
1

Tableaux Systems
Tutorial at 1st School on Universal Logic

Montreux, 26-27 March 2005

Andreas Herzig

IRIT-CNRS
Toulouse

http://www.irit.fr/~Andreas.Herzig/

2

What this tutorial is about

• in focus
– the tableaux method
– … for logics with possible worlds semantics
– … and combinations thereof
– … as a computerized proof system (LoTREC)

• not in focus:
– tableaus
– proof theory, sequent calculi (cf. course on LDS)
– completeness proofs
– efficiency issues

3

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and

other modal and description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

4

Possible worlds

• possible world
valuation of classical
logic

w ||- P iff
Vw(P) = 1, for P in Atoms

w ||- A∧ B iff
(w ||- A and w ||- B)

p,q

~p,q

~p,~q

~p,q

5

Possible worlds models

• possible worlds model
= labeled graph
= transition system

• node = possible world
– valuation of classical logic
– not every valuation appears

(some logically possible
worlds are not actually
possible)

– Vw = Vu does not imply w = u

• link = accessibility relation R

p,q

~p,q

~p,~q

~p,q

6

Possible worlds models:
accessibility relations

• temporal
Rwu iff u is in the future of w

• alethic
Rwu iff u is possible, given the actual world w

• epistemic
Riwu iff u is possible for agent i, given the actual world w

• deontic
Rwu iff u is an ideal version of w

• dynamic
Rawu iff u is a possible result of the execution of program/action a in w

• comparative (preferential, …)
Rwu iff w is smaller than u
Rvwu iff w is smaller than u, given v

reading of R properties of R

7

Possible worlds models:
properties of R

• monomodal
– serial: forall w exists u Rwu
– reflexive
– transitive
– Euclidian
– confluent (Church-Rosser)
– dense
– …
– well-founded (not FO-

definable!)
– …

• multimodal
– R1 included in R2

– R1 = R2∪ R3

– R2 = (R1)-1

(transitive closure)
– R2 = (R1)*

(transitive closure)
– R1 ° R2 = R2 ° R1

– Church-Rosser
– …

8

Language:
modal operators

• express intensional concepts (belief, time,
action, obligation, …)

• non truth functional
• schema: op(a1,…,an), where op is the name of

the operator, and ai some argument
• generic form:

– []A = A is necessary (true in all possible worlds)
– <>A = A is possible

• in general: []A same as ~<>~A
– except in substructural logics (intuitionistic, …)

9

Language:
modal operators

• temporal
– []A = henceforth A (true in all future time points)
– <>A = eventually A

• deontic
– []A = A is obligatory (true in all ideal worlds)
– <>A = A is permitted (~<>A = A is forbidden)

• epistemic
– []iA = i believes A (true in all worlds possible for i)
– <>iA = ..

• dynamic
– [a]A = A is true after (every possible way of) executing a
– <a>A = …

• conditional
– A => B = if A then B

proof of A can be transformed into proof of B (intuitionistic)
if A was true then B would be true (counterfactual)

10

Interpreting the language:
truth conditions

• classical connectives
w ||- P iff Vw(P) = 1, for P in Atoms

w ||- A∧ B iff (w ||- A and w ||- B)

• interpretation of non-classical connectives
– via accessibility relation R

• schema:
w ||- op(a1,…,an) iff Cond(op,a1,…,an,w,R)

• the basic modal operators:
w ||- []A iff forall u: Rwu implies u ||- A
w ||- <>A iff exists u: Rwu and u ||- A

11

Examples of truth conditions

• multimodal operators
w ||- []iA iff forall u: Riwu implies u ||- A
w ||- <>iA iff …

• relation algebra operators
w ||- []-1A iff forall u: R-1wu implies u ||- A
w ||- []i ∪ jA iff forall u: (Ri∪ Rj)wu implies u ||- A
w ||- []*A iff forall u: R*wu implies u ||- A)

• non-normal operators
w ||- <>A iff forall Ri exists u: Riwu and u ||- A
w ||- []A iff exists Ri forall u …

12

Examples of truth conditions:
temporal operators

• branching time operators
w ||- ∃ XA iff ∃ R in Paths(w): R(w) ||- A

(Paths(w) = the set of paths going through w)

R
R

13

Examples of truth conditions:
temporal operators

• branching time operators
w ||- ∃ XA iff ∃ R in Paths(w): R(w) ||- A

(Paths(w) = the set of paths going through w)

w ||- ∀ <>A iff ∀ R in Paths(w) ∃ n Rn(w) ||- A

R
R

14

Examples of truth conditions:
temporal operators

• binary temporal operators
w ||- A Until B iff exists u: R*wu and u ||- B and

forall u’ (R*wu’ and R+vu’ implies u’ ||- A)

w ||- A Since B iff …

w ||- ∀ (A Until B) iff forall R in Paths(w) …

A AA B

15

Examples of truth conditions:
implications

• intuitionistic implication
w ||- A => B iff forall u: Rwu implies u ||- A → B

• conditional operator
w ||- A => B iff forall u: R[A]wu implies u ||- B

• relevant implication
w ||- A => B iff forall u,u’:

Rwuu’ implies (u ||- A implies u’ ||- B)

16

Models

• model M = (W,R,V)
– W nonempty set (possible worlds)

– R: Ops → (WxW) (accessibility relation)

– V: W → (Atoms → {0,1}) (valuation)

• pointed model ((W,R,V),w)
– w in W (actual world)

• extension of A in M
[A]M = {w in W : w ||- A}

17

Validity and satisfiability

• K = the set of all models (Kripke)

• A is valid in K iff [A]M = W for all M in K (|=K A)

examples: [](P v ~P)
[](P∧ Q) → []P∧ []Q
[]P∧ []Q → [](P∧ Q)

• A is satisfiable in K iff [A]M nonempy for some M in K

examples: P
P∧ ~[]P
P∧ []~P
[]P∧ ~[][]P

18

Validity and satisfiability
in a class of models C

• Cls some subset of K

• A is valid in Cls iff [A]M = W for all M in Cls (|=Cls A)

examples: []P → P invalid in K
[]P → P valid in the class of reflexive models
<>P → <><>P valid in transitive models

• A is satisfiable in Cls iff [A]M nonempy for some M in Cls

examples: P∧ ~[]P satisfiable in K
P∧ ~[]P unsatisfiable in reflexive models

A is valid in Cls iff ~A is unsatisfiable in Cls

19

Classes of models: examples

• {M: card(W) = 1}
|=Cls <>A → []A

• {M: card(W) = 2}
|=Cls <>(A∧ B) ∧ <>(~A∧ B) → []B

• {M: card(W) finite}
…

• {M: R([]) reflexive} = KT
|=KT []A → A

• {M: R([]) transitive} = K4
|=K4 <><>A → <>A

• {M: R([]) equivalence relation} = S5
|=S5 A → []<>A

20

Reasoning problems

• model checking
given A, M and w, do we have w ||- A?

• validity
given A and Cls, is A valid in Cls?

• satisfiability
given A and Cls, does there exist M in Cls and w in

M such that w ||- A?

How can we solve them automatically?

21

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and other modal and

description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

22

The basic idea
for classical logic [Beth]

• try to find M and w by applying the truth
conditions (“tableau rules”)

w ||- A∧ B add w ||- A, and add w ||- B
w ||- A v B add either w ||- A, or add w ||- B (nondet.)
w ||- ~A “don’t add w ||- A” ???

– w ||- ~~A add w ||- A
– w ||- ~(A v B) add w ||- ~A, and add w ||- ~B
– w ||- ~(A∧ B) add either w ||- ~A, or add w ||- ~B

• apply while possible (“downwards saturation")
• is this a model?

NO if both w ||- P and w ||- ~P (“tableau is closed”)
ELSE: for every w, if w ||- P put Vw(P) = 1, else put Vw(P) = 0

23

The basic idea:
example for classical logic

A = P∧ ~(P∧ Q)

• applying truth conditions:
1. w ||- P∧ ~(P∧ Q)
2. w ||- P∧ ~(P∧ Q), w ||- P, w ||- ~(P∧ Q)
3. w ||- P∧ ~(P∧ Q), w ||- P, w ||- ~(P∧ Q), w ||- ~P (nondet.)

• no more truth condition applies
• can’t be a model:

both w ||- P and w ||- ~P

• backtrack on nondeterministic choices

24

The basic idea:
example for classical logic (ctd.)

• 1st downward saturated
graph for

A = P∧ ~(P∧ Q)
not a model
(contains P and ~P!)

25

The basic idea:
example for classical logic (ctd.)

• 1st downward saturated
set for
A = P ∧ ~(P∧ Q)

not a model
(contains P and ~P!)

• 2nd downward saturated
set for
A = P ∧ ~(P∧ Q)

is a model of A

26

The basic idea
for modal logics

• apply truth conditions = build a graph
– create nodes
– add links between nodes
– add formulas to nodes

• the basic cases
w ||- []A forall u such that Rwu, add u ||- A
w ||- <>A add some new u, add Rwu, add u ||- A
w ||- ~[]A add some new u, add Rwu, add u ||- ~A
w ||- ~<>A …

• “downwards saturated graph”: is this a model?

27

The basic idea:
example for modal logic

A = P ∧ ~[]P

• applying tableau rules:
1. w ||- P∧ ~[]P
2. w ||- P∧ ~[]P, w ||- P, w ||- ~[]P
3. w ||- P∧ ~[]P, w ||- P, w ||- ~[]P, Rwu, u ||- ~P
no more tableau rule applies

never both w ||- A and w ||- ~A (“open tableau”)

• model can be built: M = (W,R,V)
set of worlds W: W = {w,u}
accessibility relation R: R[]wu
valuation V: Vw(P) = 1, Vu(P) = 0

28

The basic idea:
example for modal logic (ctd.)

• premodel for

A = P ∧ ~[]P

not closed
is a model of A

29

A remark on tableaux
and truth tables

• Tableaux are a more convenient presentation of
the familiar truth table analysis” [Beth]

• “Tableaux are more efficient than truth tables.”
[folklore]

• … not exactly [d’Agostino]:
(P1 v P2 v P3) ∧ (P1 v P2 v ~P3) ∧ (P1 v ~P2 v P3) ∧ …
there are formulas with n atoms of length O(2n)

truth tables have 2n rows
at least n! closed tableaux, and n! grows faster than 2n

30

Historical remarks

• the early days (1950-80): handwritten proofs
– Beth, Gentzen
– relation to sequent calculus

“tableau proof = sequent proof backwards”
– Kripke: explicit accessibility relation
– Smullyan, Fitting: uniform notation

• today: mechanized systems
– fast provers exist

FaCT [Horrocks]
K-SAT [Giunchiglia&Sebastiani]
importance of strategies

– applications exist: BDI logics, description logics

31

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and other modal and

description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

32

Informal definition of tableau rules

• Tableau rules expand directed graphs by
– adding formulas
– adding nodes
– adding links
– duplicating the graph

• rule(G) = {G1,…,Gn}

33

Informal definition of tableau rules

• Tableau rules expand directed graphs by
– adding formulas
– adding nodes
– adding links
– duplicating the graph

• rule(G) = {G1,…,Gn}

• application of a rule to G =
application to every formula in every node of G.

• rule({G1,…,Gn}) = rule(G1)∪ …∪ rule(Gn)

34

Tableau rules: syntax

• general form:
rule ruleName

if cond1

…
if condn

do action1

…
do actionk

• example conditions:
if hasElement node formula

if isLinked node1 node2 R

... (more to come)

• example actions:
do stop
do addElement node formula

do newNode node

do link node1 node2 R
do duplicate node1 […]

... (more to come)

35

Example: tableau rules
for classical logic

the

LoTREC
tableau

prover

36

Example: tableau rules
for classical logic

declaration of connectors:
negation and conjunction only

37

Example: tableau rules
for classical logic

rule Stop:
if there is an explicit contradiction
then stop exploring the tableau

38

Example: tableau rules
for classical logic

rule NotNot:
replaces ~~A by A

39

Example: tableau rules
for classical logic

rule And:
if A & B is in a node
then add A and B to node

40

Example: tableau rules
for classical logic

rule NotAnd:
if ~(A&B) is in a node
then duplicate tableau,

add ~A to the first tableau
add ~B to the second tableau

41

Definition of strategies

• A strategy defines some order of
application of the tableau rules:
firstrule rule1 … rulen end

“apply first applicable rule and stop”

allrules rule1 … rulen end
“apply all applicable rules in order”

repeat strategy end
“repeat until no rule applicable”

• Strategy stops if no rule is applicable.

42

Strategy
for classical logic

strategy CPLStrategy
repeat allRules
Stop
NotNot
And
NotAnd

end end
end

“fair strategy”

43

Strategy for classical logic:
example

CPLStrategy(P&~(P&Q))

44

Strategy for classical logic:
example (ctd.)

CPLStrategy(P&~(P&Q)) =

{ T1 , T2 }

45

Definition of tableaux

The set of tableaux for A with strategy S is
the set of graphs

obtained by applying the strategy S
to an initial single-node graph
whose root contains only A.

• notation: S(A)

– Remark
our tableau = “tableau branch” in the literature
(sounds odd to call a graph a branch)

46

Tableaux: open or closed?

• A node is closed iff it contains FALSE.
• A tableau is closed iff it has a closed node.
• A set of tableaux is closed

iff all its elements are.

An open tableau is a premodel:
build a model

47

Formal properties

to be proved for each strategy:

• Termination
For every A, S(A) terminates.

• Soundness
If S(A) is closed then A is unsatisfiable.

• Completeness
If S(A) is open then A is satisfiable.

48

Termination

• For every A, CPLTableaux(A) terminates.

• Proof:
– Every tableau rule only adds strict

subformulas.

– This can only be done a finite number of
times, then the strategy stops.

49

Soundness

• If CPLTableaux(A) is closed
then A is unsatisfiable.

• Proof:
– Every tableau rule is “guaranteed” by the truth

conditions:
If G is CPL-satisfiable
then there is Gi in rule(G) that is CPL-satisfiable

– Hence if every graph is closed
then the original A cannot be satisfiable.

50

Completeness

• If CPLTableaux(A) is open then A is satisfiable.
• Proof:

– Take some open tableau G in CPLTableaux(A).

51

Completeness

• If CPLTableaux(A) is open then A is satisfiable.
• Proof:

– Take some open tableau G in CPLTableaux(A).
– G is a downwards closed set (“Hintikka set”):

if ~~A in node then A in node
if A&B in node then A in node and B in node
if ~(A&B) in node then ~A in node or ~B in node

(because allRules strategy is fair: every rule eventually applies)

52

Completeness

• If CPLTableaux(A) is open then A is satisfiable.
• Proof:

– Take some open tableau G in CPLTableaux(A).
– G is a downwards closed set (“Hintikka set”):

if ~~A in node then A in node
if A&B in node then A in node and B in node
if ~(A&B) in node then ~A in node or ~B in node

(because allRules strategy is fair: every rule eventually applies)

– Build a CPL model from G:
Vnode(P) = 1 iff P appears in node

53

Completeness

• If CPLTableaux(A) is open then A is satisfiable.
• Proof:

– Take some open tableau G in CPLTableaux(A).
– G is a downwards closed set (“Hintikka set”):

if ~~A in node then A in node
if A&B in node then A in node and B in node
if ~(A&B) in node then ~A in node or ~B in node

(because allRules strategy is fair: every rule eventually applies)

– Build a CPL model from G:
Vnode(P) = 1 iff P appears in node

– Prove by induction on the form of A:
for every A in node, Vnode(A) = 1

(“fundamental lemma”)

54

In general …

• soundness proof … easy

• termination proof … difficult
• completeness proof … very difficult

55

In general …

• soundness proof: easy
• termination proof: difficult
• completeness proof: very difficult

• … but soundness + termination of strategy is
practically sufficient:

1. apply strategy to A
2. take an open tableau and build pointed model (M,w)
3. check if M in model class
4. check if M,w ||- A

56

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and

other modal and description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

57

The basic modal logic K

• the basic modal operators:
w ||- []A iff forall u: Rwu implies u ||- A
w ||- <>A iff exists u: Rwu and u ||- A

58

Tableau rules for K

connectors: not, and, nec

[some rules for classical logic…]

59

Tableau rules for K

connectors: not, and, nec

[some rules for classical logic…]

createSuccessor:
if not nec A is in node0
then create new node node1

link it to node0
add not A to node1

end

60

Tableau rules for K

connectors: not, and, nec

[some rules for classical logic…]

propagateNec:
if nec A is in node0

node0 is linkednode1 R
then add node1 A

end

61

Tableaux for K

• … plus rules for the definable connectives

• KStrategy(<>P & <>Q & [](R v <>S))

62

Modal logic KT

• accessibility relation is reflexive

• idea: integrate this into truth condition
– w ||- []A iff w ||- A and forall u: Rwu implies u ||- A

63

Tableaux
for modal logic KT

[connectors as for K…]

[rules as for K…]

64

Tableaux
for modal logic KT

[connectors as for K…]

[rules as for K…]

plus: “when []A is in a node
then add A to it”

• KTStrategy(P & [][]~P)

65

Tableaux
for modal logic S5

accessibility relation is
equivalence relation

can be supposed to be
a single equivalence
class

optimized tableau rules
…

66

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and

other modal and description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

67

Tableau rules for S4

accessibility relation is reflexive and transitive

tableau rules for S4:
• [connectors as for KT…]
• [rules as for KT…]
• … and take into account transitivity:

“when []A is in a node
then add []A to all children”

68

Tableau rules for S4

accessibility relation is reflexive and transitive

tableau rules for S4:
• [connectors as for KT…]
• [rules as for KT…]
• … and take into account transitivity:

“if []A is in a node
then add []A to all children”

problem: find a terminating strategy

69

Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)

70

Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)

71

Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)
– add u ||- []~[]P (by rule for transitivity)

72

Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)
– add u ||- []~[]P (by rule for transitivity)
– add u ||- ~[]P (by rule for reflexivity)

73

Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)
– add u ||- []~[]P (by rule for transitivity)
– add u ||- ~[]P (by rule for reflexivity)
– create u’
– …

74

Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)
– add u ||- []~[]P (by rule for transitivity)
– add u ||- ~[]P (by rule for reflexivity)
– create u’
– …

put a looptest into the rules!

75

Tableau rules for S4 (ctd.)

principle:
• if a node is included in

an ancestor
then mark it.

76

Tableau rules for S4 (ctd.)

principle:
• if a node is included in

an ancestor
then mark it.

• if a node is marked
then block the
createSuccessor rule

• S4Strategy([]~[]P)

77

S4Strategy
([]<>[] (P v Q) & []<>~P & <>[]~Q)

78

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and

other modal and description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

79

Intuitionistic logic

• no modal operators, but different semantics for
implication and negation

• aim: invalidate
(~P=>FALSE) => P ex falso quodlibet
P v ~P tertio non datur
(~Q => ~P) => (P => Q) contraposition

• R is reflexive, transitive and hereditary:
if Rwu and Vw(P) = 1 then Vu(P) = 1

• similar to S4
• truth condition

w ||- A=>B iff forall u: Rwu implies u ||- A→B

80

Tableaux rules for
intuitionistic logic

• follow translation from LJ to S4:
P’ = []P (inheritance)

(A=>B)’ = [](A’ → B’)
(~A)’ = []~(A’)

• tableaux similar to S4
• signed formulas

T(P) “P is true”
F(P) “P is false”
F(P) ≠ ~P

81

Tableaux rules for
intuitionistic logic

• create successor
make A=>B false in w:
create u, add link Rwu,
make A false in u,
make B true in u

82

Tableaux rules for
intuitionistic logic

• create successor
make A=>B false in w:
create u, add link Rwu,
make A false in u,
make B true in u

• inheritance
if w ||- P and Rwu
then add u ||- P

83

Tableaux rules for
intuitionistic logic: ~~P=>P

LJStrategy(((P=>False)=>False)=>P) 4 tableaux, 1 open

84

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and

other modal and description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

85

Relevant logics

• …

86

Paraconsistent logics

• …

87

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and

other modal and description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

88

Linear Temporal Logic

• two modal operators:
[] = always
X = next

• R(X) is serial and deterministic
• R([]) = R(X))*

R([]) linear order

• mix axioms:
[]A ↔ A∧ X[]A
<>A ↔ A v X<>A

• induction axiom:
A∧ [](A→XA) → []A

• decidable, EXPTIME complete

89

Tableau rules for
Linear Temporal Logic

how take induction into account?

• solution: don’t care, and only apply the mix axioms:
rewrite []A to A ∧ X[]A
rewrite <>A to A v X<>A

• only create successors for X, never for <>
• termination: use the looptest from transitive modal logics

– nodes only contain subformulas of orig. formula
– looptest succeeds at most at polynomial depth

90

Tableau rules for
Linear Temporal Logic: example

• Example: w ||- []P
add w ||- P∧ X[]P (by mix axioms)
add w ||- P, w ||- X[]P
create u, add RXwu, add u ||- []P

(by propagation rule for X)

add u ||- P∧ X[]P (by mix axioms)
add u ||- P, u ||- X[]P
w contains u: mark u “contained”

91

Tableau rules for
Linear Temporal Logic (ctd.)

• may result in ‘nonstandard’ models of <>P
“P never fulfilled”

check if all <> are fulfilled!

~P ~P~P ~P
…

92

Tableau rules for
Linear Temporal Logic: example

• Example: LTLStrategy(<>P)
w ||- <>P

.

.

93

Tableau rules for
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P
w ||- P v X<>P (by mix)

.

94

Tableau rules for
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies)

.

95

Tableau rules for
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

.

96

Tableau rules for
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

u’ ||- P v X<>P (by mix)

97

Tableau rules for
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

u’ ||- P v X<>P (by mix)

u’ ||- P u’’ ||- X<>P

98

Tableau rules for
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

u’ ||- P v X<>P (by mix)

u’ ||- P u’’ ||- X<>P
(nothing applies) contained in w’

99

Tableau rules for
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

u’ ||- P v X<>P (by mix)

u’ ||- P u’’ ||- X<>P
(nothing applies) u’’ contained in w’

<>P not fulfilled

100

Propositional dynamic logic (PDL)

• two kinds of expressions
– formulas:

A ::= P | ~A | A∧ B | [π]A

– programs:
π ::= a | π1;π2 | π1∪π 2 | π* | A?

• in the models: R interprets programs
R(π1;π2) = R(π1);R(π2)
R(π1∪π 2) = R(π1)∪ R(π2)
R(π*) = (R(π))*
R(A?) = {<w,w> : w ||- A}

101

Tableaux for PDL

• similar to LTL:
– expand [π*]A to A ∧ [π][π*]A
– don’t apply createSuccessor to formulas ~[π*]A
– mark nodes that are included in some ancestor
– don’t apply createSuccessor to formulas ~[π]A if node

is marked
– expand the other program expressions:

[π1;π2]A ↔ [π1][π2]A
[π1∪π 2]A ↔ [π1]A ∧ [π2]A
[A?]B ↔ A→B

102

Description logics

• “roles” and “concepts”
– more expressive than classical propositional logic
– less expressive than 1st order logic

• focus on decidable logics
• applications:

– databases
– software engineering
– web-based information systems

description of medical terminology

– ontology of the semantic web
standards: DAML+OIL, OWL

– description of web services
WSDL, OWL-S

103

Description logics:
concepts and roles

• roles = binary relations
hasChild
hasHusband

• concepts = unary relations = properties
Person
Female
Parent ∩ Female
Father U Mother
~Parent
∃ hasChild.Female “individuals having a female child”
∀ hasChild.Female “…”
>1 hasChild.T “individuals having more than 1 child”

• set of concepts “assertion box” (ABox)

104

Description logics:
TBoxes

• set of relations between concepts and
roles

“terminological box” (TBox)
– restricted to concept abbreviations

(sometimes: fixpoint definitions)
Mother = Person ∩ Female

– are expanded away TBox = ∅

105

Description logics:
reasoning tasks

• satisfiability of a concept C
• subsumption of C1 by C2

same as: C1∩~ C2 unsatisfiable

• equivalence of C1 by C2
same as: C1 subsumes C2 and C1 subsumes C2

• disjointness of C1 and C2
⊥ subsumes C1∩C2

all reasoning tasks reduce
to concept satisfiability

106

Description logics

• translation of concepts into modal logics
∃ hasChild.Female = <hasChild>Female
∀ hasChild.Female = [hasChild.Female]
Parent ∩ Female = Parent ∧ Female
Father U Mother = Father v Mother
<2 hasChild.T = [hasChild]2 T
≥2 hasChild.T = <hasChild>2 T

…modal logics with number restrictions
[Fattorosi&Barnaba, van der Hoek]

107

Description logics

• description logic ALC:
~C
C1 ∩ C2
C1 U C2
∃ R.C
∀ R.C
= multimodal K

• description logic ALCreg =
ALC + regular expressions on roles
= PDL

• all description logic reasoning tasks reduce
to satisfiability checking in modal logics

• tableaux used as optimal decision procedures

108

Logics of action and knowledge

• 2 modal operators
Knwi A “agent i knows that A”
[a] A “after execution of action a, A holds”

• “product logics”:
RKnwi°Ra = Ra°RKnwi (permutation)
if wRKnwiu and wRav then exists t such that uRat and vRKnwit

(confluence)

• axiomatically:
Knwi[a]A ↔ [a]KnwiA
<a>KnwiA → Knwi<a>A

tableaux: …
problem: combination with transitivity

109

Belief-Desire-Intention logics

• [Bratman, Rao&Georgeff]
• 3 modal operators

Beli A “agent i believes that A”
Desirei A “agent i desires that A”
Intendi A “agent i intends that A”

• plus branching time logic

110

Modal logics with density

• accessibility relation is dense
if Rwu then exists v : Rwv and Rvu

• …

111

Non-normal modal logics

• no accessibility relation, but neighborhood
functions: N: W → 22W

w ||- []A iff exists U in N(w) forall u in U: u ||- A
non-normal modal logic EM

• can be represented by a set of relations
w ||- []A iff exists Ri forall u (Riwu implies u ||- A)

• logic EM: “non-normal”
not valid: []P∧ []Q → [](P∧ Q)
but valid: [](P∧ Q) → []P∧ []Q

112

Tableau rules for EM

• …

113

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and

other modal and description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

114

1st order logic

• How should we handle the quantifiers?
∀ x p(x) ∧ ~p(a) is unsatisfiable
∀ x p(x) ∧ ∃ x ~p(x) is unsatisfiable

• naïve implementation [Beth, Smullyan]:
if hasElement node0 forall x A(x)
do createTerm t (doesn’t exist in LoTREC yet)

do add node0 A(t)

if hasElement node exists x A(x)
do createNewConstant c
do add node A(c)

problem: loops for satisfiable formulas

115

Herbrand Tableaux for
1st order logic

• 1st solution: restrict instantiation to Herbrand universe
if hasElement node0 forall x A(x)
do createHerbrandTerm t (doesn’t exist in LoTREC yet)

do add node0 A(t)

• ex.: ∃ x p(x,x) ∧ ∃ x∀ y ~p(x,y)) satisfiable
1. ∃ x p(x,x)
2. ∃ x∀ y ~p(x,y)
3. ∀ y ~p(a,y) (2), new constant
4. ~p(a,a) (3), only Herbrand term
5. p(b,b) (1), new constant
6. ~p(a,b) (3), Herbrand term
no further instantiation of (3) is possible

• decision procedure for formulas without positive ∀ …∃

116

Herbrand Tableaux for
1st order logic

• counterexample: ∀ x∃ y p(x,y) satisfiable
1. ∀ x∃ y p(x,y)
2. ∃ y p(a,y) (1), Herbrand term
3. p(a,b) (2), new constant

4. ∃ y p(b,y) (1), Herbrand term
5. p(b,c) (4), new constant
6. …

loops

117

Free-variable tableaux
with unification

• 2nd solution: don’t instantiate at all
– work with free variables
– runtime skolemization of existential quantifiers
– term unification

• ex.: ∀ x∃ y p(x,y) ∧ ∀ x∃ y ~p(x,y)) satisfiable
1. ∀ x∃ y p(x,y)
2. ∀ x∃ y ~p(x,y)
3. ∃ y p(x1,y) from (1), replace x by free x1
4. ∃ y ~p(x2,y) from (2), replace x by free x2
5. p(x1,f(x1)) from (3), Skolem function f(x1)
6. ~p(x2,g(x2)) from (4), Skolem function g(x2)
stops: (5) and (6) don’t unify

• … but does not terminate in all cases (sure)
else 1st order logic would be decidable

118

Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and

other modal and description logics
• tableaux for 1st order logic
• some implemented tableaux theorem provers

119

LoTREC

• IRIT-CNRS Toulouse (Sahade, Gasquet,
Herzig); accessible through www

• general theorem prover
• explicit accessibility relations
• easy to implement logics with symmetric

accessibility relations etc.
– back-and-forth rules

• inefficient

120

TableauxWorkBench (TWB)

• Australian National U. (Abate, Goré)
• general theorem prover
• close to Gentzen sequents
• accessibility relations remain implicit
• hard to implement logics with symmetric

accessibility relations
– temporal logic with future and past
– converse of programs

121

LogicWorkBench (LWB)

• U. Bern (Jäger, Heuerding); accessible
through www

• efficient algorithms for all the basic modal
and temporal logics

• hard to implement a new logic

122

FaCT

• U. Manchester (Horrocks); open source
• fast decision procedure for description

logics with inverse roles and qualified
number restrictions

= multimodal K + converse + number restrictions

• optimized backtracking: “backjumping”

123

KSAT

• U. Trento (Giunchiglia, Sebastiani)
• combines tableaux method with fast SAT solvers

for classical propositional logic
– call a SAT solver, where subformulas []A, <>B are

viewed as atomic
– SAT solver returns a tentative valuation
– use modal tableau rules to generate children

if inconsistent then there is no model
else iterate

• very efficient
• exists for all basic modal logics

124

KSAT (ctd.)

• KSAT([](P&Q) & <>~P)
– call SAT with set of clauses {[](P&Q), <>~P}
– SAT returns:

V([](P&Q)) = 1
V(<>~P) = 1

– apply createOneSuccessor and propagateNec:
w ||- [](P&Q), w ||- <>~P, Rwu, u ||- ~P, u ||- P&Q

– call SAT with set of clauses {P,Q,~P}
– SAT returns:

set of clauses unsatisfiable

– [](P&Q) & <>~P is unsatisfiable in K

125

Conclusion

• search for models = exploit the truth
conditions

• tableaux work both ways:
– finding a model
– refuting

• termination = decidability
• tableaux as optimal decision procedures

description logics

126

Thanks to…
• Mohamad Sahade
• Olivier Gasquet
• Luis Fariñas del Cerro
• Dominique Longin
• Tiago Santos de Lima
• Fabrice Evrard
• Carole Adam
• Nicolas Troquard
• Benoit Gaudou
• Ivan Varzinczak
• Bilal Saïd
• Dominique Ziegelmayer
• … and the other members of the LILaC group

