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What this tutorial is about

• in focus
– the tableaux method 
– … for logics with possible worlds semantics 
– … and combinations thereof
– … as a computerized proof system (LoTREC)

• not in focus:
– tableaus
– proof theory, sequent calculi (cf. course on LDS)
– completeness proofs
– efficiency issues
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and 

other modal and description logics 
• tableaux for 1st order logic 
• some implemented tableaux theorem provers
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Possible worlds

• possible world 
valuation of classical 
logic

w ||- P  iff
Vw(P) = 1, for P in Atoms

w ||- A∧ B  iff
(w ||- A and w ||- B)

p,q

~p,q

~p,~q

~p,q
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Possible worlds models

• possible worlds model 
= labeled graph
= transition system

• node = possible world
– valuation of classical logic 
– not every valuation appears 

(some logically possible 
worlds are not actually 
possible)  

– Vw = Vu does not imply w = u

• link = accessibility relation R 

p,q

~p,q

~p,~q

~p,q
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Possible worlds models: 
accessibility relations

• temporal
Rwu iff u is in the future of w

• alethic
Rwu iff u is possible, given the actual world w

• epistemic
Riwu iff u is possible for agent i, given the actual world w

• deontic
Rwu iff u is an ideal version of w

• dynamic
Rawu iff u is a possible result of the execution of program/action a in w

• comparative (preferential, …)
Rwu iff w is smaller than u
Rvwu iff w is smaller than u, given v

reading of R properties of R
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Possible worlds models: 
properties of R

• monomodal
– serial: forall w exists u Rwu
– reflexive
– transitive
– Euclidian 
– confluent (Church-Rosser)
– dense
– …
– well-founded (not FO-

definable!)
– …

• multimodal
– R1 included in R2

– R1 = R2∪ R3

– R2 = (R1)-1

(transitive closure)
– R2 = (R1)* 

(transitive closure)
– R1 ° R2 =  R2 ° R1

– Church-Rosser
– …
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Language: 
modal operators

• express intensional concepts (belief, time, 
action, obligation, …)

• non truth functional
• schema: op(a1,…,an), where op is the name of 

the operator, and ai some argument
• generic form:

– []A  = A is necessary  (true in all possible worlds)
– <>A  = A is possible

• in general:  []A  same as  ~<>~A
– except in substructural logics (intuitionistic, …)
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Language: 
modal operators

• temporal
– []A    = henceforth A (true in all future time points)
– <>A  = eventually A 

• deontic
– []A    =  A is obligatory  (true in all ideal worlds)
– <>A  =  A is permitted (~<>A  =  A is forbidden)

• epistemic
– []iA = i believes A  (true in all worlds possible for i)  
– <>iA =  ..

• dynamic
– [a]A =  A is true after (every possible way of) executing a
– <a>A  =  …

• conditional
– A => B  = if A then B 

proof of A can be transformed into proof of B (intuitionistic) 
if A was true then B would be true (counterfactual)
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Interpreting the language: 
truth conditions

• classical connectives
w ||- P  iff Vw(P) = 1, for P in Atoms

w ||- A∧ B  iff (w ||- A and w ||- B)

• interpretation of non-classical connectives
– via accessibility relation R 

• schema:
w ||- op(a1,…,an) iff Cond(op,a1,…,an,w,R)

• the basic modal operators:
w ||- []A  iff forall u: Rwu implies u ||- A
w ||- <>A  iff exists u: Rwu and u ||- A



11

Examples of truth conditions

• multimodal operators
w ||- []iA iff forall u: Riwu implies u ||- A
w ||- <>iA iff …

• relation algebra operators
w ||- []-1A  iff forall u: R-1wu implies u ||- A
w ||- []i ∪ jA iff forall u: (Ri∪ Rj)wu implies u ||- A
w ||- []*A  iff forall u: R*wu implies u ||- A)

• non-normal operators
w ||- <>A  iff forall Ri exists u: Riwu and u ||- A
w ||- []A  iff exists Ri forall u … 
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Examples of truth conditions:
temporal operators

• branching time operators
w ||- ∃ XA  iff ∃ R in Paths(w): R(w) ||- A 

(Paths(w)  =  the set of paths going through w)

R
R
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Examples of truth conditions:
temporal operators

• branching time operators
w ||- ∃ XA  iff ∃ R in Paths(w): R(w) ||- A 

(Paths(w)  =  the set of paths going through w)

w ||- ∀ <>A  iff ∀ R in Paths(w) ∃ n Rn(w) ||- A

R
R
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Examples of truth conditions:
temporal operators

• binary temporal operators
w ||- A Until B  iff exists u: R*wu and u ||- B and 

forall u’ (R*wu’ and R+vu’ implies u’ ||- A )

w ||- A Since B  iff …

w ||- ∀ (A Until B) iff forall R in Paths(w) … 

A AA B
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Examples of truth conditions:
implications

• intuitionistic implication
w ||- A => B  iff forall u: Rwu implies u ||- A → B

• conditional operator
w ||- A => B  iff forall u: R[A]wu implies u ||- B

• relevant implication
w ||- A => B  iff forall u,u’:

Rwuu’ implies (u ||- A implies u’ ||- B)
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Models

• model M  =  (W,R,V)
– W nonempty set (possible worlds)

– R: Ops → (WxW) (accessibility relation)

– V: W → (Atoms → {0,1}) (valuation)

• pointed model ((W,R,V),w)
– w in W (actual world)

• extension of A in M 
[A]M =  {w in W : w ||- A}
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Validity and satisfiability 

• K  =  the set of all models (Kripke)

• A is valid in K  iff [A]M = W for all M in K (|=K A)

examples: [](P v ~P)
[](P∧ Q) → []P∧ []Q
[]P∧ []Q → [](P∧ Q) 

• A is satisfiable in K  iff [A]M nonempy for some M in K

examples: P
P∧ ~[]P
P∧ []~P
[]P∧ ~[][]P
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Validity and satisfiability 
in a class of models C

• Cls some subset of K

• A is valid in Cls iff [A]M = W for all M in Cls (|=Cls A)

examples: []P → P   invalid in K
[]P → P   valid in the class of reflexive models
<>P → <><>P  valid in transitive models

• A is satisfiable in Cls iff [A]M nonempy for some M in Cls

examples: P∧ ~[]P  satisfiable in K
P∧ ~[]P  unsatisfiable in reflexive models

A is valid in Cls iff ~A is unsatisfiable in Cls
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Classes of models: examples

• {M: card(W) = 1}
|=Cls <>A → []A

• {M: card(W) = 2}
|=Cls <>(A∧ B) ∧ <>(~A∧ B) → []B

• {M: card(W) finite}
… 

• {M: R([]) reflexive}  =  KT
|=KT []A → A

• {M: R([]) transitive}  =  K4
|=K4 <><>A → <>A

• {M: R([]) equivalence relation}  =  S5
|=S5 A → []<>A
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Reasoning problems

• model checking
given A, M and w, do we have w ||- A?

• validity
given A and Cls, is A valid in Cls?

• satisfiability
given A and Cls, does there exist M in Cls and w in 

M such that w ||- A? 

How can we solve them automatically?
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and other modal and 

description logics 
• tableaux for 1st order logic 
• some implemented tableaux theorem provers
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The basic idea
for classical logic [Beth]

• try to find M and w by applying the truth 
conditions (“tableau rules”)

w ||- A∧ B  add w ||- A, and add w ||- B
w ||- A v B  add either w ||- A, or add w ||- B (nondet.)
w ||- ~A  “don’t add w ||- A” ???

– w ||- ~~A  add w ||- A
– w ||- ~(A v B)  add w ||- ~A, and add w ||- ~B
– w ||- ~(A∧ B)  add either w ||- ~A, or add w ||- ~B

• apply while possible (“downwards saturation")
• is this a model?

NO if both w ||- P and w ||- ~P (“tableau is closed”)
ELSE: for every w, if w ||- P put  Vw(P) = 1, else put Vw(P) = 0



23

The basic idea:
example for classical logic

A = P∧ ~(P∧ Q)

• applying truth conditions:
1. w ||- P∧ ~(P∧ Q)
2. w ||- P∧ ~(P∧ Q), w ||- P, w ||- ~(P∧ Q)
3. w ||- P∧ ~(P∧ Q), w ||- P, w ||- ~(P∧ Q), w ||- ~P        (nondet.)

• no more truth condition applies
• can’t be a model:

both w ||- P and w ||- ~P 

• backtrack on nondeterministic choices
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The basic idea:
example for classical logic (ctd.)

• 1st downward saturated 
graph for

A = P∧ ~(P∧ Q)
not a model 
(contains P and ~P!)
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The basic idea:
example for classical logic (ctd.)

• 1st downward saturated 
set for
A = P ∧ ~(P∧ Q)

not a model 
(contains P and ~P!)

• 2nd downward saturated 
set for
A = P ∧ ~(P∧ Q)

is a model of A
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The basic idea 
for modal logics

• apply truth conditions = build a graph
– create nodes
– add links between nodes
– add formulas to nodes

• the basic cases
w ||- []A  forall u such that Rwu, add u ||- A
w ||- <>A  add some new u, add Rwu, add u ||- A
w ||- ~[]A  add some new u, add Rwu, add u ||- ~A
w ||- ~<>A  … 

• “downwards saturated graph”: is this a model? 
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The basic idea:
example for modal logic

A = P ∧ ~[]P

• applying tableau rules: 
1. w ||- P∧ ~[]P
2. w ||- P∧ ~[]P, w ||- P, w ||- ~[]P
3. w ||- P∧ ~[]P, w ||- P, w ||- ~[]P, Rwu, u ||- ~P
no more tableau rule applies

never both w ||- A and w ||- ~A (“open tableau”)

• model can be built: M = (W,R,V)
set of worlds W:    W = {w,u} 
accessibility relation R: R[]wu
valuation V: Vw(P) = 1, Vu(P) = 0
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The basic idea: 
example for modal logic (ctd.)

• premodel for 

A = P ∧ ~[]P

not closed 
is a model of A
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A remark on tableaux 
and truth tables

• Tableaux are a more convenient presentation of 
the familiar truth table analysis” [Beth] 

• “Tableaux are more efficient than truth tables.” 
[folklore]

• … not exactly [d’Agostino]: 
(P1 v P2 v P3) ∧ (P1 v P2 v ~P3) ∧ (P1 v ~P2 v P3) ∧ …
there are formulas with n atoms of length O(2n)

truth tables have 2n rows
at least n! closed tableaux, and n! grows faster than 2n
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Historical remarks

• the early days (1950-80): handwritten proofs
– Beth, Gentzen
– relation to sequent calculus

“tableau proof = sequent proof backwards”
– Kripke: explicit accessibility relation
– Smullyan, Fitting: uniform notation

• today: mechanized systems
– fast provers exist

FaCT [Horrocks]
K-SAT [Giunchiglia&Sebastiani]
importance of strategies

– applications exist: BDI logics, description logics
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and other modal and 

description logics 
• tableaux for 1st order logic 
• some implemented tableaux theorem provers
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Informal definition of tableau rules

• Tableau rules expand directed graphs by
– adding formulas
– adding nodes 
– adding  links
– duplicating the graph

• rule(G) = {G1,…,Gn}
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Informal definition of tableau rules

• Tableau rules expand directed graphs by
– adding formulas
– adding nodes 
– adding  links
– duplicating the graph

• rule(G) = {G1,…,Gn}

• application of a rule to G = 
application to every formula in every node of G.

• rule({G1,…,Gn})  =  rule(G1)∪ …∪ rule(Gn) 
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Tableau rules: syntax

• general form:
rule ruleName

if cond1

…
if condn

do action1

…
do actionk

• example conditions:
if hasElement node formula

if isLinked node1 node2 R

... (more to come)

• example actions:
do stop
do addElement node formula

do newNode node

do link node1 node2 R
do duplicate node1 […]

... (more to come)
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Example: tableau rules 
for classical logic

the

LoTREC
tableau 

prover
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Example: tableau rules 
for classical logic

declaration of connectors: 
negation and conjunction only
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Example: tableau rules 
for classical logic

rule Stop: 
if there is an explicit contradiction
then stop exploring the tableau
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Example: tableau rules 
for classical logic

rule NotNot:
replaces ~~A by A
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Example: tableau rules 
for classical logic

rule And:
if A & B is in a node
then add A and B to node
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Example: tableau rules 
for classical logic

rule NotAnd:
if ~(A&B) is in a node
then duplicate tableau, 

add ~A to the first tableau
add ~B to the second tableau
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Definition of strategies

• A strategy defines some order of 
application of the tableau rules:
firstrule rule1 … rulen end

“apply first applicable rule and stop”

allrules rule1 … rulen end
“apply all applicable rules in order”

repeat strategy end
“repeat until no rule applicable”

• Strategy stops if no rule is applicable.



42

Strategy 
for classical logic

strategy CPLStrategy
repeat allRules
Stop
NotNot
And
NotAnd

end end
end

“fair strategy”
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Strategy for classical logic: 
example

CPLStrategy(P&~(P&Q))
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Strategy for classical logic: 
example (ctd.)

CPLStrategy(P&~(P&Q))  =  

{ T1 , T2 }
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Definition of tableaux

The set of tableaux for A with strategy S is
the set of graphs 

obtained by applying the strategy S
to an initial single-node graph 
whose root contains only A.

• notation: S(A)

– Remark
our tableau = “tableau branch” in the literature 
(sounds odd to call a graph a branch)
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Tableaux: open or closed?

• A node is closed iff it contains FALSE.
• A tableau is closed iff it has a closed node.
• A set of tableaux is closed

iff all its elements are.

An open tableau is a premodel:
build a model 
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Formal properties

to be proved for each strategy:

• Termination
For every A, S(A) terminates.

• Soundness 
If S(A) is closed then A is unsatisfiable.

• Completeness 
If S(A) is open then A is satisfiable.
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Termination

• For every A, CPLTableaux(A) terminates.

• Proof:
– Every tableau rule only adds strict 

subformulas.

– This can only be done a finite number of 
times, then the strategy stops.
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Soundness

• If CPLTableaux(A) is closed 
then A is unsatisfiable.

• Proof:
– Every tableau rule is “guaranteed” by the truth 

conditions:
If G is CPL-satisfiable
then there is Gi in rule(G) that is CPL-satisfiable

– Hence if every graph is closed 
then the original A cannot be satisfiable.
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Completeness

• If CPLTableaux(A) is open then A is satisfiable.
• Proof:

– Take some open tableau G in CPLTableaux(A).
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Completeness

• If CPLTableaux(A) is open then A is satisfiable.
• Proof:

– Take some open tableau G in CPLTableaux(A).
– G is a downwards closed set (“Hintikka set”):

if ~~A in node then A in node 
if A&B in node then A in node and B in node
if ~(A&B) in node then ~A in node or ~B in node

(because allRules strategy is fair: every rule eventually applies)
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Completeness

• If CPLTableaux(A) is open then A is satisfiable.
• Proof:

– Take some open tableau G in CPLTableaux(A).
– G is a downwards closed set (“Hintikka set”):

if ~~A in node then A in node 
if A&B in node then A in node and B in node
if ~(A&B) in node then ~A in node or ~B in node

(because allRules strategy is fair: every rule eventually applies)

– Build a CPL model from G:
Vnode(P) = 1  iff P appears in node
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Completeness

• If CPLTableaux(A) is open then A is satisfiable.
• Proof:

– Take some open tableau G in CPLTableaux(A).
– G is a downwards closed set (“Hintikka set”):

if ~~A in node then A in node 
if A&B in node then A in node and B in node
if ~(A&B) in node then ~A in node or ~B in node

(because allRules strategy is fair: every rule eventually applies)

– Build a CPL model from G:
Vnode(P) = 1  iff P appears in node

– Prove by induction on the form of A: 
for every A in node, Vnode(A) = 1 

(“fundamental lemma”)



54

In general …

• soundness proof …  easy 

• termination proof …  difficult
• completeness proof … very difficult
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In general … 

• soundness proof: easy 
• termination proof: difficult
• completeness proof: very difficult

• … but soundness + termination of strategy is 
practically sufficient:

1. apply strategy to A
2. take an open tableau and build pointed model (M,w)
3. check if M in model class
4. check if M,w ||- A
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and 

other modal and description logics 
• tableaux for 1st order logic
• some implemented tableaux theorem provers
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The basic modal logic K

• the basic modal operators:
w ||- []A  iff forall u: Rwu implies u ||- A
w ||- <>A  iff exists u: Rwu and u ||- A
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Tableau rules for K

connectors: not, and, nec

[some rules for classical logic…]
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Tableau rules for K

connectors: not, and, nec

[some rules for classical logic…]

createSuccessor:
if not nec A is in node0
then create new node node1

link it to node0
add not A to node1

end
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Tableau rules for K

connectors: not, and, nec

[some rules for classical logic…]

propagateNec: 
if      nec A is in node0 

node0 is linkednode1  R
then add            node1   A 

end
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Tableaux for K

• … plus rules for the definable connectives

• KStrategy(<>P & <>Q & [](R v <>S)) 
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Modal logic KT

• accessibility relation is reflexive

• idea: integrate this into truth condition
– w ||- []A  iff w ||- A and forall u: Rwu implies u ||- A
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Tableaux
for modal logic KT

[connectors as for K…]

[rules as for K…]
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Tableaux
for modal logic KT

[connectors as for K…]

[rules as for K…]

plus: “when []A is in a node 
then add A to it”

• KTStrategy(P & [][]~P) 
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Tableaux
for modal logic S5

accessibility relation is 
equivalence relation

can be supposed to be 
a single equivalence 
class

optimized tableau rules 
…
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and 

other modal and description logics 
• tableaux for 1st order logic 
• some implemented tableaux theorem provers
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Tableau rules for S4

accessibility relation is reflexive and transitive

tableau rules for S4:
• [connectors as for KT…]
• [rules as for KT…]
• … and take into account transitivity:

“when []A is in a node 
then add []A to all children”
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Tableau rules for S4

accessibility relation is reflexive and transitive

tableau rules for S4:
• [connectors as for KT…]
• [rules as for KT…]
• … and take into account transitivity:

“if []A is in a node 
then add []A to all children”

problem: find a terminating strategy
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Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
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Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)
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Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)
– add u ||- []~[]P (by rule for transitivity)
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Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)
– add u ||- []~[]P (by rule for transitivity)
– add u ||- ~[]P (by rule for reflexivity)
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Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)
– add u ||- []~[]P (by rule for transitivity)
– add u ||- ~[]P (by rule for reflexivity)
– create u’
– …
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Tableau rules for S4

• Example: w ||- []~[]P
– add w ||- ~[]P (by rule for reflexivity)
– create u, add Rwu, add u ||- ~P

(by createSuccessor)
– add u ||- []~[]P (by rule for transitivity)
– add u ||- ~[]P (by rule for reflexivity)
– create u’
– …

put a looptest into the rules!
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Tableau rules for S4 (ctd.)

principle: 
• if   a node is included in 

an ancestor 
then  mark it.
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Tableau rules for S4 (ctd.)

principle: 
• if   a node is included in 

an ancestor 
then  mark it.

• if   a node is marked
then  block the 
createSuccessor rule

• S4Strategy([]~[]P)
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S4Strategy
([]<>[] (P v Q) & []<>~P & <>[]~Q)
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and 

other modal and description logics 
• tableaux for 1st order logic 
• some implemented tableaux theorem provers
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Intuitionistic logic

• no modal operators, but different semantics for 
implication and negation

• aim: invalidate 
(~P=>FALSE) => P ex falso quodlibet
P v ~P tertio non datur
(~Q => ~P) => (P => Q) contraposition

• R is reflexive, transitive and hereditary: 
if Rwu and Vw(P) = 1 then Vu(P) = 1 

• similar to S4
• truth condition 

w ||- A=>B  iff forall u: Rwu implies u ||- A→B 
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Tableaux rules for 
intuitionistic logic

• follow translation from LJ to S4:
P’   =  []P (inheritance)

(A=>B)’  =  [](A’ → B’)
(~A)’  =  []~(A’)

• tableaux similar to S4
• signed formulas

T(P) “P is true”
F(P) “P is false”
F(P) ≠ ~P
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Tableaux rules for 
intuitionistic logic

• create successor
make A=>B false in w:
create u, add link Rwu, 
make A false in u,
make B true in u
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Tableaux rules for 
intuitionistic logic

• create successor
make A=>B false in w:
create u, add link Rwu, 
make A false in u,
make B true in u

• inheritance
if   w ||- P and Rwu
then  add u ||- P
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Tableaux rules for 
intuitionistic logic:  ~~P=>P

LJStrategy(((P=>False)=>False)=>P)    4 tableaux, 1 open
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and 

other modal and description logics 
• tableaux for 1st order logic 
• some implemented tableaux theorem provers
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Relevant logics

• …
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Paraconsistent logics

• …
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and 

other modal and description logics 
• tableaux for 1st order logic 
• some implemented tableaux theorem provers
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Linear Temporal Logic

• two modal operators: 
[] = always 
X = next

• R(X) is serial and deterministic
• R([]) = R(X))* 

R([]) linear order

• mix axioms:
[]A   ↔ A∧ X[]A
<>A ↔ A v X<>A

• induction axiom:
A∧ [](A→XA) → []A

• decidable, EXPTIME complete
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Tableau rules for 
Linear Temporal Logic

how take induction into account?

• solution: don’t care, and only apply the mix axioms:
rewrite []A   to  A ∧ X[]A
rewrite <>A  to  A v X<>A

• only create successors for X, never for <> 
• termination: use the looptest from transitive modal logics

– nodes only contain subformulas of orig. formula
– looptest succeeds at most at polynomial depth
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Tableau rules for 
Linear Temporal Logic: example

• Example: w ||- []P
add w ||- P∧ X[]P  (by mix axioms)
add w ||- P, w ||- X[]P
create u, add RXwu, add u ||- []P

(by propagation rule for X)

add u ||- P∧ X[]P (by mix axioms)
add u ||- P, u ||- X[]P
w contains u: mark u “contained”



91

Tableau rules for 
Linear Temporal Logic (ctd.)

• may result in ‘nonstandard’ models of <>P
“P never fulfilled”

check if all <> are fulfilled!

~P ~P~P ~P
…
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Tableau rules for 
Linear Temporal Logic: example

• Example: LTLStrategy(<>P)
w ||- <>P 

.

.
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Tableau rules for 
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P 
w ||- P v X<>P (by mix)

.
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Tableau rules for 
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P 
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies)

.
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Tableau rules for 
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P 
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

.
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Tableau rules for 
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P 
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

u’ ||- P v X<>P (by mix)
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Tableau rules for 
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P 
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

u’ ||- P v X<>P (by mix)

u’ ||- P u’’ ||- X<>P
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Tableau rules for 
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P 
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

u’ ||- P v X<>P (by mix)

u’ ||- P u’’ ||- X<>P
(nothing applies) contained in w’
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Tableau rules for 
Linear Temporal Logic

• Example: LTLStrategy(<>P)
w ||- <>P
w ||- P v X<>P (by mix)

w ||- <>P, w ||- P w’ ||- <>P, w’ ||- X<>P
(nothing applies) RXw’u’, u’ ||- <>P

u’ ||- P v X<>P (by mix)

u’ ||- P u’’ ||- X<>P
(nothing applies) u’’ contained in w’ 

<>P not fulfilled
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Propositional dynamic logic (PDL)

• two kinds of expressions
– formulas:

A ::= P | ~A | A∧ B | [π]A

– programs:
π ::= a | π1;π2 | π1∪π 2 | π* | A?

• in the models: R interprets programs 
R(π1;π2)   =  R(π1);R(π2)
R(π1∪π 2)  =  R(π1)∪ R(π2)
R(π*)   =   (R(π))*
R(A?)  =   {<w,w> : w ||- A}
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Tableaux for PDL

• similar to LTL:
– expand [π*]A   to  A ∧ [π][π*]A
– don’t apply createSuccessor to formulas ~[π*]A 
– mark nodes that are included in some ancestor
– don’t apply createSuccessor to formulas ~[π]A if node 

is marked
– expand the other program expressions:

[π1;π2]A ↔ [π1][π2]A
[π1∪π 2]A ↔ [π1]A ∧ [π2]A
[A?]B ↔ A→B
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Description logics

• “roles” and “concepts” 
– more expressive than classical propositional logic
– less expressive than 1st order logic

• focus on decidable logics
• applications:

– databases
– software engineering
– web-based information systems

description of medical terminology

– ontology of the semantic web 
standards: DAML+OIL, OWL

– description of web services
WSDL, OWL-S



103

Description logics:
concepts and roles

• roles = binary relations
hasChild
hasHusband

• concepts = unary relations = properties
Person
Female
Parent ∩ Female
Father U Mother
~Parent
∃ hasChild.Female “individuals having a female child”
∀ hasChild.Female “…”
>1 hasChild.T “individuals having more than 1 child”

• set of concepts “assertion box” (ABox)
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Description logics: 
TBoxes

• set of relations between concepts and 
roles 

“terminological box” (TBox)
– restricted to concept abbreviations 

(sometimes: fixpoint definitions)
Mother  =  Person ∩ Female

– are expanded away  TBox = ∅
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Description logics:
reasoning tasks

• satisfiability of a concept C
• subsumption of C1 by C2

same as: C1∩~ C2 unsatisfiable

• equivalence of C1 by C2
same as: C1 subsumes C2 and  C1 subsumes C2

• disjointness of C1 and C2
⊥ subsumes C1∩C2

all reasoning tasks reduce
to concept  satisfiability
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Description logics

• translation of concepts into modal logics
∃ hasChild.Female =  <hasChild>Female
∀ hasChild.Female =  [hasChild.Female]
Parent ∩ Female =  Parent ∧ Female
Father U Mother =  Father v Mother
<2 hasChild.T =  [hasChild]2 T
≥2 hasChild.T =  <hasChild>2 T

…modal logics with number restrictions 
[Fattorosi&Barnaba, van der Hoek]
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Description logics

• description logic ALC:
~C 
C1 ∩ C2
C1 U C2
∃ R.C
∀ R.C
= multimodal K

• description logic ALCreg = 
ALC + regular expressions on roles
= PDL

• all description logic reasoning tasks reduce 
to satisfiability checking in modal logics

• tableaux used as optimal decision procedures
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Logics of action and knowledge

• 2 modal operators 
Knwi A “agent i knows that A”
[a] A “after execution of action a, A holds”

• “product logics”:
RKnwi°Ra = Ra°RKnwi (permutation)
if  wRKnwiu and wRav then exists t such that uRat and  vRKnwit

(confluence)

• axiomatically:
Knwi[a]A ↔ [a]KnwiA
<a>KnwiA → Knwi<a>A 

tableaux: … 
problem: combination with transitivity
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Belief-Desire-Intention logics

• [Bratman, Rao&Georgeff] 
• 3 modal operators 

Beli A “agent i believes that A”
Desirei A “agent i desires that A”
Intendi A “agent i intends that A”

• plus branching time logic
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Modal logics with density

• accessibility relation is dense 
if Rwu then exists v : Rwv and Rvu

• …
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Non-normal modal logics

• no accessibility relation, but neighborhood 
functions: N: W → 22W

w ||- []A  iff exists U in N(w) forall u in U: u ||- A
non-normal modal logic EM

• can be represented by a set of relations
w ||- []A  iff exists Ri forall u (Riwu implies u ||- A)

• logic EM: “non-normal”
not valid: []P∧ []Q → [](P∧ Q)
but valid: [](P∧ Q) → []P∧ []Q
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Tableau rules for EM

• …
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and 

other modal and description logics 
• tableaux for 1st order logic 
• some implemented tableaux theorem provers
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1st order logic

• How should we handle the quantifiers?
∀ x p(x) ∧ ~p(a)  is unsatisfiable
∀ x p(x) ∧ ∃ x ~p(x) is unsatisfiable

• naïve implementation [Beth, Smullyan]:
if hasElement node0 forall x A(x)
do createTerm t (doesn’t exist in LoTREC yet)

do add node0 A(t)

if hasElement node exists x A(x)
do createNewConstant c
do add node A(c)

problem: loops for satisfiable formulas
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Herbrand Tableaux for 
1st order logic

• 1st solution: restrict instantiation to Herbrand universe
if hasElement node0 forall x A(x)
do createHerbrandTerm t (doesn’t exist in LoTREC yet)

do add node0 A(t)

• ex.: ∃ x p(x,x) ∧ ∃ x∀ y ~p(x,y))  satisfiable
1. ∃ x p(x,x) 
2. ∃ x∀ y ~p(x,y)
3. ∀ y ~p(a,y) (2), new constant
4. ~p(a,a) (3), only Herbrand term
5. p(b,b) (1), new constant
6. ~p(a,b) (3), Herbrand term
no further instantiation of (3) is possible

• decision procedure for formulas without positive ∀ …∃
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Herbrand Tableaux for 
1st order logic

• counterexample: ∀ x∃ y p(x,y)  satisfiable
1. ∀ x∃ y p(x,y) 
2. ∃ y p(a,y) (1), Herbrand term
3. p(a,b) (2), new constant

4. ∃ y p(b,y) (1), Herbrand term
5. p(b,c) (4), new constant
6. … 

loops
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Free-variable tableaux 
with unification

• 2nd solution: don’t instantiate at all
– work with free variables
– runtime skolemization of existential quantifiers
– term unification 

• ex.: ∀ x∃ y p(x,y) ∧ ∀ x∃ y ~p(x,y))  satisfiable
1. ∀ x∃ y p(x,y) 
2. ∀ x∃ y ~p(x,y)
3. ∃ y p(x1,y) from (1), replace x by free x1
4. ∃ y ~p(x2,y) from (2), replace x by free x2
5. p(x1,f(x1)) from (3), Skolem function f(x1)
6. ~p(x2,g(x2)) from (4), Skolem function g(x2)
stops: (5) and (6) don’t unify

• … but does not terminate in all cases (sure)
else 1st order logic would be decidable
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Overview

• possible worlds semantics: quickstart
• tableaux systems: basic ideas
• tableaux systems: basic definitions
• tableaux for simple modal logics
• tableaux for transitive modal logics 
• tableaux for intuitionistic logic
• tableaux for other nonclassical logics
• tableaux for modal logics with transitive closure and 

other modal and description logics 
• tableaux for 1st order logic
• some implemented tableaux theorem provers
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LoTREC

• IRIT-CNRS Toulouse (Sahade, Gasquet, 
Herzig); accessible through www

• general theorem prover 
• explicit accessibility relations
• easy to implement logics with symmetric 

accessibility relations etc.
– back-and-forth rules

• inefficient
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TableauxWorkBench (TWB)

• Australian National U. (Abate, Goré)
• general theorem prover 
• close to Gentzen sequents
• accessibility relations remain implicit
• hard to implement logics with symmetric 

accessibility relations
– temporal logic with future and past
– converse of programs
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LogicWorkBench (LWB)

• U. Bern (Jäger, Heuerding); accessible 
through www

• efficient algorithms for all the basic modal 
and temporal logics

• hard to implement a new logic
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FaCT

• U. Manchester (Horrocks); open source
• fast decision procedure for description 

logics with inverse roles and qualified 
number restrictions 

= multimodal K + converse + number restrictions

• optimized backtracking: “backjumping”
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KSAT

• U. Trento (Giunchiglia, Sebastiani)
• combines tableaux method with fast SAT solvers 

for classical propositional logic 
– call a SAT solver, where subformulas []A, <>B are 

viewed as atomic
– SAT solver returns a tentative valuation
– use modal tableau rules to generate children

if inconsistent then there is no model
else iterate

• very efficient
• exists for all basic modal logics



124

KSAT (ctd.)

• KSAT([](P&Q) & <>~P)
– call SAT with set of clauses {[](P&Q), <>~P}
– SAT returns:

V([](P&Q)) = 1
V(<>~P) = 1

– apply createOneSuccessor and propagateNec:
w ||- [](P&Q), w ||- <>~P, Rwu, u ||- ~P, u ||- P&Q

– call SAT with set of clauses {P,Q,~P}
– SAT returns: 

set of clauses unsatisfiable

– [](P&Q) & <>~P is unsatisfiable in K
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Conclusion

• search for models = exploit the truth 
conditions

• tableaux work both ways:
– finding a model
– refuting

• termination = decidability
• tableaux as optimal decision procedures 

description logics
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