm{P}) \rightarrow 4$ tableaux, 1 open

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1st order logic
- some implemented tableaux theorem provers

Relevant logics

Paraconsistent logics

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1st order logic
- some implemented tableaux theorem provers

Linear Temporal Logic

- two modal operators:

$$
\begin{aligned}
& {[]=\text { always }} \\
& X=\text { next }
\end{aligned}
$$

- $R(X)$ is serial and deterministic
- $R([])=R(X))^{*}$
$R([])$ linear order
- mix axioms:

$$
\begin{aligned}
& {[] A \leftrightarrow A \wedge X[] A} \\
& <>A \leftrightarrow A \vee X<>A
\end{aligned}
$$

- induction axiom:

$$
\mathrm{A} \wedge[](\mathrm{A} \rightarrow \mathrm{XA}) \rightarrow[\mathrm{A}
$$

- decidable, EXPTIME complete

Tableau rules for Linear Temporal Logic

how take induction into account?

- solution: don't care, and only apply the mix axioms:

$$
\begin{aligned}
& \text { rewrite }[] A \text { to } A \wedge X[] A \\
& \text { rewrite }<>A \text { to } A \vee X<>A
\end{aligned}
$$

- only create successors for X, never for <>
- termination: use the looptest from transitive modal logics
- nodes only contain subformulas of orig. formula
- looptest succeeds at most at polynomial depth

Tableau rules for Linear Temporal Logic: example

- Example: w II- []P add w \|- P^X[]P (by mix axioms) add w \|- P, w \|- X[]P
create u, add $R_{x} w u$, add $u \|-[] P$
(by propagation rule for X)
add $u \|-P \wedge X[] P \quad$ (by mix axioms)
add u \|I- P, u \|I-X[]P
w contains u: mark u "contained"

Tableau rules for Linear Temporal Logic (ctd.)

- may result in 'nonstandard' models of <>P
\rightarrow "P never fulfilled"
\rightarrow check if all <> are fulfilled!

Tableau rules for Linear Temporal Logic: example

- Example: LTLStrategy (<>P)

$$
w \|-<>P
$$

Tableau rules for Linear Temporal Logic

- Example: LTLStrategy(<>P)

$$
\begin{aligned}
& w \|-<>P \\
& w \|-P \vee X<>P
\end{aligned}
$$

Tableau rules for Linear Temporal Logic

- Example: LTLStrategy(<>P)

Tableau rules for Linear Temporal Logic

- Example: LTLStrategy (<>P)

Tableau rules for Linear Temporal Logic

- Example: LTLStrategy (<>P)

| $w \\|-<>P$ | | | | | | |
|---|---|---|---|---|---|---|---|
| | | |
| w \||- <>P, w ||- P | $w^{\prime}\left\\|-<>P, w^{\prime}\right\\|-X<>P$ | |
| (nothing applies) | $R_{x} w^{\prime} u^{\prime}, u^{\prime} \\|-<>P$ | |
| | $u^{\prime} \\|-P$ v $X<>P$ | (by mix) |

Tableau rules for Linear Temporal Logic

- Example: LTLStrategy (<>P)

$$
w \|-<>P
$$

$$
w \|-P v X_{<>} \quad \text { (by mix) }
$$

w ||- <>P, w ||-P w' ||- <>P, w' ||- X<>P
(nothing applies)

$$
R_{x} w^{\prime} u^{\prime}, u^{\prime} \|-<>P
$$

$$
u^{\prime} \|-P v x<>P \quad \text { (by mix) }
$$

$$
u^{\prime} \|-P
$$

u" ||- X<>P

Tableau rules for Linear Temporal Logic

- Example: LTLStrategy(<>P)

(by mix)
w ||- <>P, w ||-P w' ||- <>P, w' ||- X<>P
(nothing applies)

$$
R_{x} w^{\prime} u^{\prime}, u^{\prime} \|-<>P
$$

$$
u^{\prime} \|-P \text { v } X<>P \quad \text { (by mix) }
$$

$u^{\prime} \|-P$
(nothing applies)
u" ||- X<>P
contained in w,

Tableau rules for Linear Temporal Logic

- Example: LTLStrategy(<>P)

Propositional dynamic logic (PDL)

- two kinds of expressions
- formulas:

$$
\mathrm{A}: \because=\mathrm{P}|\sim \mathrm{~A}| \mathrm{A} \wedge \mathrm{~B} \mid[\pi] \mathrm{A}
$$

- programs:

$$
\pi::=\mathrm{a}\left|\pi_{1} ; \pi_{2}\right| \pi_{1} \cup \pi_{2}\left|\pi^{*}\right| \mathrm{A} ?
$$

- in the models: R interprets programs

$$
\begin{aligned}
& \mathrm{R}\left(\pi_{1} ; \pi_{2}\right)=\mathrm{R}\left(\pi_{1}\right) ; \mathrm{R}\left(\pi_{2}\right) \\
& \mathrm{R}\left(\pi_{1} \cup \pi_{2}\right)=\mathrm{R}\left(\pi_{1}\right) \cup \mathrm{R}\left(\pi_{2}\right) \\
& \mathrm{R}\left(\pi^{*}\right)=(\mathrm{R}(\pi))^{*} \\
& \mathrm{R}(\mathrm{~A} ?)=\{<\mathrm{W}, \mathrm{w}\rangle: \mathrm{w} \|-\mathrm{A}\}
\end{aligned}
$$

Tableaux for PDL

- similar to LTL:
- expand $\left[\pi^{*}\right] A$ to $A \wedge[\pi]\left[\pi^{\star}\right] A$
- don't apply createSuccessor to formulas $\sim\left[\pi^{*}\right] A$
- mark nodes that are included in some ancestor
- don't apply createSuccessor to formulas $\sim[\pi] A$ if node is marked
- expand the other program expressions:

$$
\begin{array}{ll}
{\left[\pi_{1} ; \pi_{2}\right] \mathrm{A}} & \leftrightarrow\left[\pi_{1}\right]\left[\pi_{2} 2 \mathrm{~A}\right. \\
{\left[\pi_{1} \cup \pi_{2} 2 \mathrm{~A}\right.} & \leftrightarrow\left[\pi_{1}\right] \mathrm{A} \wedge\left[\pi_{2}\right] \mathrm{A} \\
{[\mathrm{~A} ?] \mathrm{B}} & \leftrightarrow \mathrm{~A} \rightarrow \mathrm{~B}
\end{array}
$$

Description logics

- "roles" and "concepts"
- more expressive than classical propositional logic
- less expressive than 1st order logic
- focus on decidable logics
- applications:
- databases
- software engineering
- web-based information systems description of medical terminology
- ontology of the semantic web standards: DAML+OIL, OWL
- description of web services

WSDL, OWL-S

Description logics: concepts and roles

- roles = binary relations
hasChild
hasHusband
- concepts = unary relations = properties

Person
Female
Parent \cap Female
Father U Mother
~Parent
\exists hasChild.Female "individuals having a female child"
\forall hasChild.Female "..."
>1 hasChild.T "individuals having more than 1 child"

- set of concepts $\boldsymbol{\rightarrow}$ "assertion box" (ABox)

Description logics: TBoxes

- set of relations between concepts and roles
\rightarrow "terminological box" (TBox)
- restricted to concept abbreviations (sometimes: fixpoint definitions)
Mother = Person \cap Female
- are expanded away \rightarrow TBox $=\varnothing$

Description logics: reasoning tasks

- satisfiability of a concept C
- subsumption of C_{1} by C_{2}

same as: $\mathrm{C}_{1} \cap \sim \mathrm{C}_{2}$ unsatisfiable

- equivalence of C_{1} by C_{2}
same as: C_{1} subsumes C_{2} and C_{1} subsumes C_{2}
- disjointness of C_{1} and C_{2}
\perp subsumes $\mathrm{C}_{1} \cap \mathrm{C}_{2}$
\rightarrow all reasoning tasks reduce to concept satisfiability

Description logics

- translation of concepts into modal logics

\exists hasChild.Female	$=<$ hasChild $>$ Female
\forall hasChild.Female	$=$ hasChild.Female $]$
Parent \cap Female	$=$ Parent \wedge Female
Father U Mother	$=$ Father v Mother
<2 hasChild. $T=[\text { hasChild }]_{2} T$	
≥ 2 hasChild. $T=<{\text { hasChild }>_{2} T}^{T}$	

...modal logics with number restrictions
[Fattorosi\&Barnaba, van der Hoek]

Description logics

- description logic ALC:

$$
\begin{aligned}
& \sim \mathrm{C} \\
& \mathrm{C}_{1} \cap \mathrm{C}_{2} \\
& \mathrm{C}_{1} \cup \mathrm{C}_{2} \\
& \exists \text { R.C } \\
& \forall \text { R.C } \\
& =\text { multimodal } \mathrm{K}
\end{aligned}
$$

- description logic $A L C_{\text {reg }}=$

ALC + regular expressions on roles
= PDL

- all description logic reasoning tasks reduce to satisfiability checking in modal logics
- tableaux used as optimal decision procedures

Logics of action and knowledge

- 2 modal operators
$K n w_{i} A$ "agent i knows that A "
[a] A "after execution of action a, A holds"
- "product logics":
$R_{\text {Knwi }}{ }^{\circ} R_{a}=R_{a}{ }^{\circ} R_{\text {Knwi }} \quad$ (permutation)
if $w R_{\text {Knwi }} u$ and $w R_{a} v$ then exists t such that $u R_{a} t$ and $v R_{\text {Knwi }} t$
(confluence)
- axiomatically:

$$
\begin{aligned}
& \mathrm{Knw}_{i}[a] \mathrm{A} \leftrightarrow[a] \mathrm{Knw}_{i} \mathrm{~A} \\
& <\mathrm{K} \mathrm{Knw}_{i} \mathrm{~A} \rightarrow \mathrm{Knw}_{i}<a>\mathrm{A}
\end{aligned}
$$

tableaux: ...
\rightarrow problem: combination with transitivity

Belief-Desire-Intention logics

- [Bratman, Rao\&Georgeff]
- 3 modal operators

Bel $_{i}$ A
Desire $_{i} A$
Intend ${ }_{i}$ A
"agent i believes that A"
"agent i desires that A " "agent i intends that A "

- plus branching time logic

Modal logics with density

- accessibility relation is dense
if Rwu then exists $v: R w v$ and Rvu

Non-normal modal logics

- no accessibility relation, but neighborhood functions: $N: W \rightarrow 2^{2 W}$
$\mathrm{w} \|-$ []A iff exists U in $\mathrm{N}(\mathrm{w})$ forall u in U : $\mathrm{u} \|-\mathrm{A}$ non-normal modal logic EM
- can be represented by a set of relations
$w \|-[] A$ iff exists R_{i} forall $u\left(R_{i} w u\right.$ implies $\left.u \|-A\right)$
- logic EM: "non-normal"
not valid: []P^[]Q \rightarrow [](P%5EQ)
but valid: []$(P \wedge Q) \rightarrow[] P \wedge[] Q$

Tableau rules for EM

...

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1st order logic
- some implemented tableaux theorem provers

1st order logic

- How should we handle the quantifiers?
$\forall x p(x) \wedge \sim p(a)$ is unsatisfiable
$\forall x p(x) \wedge \exists x \sim p(x)$ is unsatisfiable
- naïve implementation [Beth, Smullyan]:
if hasElement node0 forall $\mathrm{x} \mathrm{A}(\mathrm{x})$
do createTerm t
do add node0 $A(t)$
if hasElement node exists $\times \mathrm{A}(\mathrm{x})$
do createNewConstant c
do add node $A(c)$
\rightarrow problem: loops for satisfiable formulas

Herbrand Tableaux for 1st order logic

- 1st solution: restrict instantiation to Herbrand universe
if hasElement node0 forall $\mathrm{x} \mathrm{A}(\mathrm{x})$ do createHerbrandTerm t
(doesn't exist in LoTREC yet)
do add node0 $A(t)$
- ex.: $\exists x p(x, x) \wedge \exists x \forall y \sim p(x, y))$ satisfiable

1. $\exists x p(x, x)$
2. $\exists x \forall y \sim p(x, y)$
3. $\forall y \sim p(a, y) \quad$ (2), new constant
4. $\sim p(a, a) \quad$ (3), only Herbrand term
5. $\mathrm{p}(\mathrm{b}, \mathrm{b})$
(1), new constant
6. $\sim p(a, b)$
(3), Herbrand term
no further instantiation of (3) is possible

- decision procedure for formulas without positive $\forall \ldots \exists$

Herbrand Tableaux for 1st order logic

- counterexample: $\forall x \exists y p(x, y)$ satisfiable

1. $\forall x \exists y p(x, y)$
2. $\exists y p(a, y)$
(1), Herbrand term
3. $p(a, b)$
4. $\exists \mathrm{y} p(\mathrm{~b}, \mathrm{y})$
(2), new constant
(1), Herbrand term
5. $p(b, c)$
(4), new constant
\rightarrow loops

Free-variable tableaux with unification

- 2nd solution: don't instantiate at all
- work with free variables
- runtime skolemization of existential quantifiers
- term unification
- ex.: $\forall x \exists y p(x, y) \wedge \forall x \exists y \sim p(x, y))$ satisfiable

1. $\forall x \exists y p(x, y)$
2. $\forall x \exists y \sim p(x, y)$
3. $\exists \mathrm{y} \mathrm{p}\left(\mathrm{x}_{1}, \mathrm{y}\right)$
4. $\exists \mathrm{y} \sim \mathrm{p}\left(\mathrm{x}_{2}, \mathrm{y}\right)$
5. $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{f}\left(\mathrm{x}_{1}\right)\right)$
6. $\sim p\left(x_{2}, g\left(x_{2}\right)\right)$
stops: (5) and (6) don't unify

- ... but does not terminate in all cases (sure)
else 1st order logic would be decidable

Overview

- possible worlds semantics: quickstart
- tableaux systems: basic ideas
- tableaux systems: basic definitions
- tableaux for simple modal logics
- tableaux for transitive modal logics
- tableaux for intuitionistic logic
- tableaux for other nonclassical logics
- tableaux for modal logics with transitive closure and other modal and description logics
- tableaux for 1st order logic
- some implemented tableaux theorem provers

LoTREC

- IRIT-CNRS Toulouse (Sahade, Gasquet, Herzig); accessible through www
- general theorem prover
- explicit accessibility relations
- easy to implement logics with symmetric accessibility relations etc.
- back-and-forth rules
- inefficient

TableauxWorkBench (TWB)

- Australian National U. (Abate, Goré)
- general theorem prover
- close to Gentzen sequents
- accessibility relations remain implicit
- hard to implement logics with symmetric accessibility relations
- temporal logic with future and past
- converse of programs

LogicWorkBench (LWB)

- U. Bern (Jäger, Heuerding); accessible through www
- efficient algorithms for all the basic modal and temporal logics
- hard to implement a new logic

FaCT

- U. Manchester (Horrocks); open source
- fast decision procedure for description logics with inverse roles and qualified number restrictions
= multimodal $\mathrm{K}+$ converse + number restrictions
- optimized backtracking: "backjumping"

KSAT

- U. Trento (Giunchiglia, Sebastiani)
- combines tableaux method with fast SAT solvers for classical propositional logic
- call a SAT solver, where subformulas []A, <>B are viewed as atomic
- SAT solver returns a tentative valuation
- use modal tableau rules to generate children
if inconsistent then there is no model
else iterate
- very efficient
- exists for all basic modal logics

KSAT (ctd.)

- KSAT([](P&Q) \& <>~P)
- call SAT with set of clauses $\{[](\mathrm{P} \& Q),<>\sim P\}$
- SAT returns:

$$
V([](P \& Q))=1
$$

$$
V(<>\sim P)=1
$$

- apply createOneSuccessor and propagateNec:
w ||- [](P&Q), w ||- <>~P, Rwu, u \|- ~P, u ||- P\&Q
- call SAT with set of clauses $\{P, Q, \sim P\}$
- SAT returns:
set of clauses unsatisfiable
-[]$(P \& Q) \&<>\sim P$ is unsatisfiable in K

Conclusion

- search for models = exploit the truth conditions
- tableaux work both ways:
- finding a model
- refuting
- termination = decidability
- tableaux as optimal decision procedures
\rightarrow description logics

Thanks to...

- Mohamad Sahade
- Olivier Gasquet
- Luis Fariñas del Cerro
- Dominique Longin
- Tiago Santos de Lima
- Fabrice Evrard
- Carole Adam
- Nicolas Troquard
- Benoit Gaudou
- Ivan Varzinczak
- Bilal Saïd
- Dominique Ziegelmayer
- ... and the other members of the LILaC group

