

The NEPTUNE consortium presents

NEPTUNE

Method,
Checking and
Document generation
for
UML applications

w

Sneriiie

© NEPTUNE Consortium, 2003

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without prior permission, in writing, from the publisher.

http://neptune.irit.fr

TABLE OF CONTENTS

PREFACE 11
Reasons for this BOOK.............c..cccccoveviieiieciniiieceeeeeee e 11
MATN FOPICS .ot 12
The XMI OPPOFIUNILYeeeeeeieiieeieiee et 12
How 10 use this DOOKcccoviiiiiiiiiiiiieeeeee e, 13
Acknowledgementscc.cocoiioieoiioiiiiieiee e 14

PART I 15

THE NEPTUNE METHOD.......coiitiiiiiieiiiiiieieeeeeeeeee st 15
Chapter 1: The NEPTUNE method overviewccccoevennen. 16
Chapter 2: Modelling DUSINESScc.cceveveeceeeieiaeeiieieieeneenns 17

OVETVIBW ...ttt ettt ettt st sttt eneie 18
Established general technique for conducting meeting-interviews 21
Vision Of the DUSINESSceeveiriirieirieiiiie e 24
WOrk teChNIQUES.....c.veuiieiieiiiei s 24
Business concepts identification and definition.............c.ccceveneineennncn, 26
Activity 1: identification, definition and modelling of the business
COMCEPLS +.veutreteteseteteteteteteb ettt ebe ettt et st bbbt b et eb b et st ebes e seebese s
Work techniques
OULPULS .ottt ettt sttt e ettt st esaeeseeenseeneeen
Activity 2: identification of processes, resources and stakeholders 28
WOTK tEChNIQUESvveviieieieieieiecteeeetcee et 29
OULPULS .ottt ettt ettt a et eb ettt neen 30
Goals and problems definition............cceoieeereiieineereeeeeeee 30
Activity 1: identification, definition and modelling of specific goals and
PIODICIMS. ...ttt 31
WOTK tECHNIQUES ...c..ceeveniiiciieicc e 31
Activity 2: Definition of mechanisms for measuring the accomplishment
OF the GOALS. ..cvieieeieeieieieeee ettt 33
Activity 3: Elaboration of a plan for reviewing the accomplishment of the
OIS ..ttt 34
Resources and organisation structure analysis..........coceceeeeeeneeeneenencns 34
Activity 1: building the organisation model of the company 35
Activity 2: Identifying the processes owned by Areasccceevevenene. 36
Business processes deSCIiPtionecuevueruerierverereeieienieieieeeeesieseennes 36
WOTK TEChNIQUES ...vevvenienieieieiecieeieeceeeee et 38
Business behaviour deSCriptionceccevererereeieierieieieieieseeseeeeeenes 39
WOTK tEChNIQUESvveviieieieieieiecteeicet e

Requirements definition
Chapter 3: Modelling SOftWarecccoeevveveeeeeveeceieeeeereenenn, 43

OVEIVIEW ...ttt ettt et et ettt e et eete e et e e et e e etaeeetaeeeabeeeaaeeeeaseeeaseeeatseeseas 43

Requirements Analysisc.ccecevuene ... 46
Activity A: Definition of Actors 47
Activity B: Definition of Context...... ... 48
Activity C: System Description..... .. 50

ODbJECt ANALYSIS....vievieeieiieieierieeiese et et et et etete e stesae e eseeseeseeseenseneas 54
Activity D: Object ANALYSIS ...ecveieieieieieieeierceeeeee e ns 54

Architectural Design
Activity E: Software Component Definition
Activity F: Software Component Description...........cecceceeeeeeienennene 60
Activity G: Identification of Design Packages...

Activity Y: Classes allocation..........c.eceeverierierieniesreseeeeeeeeeeneeeeenns
Chapter 4: About the method and the NEPTUNE software............. 73

Additional NEPTUNE features for efficient modelling...................... 73
The method and the Checker..........cccocoveinennincinecnn. .14
The method and the Documentation generator .. .15
Getting started with NEPTUNE softwarecccoceeeneineinenceene. 76
PART II 81
CHECKING MODELScoviiiiiiiiiiiiiiiiiiiiiccet e
Chapter 1: Checking purpose.......................
The worth of the UML model correctness
Checking UML Models — state of the artccccoceveeirernennenneneens
Checking UML models at different levels...........cccooereeirenneniincennens 83
Chapter 2: Checking correctness of Business Constraints Rules 84
Designing Business Constraints Rules (BCR)........cccoceoviniincincnecnne 85
Invariant and pre- and post- conditions 85
Class invariants..........cccceeceeeeerueenenne. ... 86
Pre- and post- conditions............ ... 88
Constraints over communications... ...89
MESSALES ..eevveeereeiieriieeerieeieenene ... 89
Temporal constraintsccecveeveneene. ...90
Business Constraints Rules Correctness.......... et 95
Chapter 3: Checking UML models.................c.cccovevveviiieceeennannnn. 96

DeSign PrinCiPLesc.eeveeeuirieirieieieieiertet ettt 96

The UML Metamodel as support for expressing constraints over models

... 96
Metamodel Navigation and Additional Operation............cccccervervenuennenne. 96
Well-formedness TULESc.eeeeeriririeieieieierie et 97
Inter diagrams cOherence rulescoevveeeierienienienienieseeeeeeeeeeeeenee

Class and Object diagramsccecveveerierierienienreneneeeeeeeeeeeesenaennes

Class and sequence diagrams
Class and statechart diagrams
Sequence and statechart diagrams
Profile TULES ...t
Software engineering profile (Formerly Methodological rules) 104
Business process profile.........c.cocoeereenerinineienieineeenecneeeeees 110
Chapter 4: NEPTUNE checkerccccooienioioiiiiinincaans 113
Tool DeSCIiptionc..cevveeeuenieineiieinicenreeeneeneenes .. 113
Checking rulesco...... .. 114
Metamodel level rules
Model level rules........... .. 115
Tool Usage....
The Rules.....c.ccoevcuenenne . 117
Invoking the Checkercccooiriiiiiiiiieieeeeeeee e 122

PART III 129

DOCUMENTING MODELS.......ccccoiiuiiiiiiiiiiieiieieicseee e
Chapter 1: Documentation PUTPOSe............c..ccveeveeeervescreecreannens
The worth of documentation generation...........c.cececeveeereesereneneennne
Documentation generation: State of the art ..
Introduction to our document ZENEratorccecvevveruerierienenererenenee
GENETAl CONCEPL ...c.viviiieiieiieiieierte ettt ettt ettt
Multiple points of view
Multiple cOMPatiDIlityccvevverviriirieieieieieeeeee e
Multiple sources of informationceceeevecveeverrerienienenenesesennens
Chapter 2: Business dedicated documentation..............................
Documentation in bUuSINESS PIOCESSveverrererverrerrerierierresiessesesenenes
Examples of business modelling documentation
Documentation in software engineering...........coceeecereerueerereneneennene
Different types, different means...........cccceoeeeieineinenneneccee
Examples of software engineering documentation........... .
Chapter 3: The document generator cOnCepts................ccoceveuenen.
Transformation Tules..........occoeoiiiiiiiiiniiicc e
General transformation rules.......

The shape......c..cccoeveenecnecncnenene
Shape Content..... .
SHaPe SHIUCTUIE....c.veveieiecieeiieieieieiee ettt sse st see e
Chapter 4: NEPTUNE document generatorcc..cocuen...

TOOL AESCIIPLION ...ttt 149
INPULS 150
The shape as an input organiser
Internal Generation process....
OULPULS .o

TOOI USAZE ...uveuvenieieeiietietieiee ettt sttt ettt esesbessessesae e 154
The transformations...........coceeeeereereerinreeenneeeereeee e 155
The Shapes
Invoking the Generator

APPENDIX A 179

OVERVIEW OF UML META MODEL AND MOFcccccooiniiiiinnnnn 179
IRIPOAUCTION ...
The basic concepts 0f MOF..............cccccoooevvieevevieciaeeneeeeieeieeenenns

The concept of a MOF class............... .

The concept of a MOF association

The concept of a MOF package.........

Data tYPE ...eeueeeieeieceee e e

MOF general architeCturec.ccoceeoeeeeeeaiaieneieeeseeens

APPENDIX B

OVERVIEW OF OCL.....oioiiiiieiiiiiieieesie sttt
TAIPOAUCTION ...
Relation to the UML Metamodel.......................ccc..cccovvveiveecinann..

Specifying the UML CONtEXL......ccvevvrirrierieieniinieeiieiieieieieieiesie e
Invariants, pre- and post-conditions... .

PaCKaZE CONLEXEevinitiieiiiteieteieeie ettt
Basic values and types....

Objects and Properties...
PIOPEILIES vttt ettt ae b e ssestesae e
MiSSING TOIENAMES......ccvrevrerienieieieresiieteeteeteeeeeeeeesaeseaessessessesaessens
Navigation over associations with multiplicity zero or one...
Combining Propertiesccoereeuereereruerereieeneereeeeeeeneenes ... 197
Association classes and navigation.............. ... 197
Navigation through qualified associations...
Using pathnames for packagesc.ccceeeeveinenieiinccnenecncneeeenee 199

Accessing overridden properties of supertypes
Features on classes themselves.........c..cccccceeeenee
COlIECHIONS ...ttt

Enumeration.............c.........

Collection-related types.....
Collectionccoeeuneee.
Setcoirieieene
Bag............
SEQUEIICE....c.veiiiieiieiieteert ettt
APPENDIX C 215
OVERVIEW OF XML AND XMIccoccviiiiniiniiniiieieieineneseeeeeeeee 215
The choice Of XMLc.ccoovieveeiiiiieicieeeeeeie e 216
XML PFIICIPICS ...t 216
XML EIEMENLS ...ttt 217
XML QUITDULES ...ttt 217
Representation of an XML documentcccccoeeeeveenvennn. 218
The syntactic tree
Non-structuring metadatacccoeeeeirieirerireeeereee e 218
ID and IDREF attributesc..coevererereneneneneeceteeeteieseese e 219
Well-formed XML documents..................ccccoeun... . 220
Document Type Definition (DTD)..... ...220
Valid documentsc.ccoceverenininenieieieenenenee ..221
The XML Metadata Interchange format (XMI)...............ccccccee..... 222

Example of metamodel and its associated DTD
Example of a metamodel instance and its XML

Application to UML....................

XMI production rules
Production by object containmentceceeeeeeeeriesienienienenenenenenee
Package extent productionc.ceoevererereeinieieieieeiese e
Major’s change between XMI 1.0 and XMI 1.1.........

XML document
DTD and valid documents

APPENDIX D 237

OVERVIEW OF MODEL TRANSFORMATION AND XSL . .oooiiiiiiiriiieenns 237
XS oo 240
XPATH ..o e e ee e e e enas 241
D63 5 LSOOt 243

XSLT and XMLocueiniiiiincciinecceneeeeneneneae 243

XSLT ProCeSSING ..c.vevververvenieriieiieiieieieienieniesienienienee 244

Designing transformationccceeeevenerenenenenne 244

Complete example of UML Model Transformation 250

UML MOGEL.....eimiiieiiiieieitiieteeseeeeie et 251

Java code GENETationcceevevueruerueetierieietieeeeeeeaeee e seesae e seeeeeas 251
Documentation generation using FO renderingc.ccccevevvenuennene 253
AUTHORS 261

REFERENCES 265

PREFACE

REASONS FOR THIS BOOK

Our position of consultants has shown us that among the increasing
number of people working with UML [ref19], [ref7], there is a strong
demand of information regarding the way to implement this technology.
UML is a modelling language, and as the norm does not define particular
implementation guidelines, the field of investigation is still opened.
Among the methods already published, we chose to develop and extend
the Unified Process (UP), which is indeed the process suggested by the
“three amigos”. This is what we did and now present in this book. We
also associate this instantiation of the UP with software tools aimed at
improving the quality of the models, and consequently the final products.
This package constitutes the global NEPTUNE offer.

The book has to be seen as a single piece of information, in which the
reader can find some interesting stuff about academic domains like model
checking, but also the most adapt way to support the NEPTUNE
technology, whether it is methodological or software.

We also want to point out the benefits of a global use of the
NEPTUNE technology, highlighting the bridges existing between the
different facets of the NEPTUNE offer.

It is also important to mention that NEPTUNE, before being a product,
was an European project part of the IST program. This book, in addition
to being a very useful tool is also kind of a witness, as well as a synthesis
of the work performed by the entire NEPTUNE consortium during two
years.

The targeted reader of this book is the industrial public, working on
UML, and wishing to find a full methodology based upon UML.

12 Preface

MAIN TOPICS

Three themes around UML modelling are widely explored in the
following parts and chapters. Theses themes are:
e The methodology
e The model checking
e The generation of documentation

Each of these themes relies upon technologies, whose basics (and
more) are given in the annexes at the end of the book. These technologies
are

e UML, XMI, OCL
e XML, XSL

All along the book, the themes are developed with references to the
aforementioned technologies, and presented for two different professional
domains

e Business process
e Software engineering

THE XMI OPPORTUNITY

As the different case tools based upon UML are supposed to be
compliant with the norm defined by the OMG, the people from this
organisation thought about defining a generic backup format for the UML
data. Such a format would for instance allow the exchange of UML data
between two case tools developed by different editors.

The XML format being now widely used to exchange data, it is the one
that has been chosen by the OMG to support the UML exchange format.
A DTD and some guidelines have been defined, leading to the definition
of the XMI format, embedding most of the UML concepts. Nowadays,
most of the case tools, though having their own proprietary backup format
do also provide some XMI features, often through an import/export
function. The models can thus be loaded and saved in the XMI format.

For us, this fact is a great opportunity. Because the NEPTUNE offer is
not a case tools but an additional tool based upon the UML norm, the

Preface 13

XMI leads our tool to be compatible with any of the existing and future
case tools being themselves compliant with the norm.

HOWw TO USE THIS BOOK

This book is divided into four separate parts. Each one can be read
independently from the others.

The first part is devoted to modelling. Business process and software
engineering are successively and independently presented.

Concerning the two central parts of the book, respectively dedicated to
model checking and documentation generation, we can say that their
organisation is quite similar. For each one, the content gets more and
more NEPTUNE oriented as the number of chapter increases. In the first
chapters, the reader will find some academic material, to slowly get into
the NETUNE oriented material, such as the description of the tool and
detailed explanations of how to use it. Consequently, if the reader needs
some information about how to use the NEPTUNE software, then we
recommend him to jump to the end of the parts. On the other hand, he will
focus on the first chapters for anything concerning general information
about either model checking or documentation generation.

The annexes constitute a huge source of information. They deal with
the different technologies used in the context of NEPTUNE. They are an
excellent means to develop further the associated knowledge. Even if it is
recommended to read them, it is however not necessary to turn oneself
into an expert for the understanding of the core of the book.

14 Preface

ACKNOWLEDGEMENTS

This book is an initiative of the NEPTUNE consortium, which
deserves collectively all my thanks. Of course, a consortium is mainly a
collection of people, and some of them had a real outstanding influence
on the form and content of this book.

First my deepest thanks and appreciation go to L. Pomiés, the main co-
ordinator of this book, for his invaluable involvement as author,
integrator, and reviewer.

Of course, I express my sincere gratitude to the main authors:
J. Ballesteros, P. Bazex, J.P. Bodeveix, J.C. Cruellas Ibarz, L. Feraud,
C. Le Camus, J.M. Llovet Pérez, T. Millan and C.Percebois.

I also gratefully acknowledge the help of the other members of the
consortium who were able to devote some of their time to reviewing early
versions of the book: J. Boixadera Planas, Y. Cassaing, N. Pla Ferrer,
A.Jammes, E. Roblet, E.J. Samper, R. Sobek, J.Y. Souillard, and
G. Vallés Muiiio.

Finally, I’d like to thank my son Jonathan for his creative participation
in the graphical design of the cover pages.

This page is also a great opportunity to address a very special thanks to
the people that have more or less actively participated to the two years
and a half adventure of the NEPTUNE project.

To conclude, I’d like to thank V. Kopanas, our project officer, for his
availability and support, and C. Gacek, J.M Morel, and V. Sylaidis, our
reviewers, for their constructive work and remarks.

A.CANALS
NEPTUNE Project Leader

PART |

The NEPTUNE method

This first part of the book aims at presenting the NEPTUNE method.
This method supplies guidelines and recommendations all along the UML
modelling phases, leading to well-organised models.

As UML can either be used to model pieces of software or processes, it
is important to mention that the support given by the method is not
reduced to software engineering. Thus, the first part deals with the
NEPTUNE method applied to particular processes, namely business
processes. Then after is presented the method in the software engineering
context.

16 The NEPTUNE method

CHAPTER 1: THE NEPTUNE METHOD OVERVIEW

As already mentioned the NEPTUNE method is a great help in
modelling software engineering systems but also business processes. This
chapter will show how these two approaches can be linked together or
applied totally independently. We will see that the correlation level
between the two sides of the NEPTUNE method strongly depends on
which business field the NEPTUNE user works.

START OF MODELLING PROCESS

Y Y

Business Process Software Engineering

l l

END OF MODELLING PROCESS

Modelling business 17

CHAPTER 2: MODELLING BUSINESS

A business model (BM) is a description (usually mixing both text and
graphics) of the relevant aspects of the business (goals, opportunity,
problems, structure, processes etc) and the manner in which they relate to
each other. The level of detail differs according to the perspective of the
person creating the model and/or its purpose. A business model serves as
a description of how the business is performed and acts as the basis for
evaluating and prioritising goals, and constitutes a basic tool for defining
the business strategy.

Business modelling is not a new issue at all: the first techniques for
modelling business processes date back to the 60’s. But nowadays new
technologies have increased the interest on this topic of both managers
and software engineers. The growth of Internet has brought opportunities
for new businesses and new ways of conducting the already existing ones.
It has definitely increased the importance of the information systems,
which have become a crucial element in the daily operation of thousands
of private companies and public administrations. In the end it has acted as
catalyst of change that they are facing every day. All these facts lead to a
situation where lots of companies must be, from time to time, rethinking
their business or the way they conduct them; public administrations are
rethinking the public services offer and the way they are offered to the
citizens. This raises the need of facing and implementing changes (which
can be dramatically big and depth) as quickly as possible and efficiently.

In this context models play a continuously increasing important role in
the daily development of today’s business. They act as repositories where
the business knowledge is concentrated. Depth and non ambiguous
knowledge allows to assess the business as a whole, to rethink it and to
correctly conduct the required changes. Knowledge is also crucial in the
development of a kind of “language” for giving support to a sort of
“company culture” shared by the staff. Business models also play a
crucial role in the specification of the information system (IS)
infrastructure that an organisation requires to achieve its goals in an
efficient way, as they describe the different elements (business goals,
business actors, resources, business processes) that constitute the daily
life of the business and allow to extract their respective requirements for
the supporting IS. Even when these IS already exist, business models are
valuable as they make explicit among other things, the different business
processes that are supposed to be supported by them, raising inadequacies

18 The NEPTUNE method

or mismatches or simply adding detailed information that was not
previously available. From a broader perspective, business models
constitute valuable inputs for standardisation initiatives in the electronic
transactions world (UN/CEFACT, ebXML, etc).

Due to the aforementioned reasons, it is not uncommon that modelling
business becomes, for more and more specialists, a crucial discipline in
software development process.

Different methodologies for building up models have been proposed,
most of them referred to software modelling paradigms (e.g. object-
oriented, data-focussed, etc). Examples of the methodologies currently
proposed and used are: RUP (Rational Unified Process) and UMM
(UN/CEFACT Unified Modelling Methodology [refl]). The ebXML
(electronic business XML) project has produced a profile of the UMM for
modelling business dealing with exchange of electronic documents.

Methodologies are usually supported by a number of techniques. These
in turn are supported by specific tools such as CASE tools, Workflow
Management Systems etc. Some of the more well-known business
modelling techniques are: Flowcharting, IDEF Techniques (IDEFO,
IDEF3), Petri Nets, Simulation, Knowledge-based Techniques, Role
Activity Diagramming, Entity-Relationship Diagramming, State-
Transition Diagramming and Unified Modelling Language (UML).
Nowadays the effort on specific techniques used in business modelling,
has resulted in an increasingly broad range of tools made available for the
specialists. A very relevant example are the Eriksson-Penker Business
Extensions [ref2], that have taken advantage of the UML extension
capabilities and built up a number of model patterns in the business
modelling area.

Overview

The aim of this section is to give an overview of the NEPTUNE
business modelling discipline. As it has been stated before, it is built on
the UMM proposal with additions derived from the work of Eriksson and
Penker to deal with uncovered aspects by UMM itself. In consequence it
is worth to start by shortly describing what was initially UMM designed
for, and which is its normal scope of application.

The main objective of UMM was “to model Business Processes and
support the development of existing ‘Next Generation’ EDI for electronic
business”. As such, UMM was conceived to give support to the

Modelling business 19

standardisation of electronic versions of common commercial documents
in the light of latest technological advances: massive usage of Internet,
object orientation paradigm in software engineering and widespread
usage of XML syntax in the Web. UMM focuses mostly on those aspects
related with commercial transactions. However, business also deal with a
much more complex set of topics that any methodology looking for
effectively modelling a business as a whole must take into account:

* Businesses are carried out by more or less complex organisations.
¢ Organisations conduct an extremely high diversity of processes.

* Entities that conduct business must accurately define their specific
objectives, means to review them, and means to measure the degree of
achievement.

* Entities conducting business must achieve their goals with limited
resources. In addition, they have to clearly identify potential problems
for these achievements and define solutions for these problems.

¢ Companies, organisations and public administrations usually relay on
IS to give support to their daily activities. Adequacy of the IS to the
daily activities and adaptability to changes is a critical issue.

Eriksson and Penker have identified a number of relevant views for a
business that incorporate all these topics. In addition they have proposed
means for modelling the most important aspects in each one using UML;
they have also defined a number of modelling elements for relevant
aspects in this field; finally, they have proposed a set of diagrams for
modelling business from different views.

The business modelling discipline defined by NEPTUNE incorporates
activities, steps and work products proposed by both UMM and Eriksson
and Penker (who identified a number of business views that NEPTUNE
incorporates).

NEPTUNE acknowledges the fact that businesses can be conducted in
a number of relevant but different business areas and that each one
requests an accurate modelling work. Because of that most of the
activities proposed by NEPTUNE must be carried out for each area.

NEPTUNE business process discipline proposes the work definitions
that are mentioned and shortly explained below:

¢ Vision of the business. It includes, among other issues, the
justification of the business, a high level description of the objectives,
the identification of the relevant areas, stakeholders, constraints, etc.

20 The NEPTUNE method

* Business concepts identification. This activity will be carried for each
business area relevant to the organisation. Although it is mentioned in
second, it will actually be completed iteratively and in parallel with the
rest of the activities because these ones usually bring deeper
knowledge of what it is being modelled and in consequence improve
its conceptual perception.

* Goals and problems identification. This activity will be performed at
two levels. The work at the higher one will usually be carried out by
the promoters of the business likely with the help of external
consultants. At the lower level, this activity must be performed for
each relevant area for the business, and must include definitions of
achievement assessment procedures.

* Resources and organization structure analysis. This activity deals
with the production of a model of the actual organization that must
conduct the daily activities in the business, its organizational units, the
available resources and the managed information. If the model is
accurate, it will be possible to assess crucial issues like the adequacy of
the organization and resources to the goals in each business area, or the
cost of reorganization of certain organizational units to support
changes in the business, or even the adequacy of the IS supporting the
business, etc.

* Business Processes identification and description. This activity must
be performed for each business area. It will likely involve the
identification of different categories of processes even within one
single business area..

* Business behaviour description. This activity deals with the
interaction between processes and resources.

* Requirements Definition (Preparation for supporting IS production).
If the ultimate goal of the work is to produce an IS, a number of steps
will have to be accomplished in order to take the results of the previous
activities and prepare the rest of the work devoted to obtain such a
system.

NEPTUNE business modelling discipline proposes to carry out a
number of meeting-interviews in order to perform certain activities in the
aforementioned work definitions. The first of the following sections
details the established techniques for conducting these meetings and
interviews.The next sections present the relevant details of each work
definition. These include:

¢ Introduction to the activity itself.

Modelling business 21

* Table showing the actors who will carry out the activity, the inputs that
they will use, the outcome of the activity, and the steps to perform the
activity.

* Details on the different aspects summarised in the aforementioned
table. This can include, wherever needed, additional details on the
technique for carrying out meeting-interviews.

* Templates for those document that can result from the work done in
the activity.

Established general technique for conducting
meeting-interviews

Some activities in NEPTUNE business modelling discipline actually
are meeting-interviews carried out to extract business knowledge and
model it. This section shows the process that NEPTUNE has established
for conducting them. This process is iterative. Usually, after each
meeting, one or several documents must be produced. Achieving their
final versions may take more than one meeting as their contents must be
reviewed, modified and eventually agreed by all the implied actors.
Usually one of the implied actors is a business analyst who is in charge of
conducting the meeting-interviews in a proper manner so that the business
knowledge is eventually extracted and accurately modelled.

Below follows a textual description of the steps foreseen by
NEPTUNE for conducting the meeting-interviews:

1. First of all the business analyst must prepare scripts for the
interviews. These scripts must detail the relevant aspects that the
corresponding team will work on during the meeting (they usually
will contain questions about these aspects addressed to the
participants). Their specific contents strongly depend on the precise
activity in the NEPTUNE discipline. Sections below include specific
proposals for these scripts.

2. These scripts, along with the agenda for the meeting must be
circulated among the participants days before the meeting. In this
way, they can have enough time to prepare the meeting. In certain
cases, e-mail exchanges before the meeting have to be maintained in
order to clarify both, certain aspects of the script and/or the scope of
the meeting.

22 The NEPTUNE method

3. One meeting-interview is carried out. This working session focuses
on the aspects mentioned in the circulated script. As the session goes
on, the different aspects mentioned in the script must be worked and
questions answered. Meetings must not be too longs, as it is shown
that after certain time period, it is not likely to get good additional
results. At the end of the meeting a short review of the covered issues
and those not treated must be done and agreed. It must also be agreed
a calendar for the next steps. This includes: production of the
documents formalising the results obtained, including short minutes
of the meeting, period for comments on the documents, and date for
the next meeting if needed.

4. The day fixed in the agreed calendar, the documents must be
circulated among the participants.

5. During the established period, the participants read the documents
and raise comments that eventually can introduce some changes, help
the business analyst to propose an agenda for the next meeting-
review, and even lead to modify the original meeting script.

6. If the comments reveal that certain points need additional
clarifications, the next meeting-interview firstly deals with them
before going on with the list of issues to deal with. Only when a
complete agreement has been achieved in them, the team will
proceed to discuss other items in the business analyst script.

Steps 3 to 6 are repeated until all the aspects of the business analyst
script are covered in a proper manner. The final meeting must be devoted
to formally give the approval to all the documents generated as a result of
all the work.

Script for the meetings-interviews
As an example, below follows the script distributed to the attendees of the
meetings-interviews for identifying and validating business rules.

Before the meeting-interview:

Al.- Analysis of the documentation available for each process by all the
participants.

A2.- To send a copy of the clause “During the interview” of the present
script.

During the meeting-interview:

E1.- Present the objectives of the project to the process expert.

E2.- Clarify concepts if the interviewers have doubts after studying the
process.

Modelling business 23

E3.- Review by all the participants of:
= The objectives of the process.
= The description of the process
= The process diagram, making special emphasis in the activities
sequence, bifurcations, loops, etc.
= Analysis of the coherence of the process diagram and the textual
description of the process.
= Actors of the process.
= Analysis of the activities in the primary path (“normal path”) in
the process.
= Analysis of the activities of the alternative paths in the diagram
process.
= Analysis of the causes for state changes within the primary path.
Identification of triggers.
= Analysis of exception causes that originate that the process
follows alternative paths. Analysis of the triggers for the state
changes in these paths.
= Context circumstances, cultural elements, and implied issues that
can affect the process.
= Information volumes and work load, automated procedures and
manual procedures. Tasks and circumstances that people
involved in the process take into account when they have to
make decisions.
= General comments on the process.
E4.- Summary of the process and very first list of pendent issues that
require ulterior work or/and documentation.

After the meeting-interview:

D1.- Analysis of the coherence of the obtained results and the stated
objectives and the description and initial documentation.

D2.- Identification of pendent issues.

D3.- Identification and formalisation of the business rules.

D4.- Production of the minutes of the meeting-interview with the table of
the business rules identified and additional comments when required.

D5.- Delivery of a copy of these minutes to all the participants for
comments.

D6.- Reception of comments and modifications of the minutes. The
comments can consist in the acceptation of the business rules in the table
or suggestions for changes. This feedback can lead to the agreement of
further discussions during the next meeting.

24 The NEPTUNE method

Vision of the business

This activity produces a number of outputs that help to setting up the
strategy of the business. The following table summarises the most
important details of the work definition, namely, actors, inputs, outputs
and activities.

Actors: = Business Expert (Managing Director or Board
of Directors)
= Business Analyst
Inputs: = None (unfortunately a common situation) or

= Business Plan (for new business)
= Strategic Plan (Forecast for a period of 3 /5
years for an already existing business)

Outputs: = Vision of the Business

= Business general goals.

= Currently used Business concepts in a
particular company

= Current organisation of the company

= Main activities, products and services
performed / supplied by the company

= TOWS matrix for the overall company

The vision of the business is a short document giving hints, among
others [ref3], of the mission of the company, their global objectives, the
strengths, its weaknesses, its opportunities and threats, the major
strategies, etc.

It has to be mentioned that business goals can be defined at different
levels within an organisation. The current activity concentrates on the
global ones. The business’ owners must define them, and once this has
been done, it is unlikely to have substantial changes during long periods
of time, unless a radical change occurs in the business. Usually, it makes
no sense to model them.

Work techniques

The actors will conduct a number of meetings to produce the required
material to be included in the output documents. For each interview the
business analyst will produce a script that will guide its development.

Modelling business 25

Suggested base script

The figure below shows the suggested script that the business analyst
could use as a base .

Before the meeting:
Same structure than previous meeting script

During the meeting:
Follow the following index of topics, being the meeting a mix of
brainstorming and of high level analysis, an exercise to review the
Business Plan or the Strategic Plan with the aim of fixing objectives,
threads, strengths, weaknesses and opportunities, detailing products, main
activities, services and organisation necessary to reach the desired goals.
The usual mechanism should be an iterative process (in several meetings)
with the same index until a clear result shall be obtained. This result must
be negotiated and accepted by all members involved in the future of the
company (management and shareholders representation)

= Vision of the Business

= Business general goals.

= Currently used Business concepts

= Current organisation of the company

= Main activities, products and services performed / supplied by

the company
= TOWS matrix for the overall company

After the meeting:
same structure than previous meeting script

26 The NEPTUNE method

Business concepts identification and definition

During this activity, a shared vocabulary for the business will be
produced, modelled and agreed. There will also take place the
identification of the high-level daily processes and/or activities (organised
by business areas), as well as the relevant stakeholders and business rules
for them. This is essential for getting a complete, accurate, understandable
model; for avoiding misunderstandings; and for allowing a real sharing of
the knowledge among the actual players in the business.

The following table summarises the most important details of the work
definition, namely, actors, inputs, outputs and activities.

Actors: = Business Expert (Director or Expert)

= Business Analyst (Internal or external
Consultant acting also as Modeller)

= Qccasionally any of the Managers or Directors
of the company

Inputs: = Vision of the Business

= Currently used Business concepts in a
particular company

= Knowledge of the current organisation of the
company

= Main activities, products and services
performed / supplied by the company

= TOWS matrix for the overall company

= List of business goals (derived from the vision
and strategy of the company)

Outputs: = A standardised Business Concept’s Dictionary
(list of Business Concepts)

= (lass diagrams for Conceptual Modelling

= Detailed list of relevant processes and/or
activities performed by the company

= High-level list of stakeholders and resources
(for each area or process)

= List of business rules (derived from the day to
day activity)

Activities = Identification, definition and modelling of the
business concepts

= Identification of processes and/or activities
performed by the company, including relevant
stakeholders and resources and business rules.

Modelling business 27

Activity 1: identification, definition and modelling of
the business concepts

The actors and the inputs for this activity are the ones mentioned in the

table before. Below follow details on the outputs and the work techniques
suggested for completing the activity

Work techniques

The actors will conduct a number of meetings to produce the required

material to be included in the output documents. The technique for
conducting the meetings will be the one explained in the corresponding
section above, with the specific considerations that follow below:

The script must focus on extracting as much relevant concepts to the
business as possible.

The business analyst must focus his effort in the identification of
relationships among the concepts. He has also to work for achieving
agreed and unambiguous definitions of the identified concepts.

The objective of the first meetings will be to get the dictionary already
mentioned. It will contain all the identified concepts, their
corresponding definitions and their most relevant relationships with
other concepts.

This dictionary will be worked out by the business analyst that will
also play the role of modeller, and he will produce the conceptual
model in UML. One or more meetings will then be conducted in order
to review and approve the model.

From time to time, and as business modelling progresses, or even after
the issuance of the business model itself, the results obtained from this
activity may need to be reviewed (new concepts can arise, existing
concepts might not be relevant any more, or change might occur in
their definition, etc). The outputs of this activity have to be live
documents, and the team may revisit and change them. While the
business model is being produced, the team must establish these
mechanisms, and repeat the meetings accordingly. Once the
corresponding version of the model has been finished, the organisation
must define a work-plan for reviewing and updating it.

28 The NEPTUNE method

Suggested base script

See meeting script suggested contents at the end of Activity 2:
identification of processes, resources and stakeholders

Outputs

The outputs of this activity will be the Business Concept’s Dictionary
and the conceptual model expressed as a set of UML class diagrams.

Suggested base contents of the dictionary

The available dictionary could be organised in a tabular form, so that
identification of concepts and their relationships would be easy.

The details to be given for each concept could be, among others:
concept name, concept definition, relationships with other concepts,
multiplicity of these relationships, business area(s) where the concept
applies, processes that use the concept

Being given the widespread of XML editors it is even possible that the
initial output generated by the business analyst could be a XML
document and that the NEPTUNE document generator (or any other tool
incorporating XSLT capabilities) could be used to produce the final and
available dictionary.

Activity 2: identification of processes, resources
and stakeholders

The actors and the inputs for this activity are the ones mentioned in the
table before. Below follow details on the outputs and the work techniques
suggested for completing the activity

Modelling business 29

Work techniques

As before this activity will be performed by setting up several meeting-
interviews. Below follow some aspects that the business analyst must take
into account when planning and conducting them:

¢ First of all, the business analyst must focus on identifying business
areas.

e For each of the business areas, the participants have to work in
identifying the stakeholders, the relevant processes and the resources
that they require.

* Special care has to be taken when dealing with those processes that can
not be embedded within only one area, but pertain to several ones.
They must be unambiguously identified.

* Concerning the stakeholders, a short enumeration of their
corresponding interests and played roles must be produced.

* During this activity, the participants have to identify and formalise
high level business rules (those that are related to general policies of
the organization). It is essential to include in the script questions that
lead the team in that direction.

Suggested base script

The figure below shows the suggested script that the business analyst
could use as a base (suitably profiled). As Activity 1 and 2 are very close
one to the other, meetings can be performed to reach conclusions for both.
A remaining task for the consultant should be to identify and divide
processes from business concepts. Therefore a common script should be:

Before the meeting:
same structure than previous meeting script

During the meeting:

Follow carefully the “list of main activities, products and services” and
“knowledge of the current organisation of the company” which are inputs,
in order the identify in detail processes and activities for each
Organisational Unit, concepts used by OU, process or globally the whole
company, stakeholders and resources for each process as well as the
explicit or hidden business rules

30 The NEPTUNE method

Remarks:
= A good issue shall be obtained when the consultant working in
the activity has enough experience either in business or in Public
Administration or in both.
= Experienced managers are naturally an excellent starting point
for these activities

After the meeting:
same structure than previous meeting script

Outputs

Suggested template for the document

Outputs:

Enumeration and a short description of the different relevant business
areas.
The stakeholders and their expectations.
An enumeration of the more important processes (including a short
explanation) and the resources consumed
For each process:

= List of resources required by the process

= List of stakeholders involved in the process, indicating which

activities are to be performed by each one

Goals and problems definition

This work definition deals with the modelling of specific goals (for
each business area) whose achievement is needed to accomplish the
general ones present in the business vision. These specific goals must be
documented and modelled (using goal/problem diagrams proposed by
Eriksson and Penker) along with the expected problems and measures to
counter them. There will be periodical reviews for both measuring the
degree of accomplishment and redefining the goals themselves for the
next period.

The table below shows the relevant actors, inputs, outputs and
activities.

Actors:] Business Expert
. Business Analyst

Modelling business 31

. Occasionally any of the Managers or Directors

of the company
Inputs: . List of business goals (derived from the vision
and strategy of the company)

. TOWS matrix for the overall company

Outputs: Goal (for each goal):

] TOWS matrix for each goal (Global TOWS
filtered in order to see only those topics related to
the specific goal)

. Goal definition

. Processes involved in the goal or problem

. Resources required to reach the goal / solve
the problem

Ll Goal/Problems model

) Plan for reviewing the accomplishment of
the goals.

Activities = Identification, definition and modelling of

specific goals, their associated problems and
envisaged solutions.

. Definition of mechanisms for measuring the
accomplishment of the goals.
. Elaboration of a plan for reviewing the

accomplishment of the goals.

The two first activities mentioned in the table, are strongly related and
will be carried out in parallel. The third one will be a different activity.

Activity 1: identification, definition and modelling of
specific goals and problems

The actors and the inputs for this activity are the ones mentioned in the
table before. Below follow details on the outputs and the work techniques
suggested for completing the activity.

Work techniques

The actors will conduct a number of meetings to produce the required
material to be included in the output documents. The following
considerations will apply for this activity:

32 The NEPTUNE method

¢ First of all, the business analyst must focus on obtaining a concise
definition of high-level goals.

* After that, the team must focus on breaking it in a number of lower
level sub-goals. This process should be continued to the extent where
no further decomposition can be reached.

* For the ones that are quantitative, the participants have to agree in
both, quantities and units.

* For those that are qualitative, the participants should try to identify
indicators related to those goals.

e For each goal identified, the business analyst should conduct the
meeting so that the participants might be able to accurately define a
number of mechanisms to measure its degree of accomplishment. They
should allow establishing levels of accomplishments.

¢ For each goal identified, the business analyst must focus on making the
team aware of the importance of an accurate description of the most
relevant problems that could prevent the fulfilment of the goal. As a
second part of this step, they should also accurately describe possible
solutions for each problem.

Suggested base script

The figure below shows the suggested script that the business analyst
could use as a base (suitably profiled). This script is also valid for
activities 2 and 3 that follow this first one.

Before the meeting:
same structure than previous meeting script

During the meeting:

Detailed review of Company goals, identifying which one interacts with
particular OU processes and detailing subgoals involved on each process.
During this phase must be done the identification of problems related to
each goal and the definition of the way to measure any particular goal and
the automatic mechanisms to implement them.

As well as the goal definition it must be performed a review of the
problems arisen along the meeting and relate them to the goals (reverse
analysis) in order to verify the coherence and consistency of the results.

A set of alerts and metrics to measure the accomplishment of the goals
should be defined or proposed in the meeting too, as well as the frequency

Modelling business 33

they shall be applied and reviewed.

After the meeting:
same structure than previous meeting script

Models

NEPTUNE proposes to produce a goal/problem model as defined by
Eriksson and Penker. It includes a collection of object diagrams. Each one
corresponds to one high level goal, and shows its sub-goals (being also
possible to indicate whether their achievement would mean to achieve the
goal itself) along with their corresponding problems and solutions. All of
them are modelled using stereotyped UML modelling elements.

Eriksson and Penker propose to model goals as objects of classes that
are stereotyped to <<goal>>. They define two different goal classes:
Quantitative Goal and Qualitative Goal. This allows to the modellers to
define class attributes for quantitative units, and class operations for
measuring the degree of goal fulfilment.

Dependency relationships are established between a goal and its
corresponding sub-goals. A dashed line crossing all these relationships
with a constraint indicates whether the sub-goals set is complete or
incomplete.

Eriksson and Penker model problems as stereotyped notes to
<<problem>>. The text of the note defines the problem. The causes of
the problem are modelled as stereotyped notes to <<cause>>, linked to
the problem itself. The model for the problem is completed by linking to
the cause a note stereotyped to <<action>>, where the tentative solution
to the problem is sketched, and a final stereotyped note to
<<prerequisite>>, linked to the previous one, that contains the
prerequisite for the action.

Activity 2: Definition of mechanisms for measuring
the accomplishment of the goals.

The team will produce a set of alerts and metrics to measure the
accomplishment of the goals: what, when, who, how (mechanisms and
tools, range of values, etc.) will the goals be reviewed.

34 The NEPTUNE method

Activity 3: Elaboration of a plan for reviewing the
accomplishment of the goals

The team will produce a plan for periodic goal.

Resources and organisation structure analysis

This work definition focuses on the modelling of the organisation
conducting the business, including the available resources. Organisation
models are crucial for achieving a suitable deployment of organisational
and human resources in the view of the business goal. They also become
an ideal way of knowledge sharing among all the players in the
organisation itself.

Modelling business 35

The table below shows the relevant actors, inputs, outputs and
activities.
Actors: = Business Expert
= Business Analyst
= Occasionally any of the Managers or Directors
of the company
Inputs: = Current organisation of the company
= Main activities, products and services
performed / supplied by the company
= TOWS matrix for the overall company
= List of Company goals (derived from the vision
and strategy of the company)
= TOWS matrix for each goal
= Resources required to reach the goal / solve the
problem
Outputs: Organisation level:
= Departments and Areas in the organisation
______ " _.Organisationmodel
Department level:
= List of processes that are completely or
partially performed by each Area (if partially,
list of activities performed)
= List of Resources used by the Area (and
processes to which they are completely or
partially assigned)
Activities = Building the organisation model of the
company

= Identifying the processes owned by the Areas.

Activity 1: building the organisation model of the

company

The outcome of this activity will be a set of class and object diagrams.
In the first ones the basic structure and the rules that govern it will appear.
In the second ones, the actual organisation will be modelled.

36 The NEPTUNE method

Activity 2: Identifying the processes owned by
Areas

The actors will identify the processes present in each area, as well as
the resources allocated to them. Special care will be made on those

processes that are owned by different areas or departments: dependencies
of several organisational units add complexity to the overall management.

Suggested base script

The figure below shows the suggested script that the business analyst
could use as a base (suitably profiled).

Before the meeting:
same structure than previous meeting script

During the meeting:

Detailed review of Company resources, Company Organisation, and
allocation of the resources to processes and department, in order to
analyse whether this allocation is balanced to the needs and response time
required. To do this task properly the suggested way should be:

e Analysis of each process performed by any department and
measure the time needed to perform each task and the time for
waiting situations

e Define a pattern for each task including resource allocation

e Review the process and the resources obtained comparing this
result with the existing or desired available resources

After the meeting:
same structure than previous meeting script

Business processes description

This work definition deals with the production of models for the
processes that the actors within the organisation will put in place to
achieve the business goals, solving the identified problems. The required
resources to successfully accomplish them are also modelled. As the
organisation models, process models are an excellent way for creating
shared knowledge of the organisation and its day by day work.

Modelling business 37

The table below shows the relevant actors, inputs, outputs and
activities.
For each Organisational Unit and process
Actors: = Business Expert
= Business Analyst
= QOccasionally any of the Managers or Directors
of the company
Inputs: Department level:
= List of processes that are completely or
partially performed in each Area (if partially,
list of activities performed)
Goals:
= For a Business Area list of goals in which this
Area is involved
Outputs: Process Description:

= Summary of the part of the Process performed

Scope

= Entities that interact in this business area or
__________ process ...
Inputs

= List of physical inputs (or providers)
= List of informational inputs (internal or
sxtemmal)
Outputs:
= List of physical outputs
Resources:
= List of machines, people and information
(manuals, process instructions, customer order
—_.......andspecifications)
Stakeholders:
= Internal or external users involved either in the
process or in its trigger or in its delivery or

acceptance

38 The NEPTUNE method

Work Techniques

As usual, the team will conduct a number of meetings according to a
script that will be shown in the sub clause below.

This work definition will have two main results:

— A number of process diagrams as the ones suggested by Eriksson
and Penker.

— Complementary documentation dealing with all the relevant issues
mentioned in the table above. Tools like NEPTUNE, which can link
UML models and XML files with complementary information, and
generate documents, can play an important role.

Models

Eriksson and Penker propose to use a stereotype (<<process>>) of an
UML activity element for modelling a process. The relationship of one
process with its environment is done through special UML activity
diagrams, called process diagrams. These diagrams incorporate
stereotyped objects, the model, the goal(s) that the process is designed to
achieve, and resources. Resources are further classified according to:

[1 The type of resource. Resources modelled can be people
(<<people>>), physical objects (<<physical>>) or information
(<<information>>).

[l How they are present in the process: as input, output, supplying
(stereotype <<supply>>) or controlling objects (<<control>>).

Suggested base script:

Before the meeting:
same structure than previous meeting script

During the meeting:
For each process
= Identification of the activities that belong to the process
= Inputs and outputs for each activity
= Activity sequencing, iteration or selection
= Conditions for sequence, iteration and selection. Business rules
= Triggers, timers and other mechanisms
= Users and stakeholders
= Volumes and frequence
= Identification of other processes that interact with the present

Modelling business 39

process and information exchanged

After the meeting:
same structure than previous meeting script

Business behaviour description

This work definition will focus on the behaviour of the business
studying, modelling and documenting:

[J How the different processes interact among them.

[J How critical resources in the process evolve.

The table below shows the relevant actors, inputs and outputs.

Actors: = Business Expert
= Business Analyst
= Occasionally any of the Managers or Directors
of the company
Inputs: Department level:
= List of processes that are partially performed by
each Area
= List of activities performed by each Area in the
partial process
= Resources used in the processes
Outputs: Process:
______ = ProcessName
ResourceName

= Behaviour of individual resources in a single
process: states, events and actions

= Interaction diagrams

= Statechart diagram

= Sequence and collaboration diagrams

= interaction diagrams showing interaction
between processes)

Constraints:
= Process Business Rules

40 The NEPTUNE method

Work techniques

The team will work for identifying the business rules that govern the
different processes. These rules will be identified during the meetings as
suggested in the script shown at the beginning of the chapter. Tools like
NEPTUNE, able to incorporate them and conduct checks of the produced
models against them will play a relevant role in validating these models.

The team will also build process diagrams showing how distinct
processes interact and are run by different organisational units (using
swimlanes). For each process, they will produce a specific activity
diagram with the details. Checks of these diagrams against the
aforementioned rules will help in validating their correctness.

The team will also devote its effort to build up statechart diagrams for
those resources identified as critical.. It is common that processes run by
different OUs show more difficulties, and as a rule of thumb, it is worth
to consider them first.

Proposed base script

For the identification of the business rules, the base script proposed at
the beginning of the chapter.

For the production of the models, the following one:

Before the meeting:
same structure than previous meeting script

During the meeting:
For each process
= States (final situation after an event), events (external inputs) and
actions (response to the events)
= Identification of the activities performed by an OU within a
particular process when partially performed
= Detailed identification of activities within processes interacting
with the actual process and information exchanged

After the meeting:
same structure than previous meeting script

Modelling business 41

Requirements definition

Finally, this work definition focuses on defining the requirements
imposed by the business to an information system that would support it. It
also deals with the initial steps of the requirements analysis that will lead
to the definition of the use cases.

Actors: = Business Expert
= Business Analyst
= Computer Analysts

Activities = Requirements definition
= Requirements Analysis
= Information Systems Analysis

Inputs: * Business Process description
= Business Process behaviour
Outputs: Requirements definition

= list of functional requirements
= list of not functional requirements
Requirements analysis
= Assembly line diagrams
= Budget for building or purchasing the
Information System

One of the outcomes is a set of Eriksson and Penker specific diagrams
called assembly-line diagrams, which they propose to use as a way to
derive the Use Cases for the systems.

An assembly-line diagram is a process diagram that has in its upper
part a number of processes and in its lower part a number of horizontal
packages (stereotyped to <<assembly line>>). They represent whatever
group of objects the modeller decides. References coming from/to
processes and assembly lines represent operations of the processes
(reading/writing) on the objects. In these diagrams, the assembly lines
may model objects of the information system to be developed, so that the
references model information flow between the processes and this system,
which actually is what Use Cases show. By selecting groups of these
information flows, the team can identify the relevant set of Use Cases for
feeding the software development process.

42 The NEPTUNE method

Proposed base script

Before the meeting:
same structure than previous meeting script

During the meeting:
For the whole Information System:
= Identify processes that are to be totally or partially included
= Identify information system process limits, ranges and interfaces
with other IS
= Identify WHICH / WHAT information is going to be captured
and produced by the IS, but not HOW the produced information
is going to be calculated or obtained (i.e. list of functional

requirements)

= Propose a prototype for the user interfaces of the Information
System

= Identify stakeholders that shall use the IS and the hardware
required

= Identify topics like response time, ergonomics, error handling,

security and all non functional requirements
For each process within the Information System to be developed

= Review of documents generated during ‘“Business Process
Description” and “Business Behaviour description” activities

= Identify documents and data to be stored on electronic format

= Identify volumes of information and number of process
instances.

After the meeting:
same structure than previous meeting script

Modelling software 43

CHAPTER 3: MODELLING SOFTWARE

This chapter aims at presenting the NEPTUNE "Discipline", called
UML-NEPTUNE, applied to software engineering. We can note two
important things: first, the UML-NEPTUNE is a specialised instance of
the analysis and design part of the unified process [refl8], and is also
compliant with the MULLER approach, [refl6]. Second the UML-
NEPTUNE is instrumented by the use of the NEPTUNE software.

Overview

Within this section is presented an overview of the UML-NEPTUNE
that is based on the UML/CS approach, [ref10]. It is shown, that UML-
NEPTUNE makes use of "Work Definitions", and that each "Work
Definition" is composed of "Activities". A first approach of the various
"Work Definitions" and "Activities" is presented in the diagrams below.

Q [Requierements Analysis 5N
7 <<Activity>>
- =<Work Definition=:> Definition of
‘i-H_h_ﬁ_\E’EE]iEremems Analysis actors
Analyst ‘
(frarm Actors) -
<<Work Definitions» 5 TR s
Object Analysis Definition of
context External Entity
—
\\ <<Work Definitions= e el
Witectural Design Symmy
Designer description

(frarm Actors) Q

=<Work Definitions>
Object Design

=<Work Definition=>
Physical Desing

Systern Architect

(frorn Actors)

44 The NEPTUNE method

The two first diagrams use the formal UML notation while the third
one is a complete view of the process in an artistic and informal
“modelling style” !

IMPORTANT: The presentation of UML-NEPTUNE made in this
book is sequential for easy understanding, although it is naturally
iterative and incremental.

Modelling software 45

Synchronous
Dotted arrows stand for mandatory acnvities
iteration
vy Dot | ¥ Pyl acitctre
| ' description
|
REQUIREMENTS 1 B .
ANALYSIS : |D Definition of cortext | Top down
i ¢ arrows B
! @ — indicate the
LR Systemdescription | nominal way
¥ Ralgre |
ORJECT IE Chject aralysis | Idetification of processes and
ANALYSIS * % componerts
| |
F|
Software conponert ™| Software conponert description
| idertification <
|
A ORI i
ARCHITECTURAL Identification of design packages :
DESIGN !
¢ i
|
[H— — |
backward Design pattemn application !
arrows > | i
indicate a \# T : T
potential E
update (lass cesign AR
ORJECT Elggyyoeses ’ﬁ;]
DESIGN |
@ DBclass design I;

) (lasses allocation

PHYSICAL DESIGN

46 The NEPTUNE method

Notes:

1.

The activities presented in our discipline are not systematically
implemented in the process. We can say that the execution
sequence is depending on the content of the system modelled. For
instance, under specific conditions (described in the next
paragraphs) the activity B can be bypassed. The analyst will then
move directly from activity A to activity C.

The discipline does not focus on the activity diagrams. However,
replacing a sequence diagram with an activity diagram can be
valuable. The readers interested in this UML diagram can read
the following article that details five different contexts of use

[refl2].

Requirements Analysis

The

aim of this "Work Definition" is to get a complete description of

our system environment, focusing on the user needs. The objective is thus
to identify the external actors, the data flows between the actors and the
system and finally the list of Use Cases.

Recommendation: It is strongly recommended not to go on to the next

"Work

Definition" before getting the user approval (validation) of the

results of this first modelling stage.

Actors: e The analyst team, specialised in collecting and
formalising the user requirements. The key
question here is: "What is the system?"

Inputs: = User Requirements (needs)

Outputs: = UML Model

= MMI prototype (if needed)
= Requirements Analysis Document
= Validation Plan Document

Activities: = Activity A: Definition of Actors

= Activity B : Definition of Context
= Activity C : System Description

At the

end of this "work definition" it is recommended to use:

Modelling software 47

e the NEPTUNE checker, to check the requirements analysis rules,
e the NEPTUNE document generator to generate the "Test Cases
Forms" from the use cases.

Activity A: Definition of Actors

This activity consists in defining the actors (an actor is "something"
always out of our system). UML-NEPTUNE suggests two kinds of
actors:

e An "active" actor (the standard UML actor) is a participant or a
process role, which interacts with the system to be modelled, and
actively works in the realisation of the system Use Cases,

<< Systemsx
Cur_Systemn

(fram Examples)

Active Actor

e And "external entity" is a stereotyped actor that does not actively
participate in the realisation of the system Use Cases (e.g. a
process producing or consuming data for our - but not necessary
only - system, but not in direct communication).

“=Bystem=>
Our_System

(from Examples)

3
Process 3 . . aDataBase
- ~

48 The NEPTUNE method

To find these actors, the most important things to wonder are “WHO
WILL USE OUR FUTURE SYSTEM?”, and, “WHAT (not to say WHO)
WILL BE USED BY OUR FUTURE SYSTEM”.

Recommendations:
1. FEach actor must be described through his role and his
responsibilities.

2. During this activity, it is possible to start the "physical Architecture
Description” activity, the two activities running parallel.

If "External Entities" have been identified during this activity, the
next one is then activity B. If not, the following step is activity C.

Activity B: Definition of Context

This activity consists in finding the static and dynamic data flows
between the external entities and our system. These data flows show that
our system uses or produces data without direct communication.

To find this data flows the most important thing to wonder is "WHAT
EACH EXTERNAL ENTITY WILL EXCHANGE WITH OUR
SYSTEM?"

The static data flow is a unique collaboration diagram that illustrates
our system with the external entities and the data, whether they are
produced or consumed.

et
O\ I/O Process_2

Data 2 and 3

Process_1

Our_Systerm

Data 4 and 5
{/I (\\\ Data B

Process_3

: Process_4

Static data flow example

Modelling software 49

The dynamic data flow is made up of one (or more) sequence
diagram(s) that illustrate(s) the chronological relationship between the
external entities and our system. It shows, in other words, when the
system processes the input data and/or when the system produces and
transfers the output data.

Important: These diagrams are produced if the order of the data
exchanged is important. Otherwise, they are not needed.

 — —

and transfer Data B

Storage Data 2 and 3 if necessary, next produce ﬁ

: Process_4 : Process_1 ~Our_System : Process_2 : Process_3

i |Loop j i i

| Data 1 | | i

.. | 1 1

E E Data 2 and 3 E E

—_ |

Starage Data 1 if [yait 15 mn i i

necessary i i i

= Data B

Datg 7

I:f-ﬂ-_ Pruducelandtransfer Data 7 IT

Wait & mn

Yerify and storage Data 4 and 5 if
necessary

= ! !

Data 4 and 5

Dynamic data flow example

50 The NEPTUNE method

Activity C: System Description

This activity is composed of three "steps" (use case definition, domain
analysis and scenario definition) and consists in finding the interactions
between the active actors and our system. Each interaction is illustrated
with a use case.

Definition: An interaction is a direct communication between an active
actor and the system, this communication embedding an active data flow.

Step 1: Use Case definition

A use case is one essential thing for which the active actor uses our
system. To find the use cases, the approach consists in answering the
following question "WHAT WILL EACH ACTIVE ACTOR USE OUR
SYSTEM FOR?"

Recommendations:
1. Each Use Case is described in the final documentation as specified
by a standard skeleton,

2. The role definition of the actors can be used to find the use cases.

Note: During this step, one or more use cases diagrams are designed,
depending on the model complexily,

Identification
User

Writer
Reader

/ rocesss/ Analyst

OO O O D

Data Consultation Display results Prepare analysis Execute analysis Data Modification

Use Cases diagram example

Modelling software 51

Step 2: The Domain analysis

The domain analysis is a "business analysis" made through the use of
"class diagrams". It allows the business classes to be found. The domain
analysis must be totally independent of the solution used to implement it.
To make this concept clear, let’s imagine that the system to model is an
electronic mail system. For this example, the domain analysis is the same
as for the next two cases: a "postal mail" or the "pony express mail'".
For example the class "ADDRESS" is without doubt a domain class in
this context.

To find these domain classes, the most important thing to wonder is
"IS EACH IDENTIFIED CLASS INDEPENDENT OF THE FUTURE
SOLUTION?"

Recommendations:
1. Each class is described in the final documentation as specified by a
standard skeleton,

2. The domain analysis must be performed by both an analyst and a
business expert, working together.

Note: During this step, one or more class diagrams are designed,

depending on the model complexity.

__——___ +CityOrigin
-

C_CityPair TJ ' c_cCity
+CityDestination 1

0..*

C_Airline
1

1 0.x

C_SubNet | 1 0" | c_Flight

Domain analysis example

! Solution used in the "far west" during the 19th Century.

52 The NEPTUNE method

Note: The Use Cases and the domain analysis are the entry points of the
following step, namely the scenario definition

Step 3: The scenario definition

For each use case, one or more sequence diagrams are designed. There
are two kinds of sequence diagrams:

(1) Some of them describe the interactions between the active actors
and the system. They are called functional sequence diagrams. To build
this kind of diagram, the most important thing to wonder for each use
case is: "WHAT IS THE DATA FLOW BETWEEN THE ACTOR AND
OUR SYSTEM IN THE USE CASE CONTEXT?"

Recommendations:

1. Most of the time, each Use Case is associated with one and only one
of these diagrams

2. Owr discipline recommends to use of "Notes" attached to internal
events or methods in the sequence diagrams. These notes indicate the
next "scenario” or "use case" that will implement this event or
method.

: OurSystem
: User
|

Identification

|
Display MMl identification window

Login, Password

! See "veri arameters” [\
Verify parameters fy p
sequence diagram

< T

[If Parameters a‘re Not OK] Display Error

F

|

‘ [If Parameters are OK] Display User MMI and exit
< Q

F End Loop [\

Functional sequence diagram example

Modelling software 53

(2) The other sequence diagrams describe the collaboration between
the objects (whether they are domain or application related) that
implement the actors/system interactions. They are also called "level 2"
sequence diagrams.

To build this kind of diagrams, the most important thing to wonder is:
"HOW DOES THE SYSTEM IMPLEMENT THE INTERACTION
BETWEEN THE ACTOR AND OUR SYSTEM IN THE CONTEXT OF
THE USE CASE?"

Recommendation: Most of the time, there is one diagram for each
internal event or method extracted from the functional sequence diagram.

Login, Password

Verify(Login,Password)

GetUserRigths (Rigths)

Verify Login and pagsword according to rights

-

Return Status

Verify parameters sequence diagram

This second type of sequence diagram is the link between the Use
Cases and the class diagrams. Indeed, the secondary sequence diagrams
are used to initialise the design of the unique class diagram associated
with each use case.

To build such a diagram, the most important thing to wonder is:
"WHAT ARE THE STATIC LINKS BETWEEN THE CLASSES
COLLABORATING TOGETHER, IN THE CONTEXT OF THE USE
CASE 7"

C_Login |4 = C_User

Verify() 1| GetUserRigths()

Class diagram example

54 The NEPTUNE method

Note: The "level 2" sequence diagrams and the class diagram of the use
case are the entry points of the object analysis. Moreover, this last step
can be performed at the end of the requirement analysis or at the
beginning of the object analysis.

IMPORTANT: Naturally, if a class is active (it has a personal
behaviour), it is not excluded to design a state diagram.

Object Analysis
The aim of this "Work Definition" is to produce a first logical
organisation (using packages) of the classes previously found.

The object analysis "Work Definition" can be seen as one main
activity.

Actors: e The analyst team, still wondering "What?".
Inputs: = UML Model
= MMI prototype
= Requirements Analysis Document
= Validation Plan Document
Outputs: = UML Model updated
= Object Analysis Document
Activities: = Activity D: Object Analysis

At the end of this "work definition", it is recommended to use the
NEPTUNE checker, to check the object analysis rules.

Activity D: Object Analysis

This activity first consists in designing as many class diagrams as use
cases (if this was not made during the requirements analysis). Each class
diagram contains all the classes involved in the Use Case. Then after, a
first logical organisation is settled, using a set of packages.

Modelling software 55

To find this organisation there is NO ESSENTIAL QUESTION but a
set of rules to follow. As examples:
e A package contains a medium set of coherent classes,
e A package contains a medium set of reusable classes,
e Dependency cycles between packages must be avoided,
[]

It is also possible to use an automatic rule to initialise this work. This
rule consists in putting all the application classes in one diagram.
Naturally this diagram (a dish of ravioli !!) is very hard to understand,
but by moving and reorganising the classes (localisation in the diagram),
it often appears "clouds of classes", only separated by a few links.

CIoud 6 \ Cloud 4\
Cloud |2 e
CIoud 1
/\ T
(Cloud 5
\ _—

""Clouds of Classes' Example

Recommendation: Each "cloud”, can become a package containing all
of the "cloud classes".

Note: At this stage ,the modeller may find one or more packages,
depending on the complexity of the project.

56 The NEPTUNE method

Once this organisation is effective, a class diagram must be created for
each package. It contains all the classes of the package. Next, each class
must be completed with its public attributes and the public methods, if
these methods appear to be necessary. Of course, the diagrams can also
be enriched by adding associations, inheritance...

This work is the last of the object analysis. Its level of achievement is
left at the analyst appreciation.

If there is only one package at the end of this activity (object
analysis), then the next step of the process is activity F. In any other
case, the process moves to activity E.

Architectural Design

The aim of this "Work Definition" is to produce a first architectural
view of the modelled system. In this "Work Definition", the object
analysis packages are turned into logical = components.

Actors: e The Design team, wondering "HOW?".

Inputs: = UML Model

= MMI prototype

= Requirements Analysis Document
= Object Analysis Document

= Validation Plan Document

Outputs: = UML Model updated
= Architectural Design Document
Activities: = Activity E: Software Component Definition

= Activity F: Software Component Description
= Activity G: Identification of Design Packages
= Activity H: Design Pattern Application

At the end of this "work definition", it is recommended to use:
e the NEPTUNE checker, to check the architectural design rules,
e the NEPTUNE document generator to generate the Interface Manual.

Modelling software 57

Important: The first logical organisation made during the activity D can
be modified here if the logical organisation does not respect the design
constraints. For example: the Analyst has decided that a package
contains three classes: an applet, an HTML page and a formulary about
a particular work, this grouping is a logical choice. For the
implementation, the Designer can decide a change, because for him the
best solution is to group all the applets in the same package, all the
HTML pages in other package ... This kind of change is naturally driven
by the technical constraints.

VERY Important:

1. The EF,G and H activities must be made at the same time the
sequential presentation made in this book is just a writing facility,

2. The activity H is in fact a guideline to help the Designer to build the
architecture.

Essential: This "work definition", with the step 2 of the activity C ARE
THE MOST important ones and must consequently be performed with a
very special care. The quality of the model, we could even say of the
project, are here the real stakes. That’s why we recommend a very
particular attention during this work.

Activity E: Software Component Definition

This activity first consists in producing a package diagram showing the
client-server view between all packages identified in the activity D.

To build such a diagram, the most important thing to wonder is:
"WHAT ARE THE DEPENDENCIES BETWEEN OUR PACKAGES?"

Recommendation: [f is recommended to avoid dependencies cycles.

58 The NEPTUNE method

| |

Package1 Package4

| . A
v N |
IS

Package 2 Package3

Package diagram example

Once the package diagram is designed, time has come to find a class
interface for each package, which is indeed, the identification of the
provided services. Our discipline suggests three kinds of interfaces for
different usage:

1. The "JAVA interface" always implemented by one concrete class. A
package has one or more interfaces of this type.

2. The "FACADE interface" (a standard pattern [refl7], [ref9]) always
implemented by several concrete classes. A package has only one
interface of this type.

3. The "public view interface" implemented by all the public parts of all
the classes located in the package. This type of interface is used in
general when the package is a library.

The last step of the Activity consists in identifying the interactions
between the packages. This will highlight the exchanged data.

To show the interactions, a package collaboration diagram is
created. It can either be a sequence diagram or a collaboration diagram.
Whatever the choice, each object of the diagram will represent one of the
packages.

Modelling software 59

To build such a diagram, the most important thing to wonder is:
"WHAT ARE THE EXCHANGED DATA BETWEEN THE
PACKAGES ?"

Recommendation: [t is recommended to make as many diagrams as
necessary to explain the different collaborations between the packages.

Note: The choice to use the sequence or the collaboration diagram is
made by the project team.

Package1 Package2 Package3 Package4
GetFiles
~)

|
|
L Is done

<

ControlFiles

; Transfer errors

Files production

P

~)
j Correction

<

Transfert correct files

Is done

=
Co‘mplete files

|
|
|
| ‘ <
|
|
|
|

Transfert Symm ary
‘ Transfer files

|
Display Files
[

|
| <
| |

Package collaboration diagram example

60 The NEPTUNE method

Activity F: Software Component Description

First of all, this activity consists for each package in completing its
class diagram designed at the end of activity D. For example, if a package
implements the use case "identification" (at least), we may complete its
class diagram as following:

C_User
EName
C_Login Q:;Ogi“ g ! 1CfEnvironment
Sverity . 1 %Rizshst;vor
WGetUserRigths()
C_SubNetwork / \
0. *
1
C_Administrator C_Analyst C_Other

Completed class diagram example

Then, due to the potential introduction of services in the class interface
defined in activity E, we may need to produce additional class and
sequence diagrams. In that case they are created, still according to the
spirit of the use cases implemented by this package.

To build these diagrams the most important things to wonder are:
"HOW CAN WE RUN EACH PROVIDED SERVICE and WHICH
CLASSES ARE INVOLVED?"

Note: Each method of the interface class is considered as a service.

Recommendations:

1. Each service is at least described by a pair of diagrams (class and
sequence)

Modelling software 61

2. The classes can be completed by addition of public and private
methods and/or private attributes.

3. At this point, It can be useful to add activity or state diagrams
describing any collaboration between the classes by means of
methods or events.

Activity G: Identification of Design Packages

This activity consists in finding the technical packages to complete the
architecture by updating the diagram created during the activity E. These
technical packages are:

» The existing packages (frameworks, business components...). In
this case they are imported in our model.

e New packages that will be built during our work. In this case they
are created in our model.

In any case, these packages MUST have a formal interface.

In the next example (the completed architectural diagram), we have
added the "Look Book" and "Collections" packages and their interfaces
"I Lob","I Col".

62 The NEPTUNE method

LookBook

<<Interface>>

I_Lob
|

™
A

N
N
AN

Package1

|

|y
]

Package 2

To build such a diagram the most important thing to wonder is:
"WHAT ARE THE DESIGN PACKAGES (find out from the technical
needs) AND THEIR DEPENDENCIES WITH THE EXISTING
PACKAGES ?"

\

Design
packages
— ~_

]

Collections

I_Col

<<Interface>

L

N

/

Package4

N
o\

\\ﬁ

T/
1/

4

Package3

Completed package diagram example

Activity H: Design Pattern Application

This activity consists in using patterns to ease the building of the
architecture. It can be seen as a guideline. In our discipline, we use
business patterns (see example 1 and [ref9]) from operational projects and
standard patterns from the literature (see example 2 and [ref17]). The first
work consists in analysing the identified problems to be solved. The next
is the extraction from the pattern library of the ones that can (once

applied) solve the problems aforementioned.

Modelling software 63
Note: In a short future, NEPTUNE will be available to generate the
source code from any pattern referenced in the tool.
Recommendation: It is recommended for each new defined pattern to
update the "specific pattern catalogue" in use in the development
environment.
Example 1:
This pattern gives the different types of objects (and their
collaborations) needed to build up a system composed of three parts

known as the application, an MMI and a Data Base.

In the next diagram:

» C_Object is an MMI object,

» 1 AppObject is an object interface between the MMI and the
application,

» C_AppObiject is an application object,

» 1 DataBaseObject is an object interface between the application and
the data base (e.g.: it allows to construct an "application data" from
data base tables),

» 1 DataBaseTechnicalObject is a technical object (e.g.: it executes an

SQL line, it allows to connect (disconnect) to the database...).

64 The NEPTUNE method

:C et : | AopChiect : C ApQbject| | | DeteBese - | DeteBese
Qied TechnicaChject

Architecture pattern example

Example 2:

This example shows an implementation of the Observer pattern [refl7]
used in general by all the standard MMI libraries.

Note: This pattern can also be used when the recurrent problem to be
solved needs a subscription technique.

An application class changes the model (Ser New Values) and notifies the
controller of this change (Update All Views). The controller then obtains the
new values (Get Values) and modifies all views associated with this model
(Update With New Values).

Modelling software 65

SetNewValues <<Model>>
. C;asls 4_ Class 2
e caton) (from Domain)
UpdateAllViews Get\alues
<<Controller>> i <<View>>
Class 3 UpdateWithNewValues Class 5
(from MMI) (from MMI)
UpdateWithNewValues
<<View>>
Class 1
(from MMI)

Observer pattern example

Note: In this example, the different classes are allocated to three
packages: "MMI", "Application" and "Domain".

Object Design

The aim of this "Work Definition" is to produce for each package a
detailed design (complete classes, attributes, methods, diagrams etc.)
which will finalise the package description started in activity F.

Actors:

The Design team, still wondering "HOW?".

Inputs:

UML Model

MMI prototype

Requirements Analysis Document
Object Analysis Document
Architectural Design Document
Validation Plan Document

Outputs:

UML Model updated
Detailed Design Document

Activities:

Activity I: Classes Design
Activity J: MMI Classes Design
Activity K: Data Base Classes Design

66 The NEPTUNE method

At the end of this work definition it is recommended to use:

e the UML checker provided by the modelling tool,

e the NEPTUNE checker, to check the object design rules,

e the target language code generator provided by the modelling tool,
e the NEPTUNE code generator (in the future).

When these checks and code generations are executed without errors,
time has come to compile in order to check the global interfaces ... Then
after, the methods can be completed according to the different diagrams.

Note: In a short future, NEPTUNE will be available to generate the
source code of the methods from sequence and activity diagrams.

Activity I: Classes Design

This activity consists in completing the classes and the associations in
order to prepare the code generation.

There is no question, recommendation or specific rules for this
activity, but after it’s been completed, the model must contain:

o For each class:

all public and private attributes ,

the type of each attribute,

all public and private methods,

the parameters of each method,

the type of each parameter,

And also (if necessary) for each method one or more
sequence or activity diagrams,

S0 Wb

o For each association:
1. all chosen navigability's,
2. all roles according to the navigability,
3. all chosen multiplicity's,

e For each state diagram:
1. its translation on classes, for example with using the
pattern "state".

Modelling software 67

Activity J and/or K: MMI Classes Design and/or Data
Base Classes Design

These activities consist in completing the work done in Activity I, and
must be done at the same time. The next diagram illustrates the activities
J and K according to the design pattern presented for the activity H in the
first example.

1 DitaBaseTechn
1 AppObject(s) I DataBaseObject(s) icalObject(s)

(D

MMI and DB interface example

In fact we must complete our set of application classes by the MMI
classes,
o The minimum is the identification of the interface classes
between the MMI and the application (I_AppObject).

and the Data Base classes
o The minimum is the identification of the interface classes
between the application and the Data Base
(I_DataBaseObjects).

Physical Design

The aim of this "Work Definition" is to produce the physical
architecture. It is composed of three activities known as o, B and Y,
respectively for physical architecture description, identification of
processes and components, and classes allocation.

IMPORTANT:
The physical design can begin at any activity of the discipline (or never if
it is not necessary) However, we recommend a synchronous start with the

68 The NEPTUNE method

activities A for o, D for B and after I for Y (see the general figure that
presents an overview of the discipline at the beginning of this chapter).

Actors: e The Physical Design team, wondering
"WHERE?".
Inputs: = UML Model
= User Requirements
Outputs: = UML Model updated

= Physical Validation Plan
= Physical Architectural Document

Activities: = Activity o Physical architecture description
= Activity B: Identification of processes and
components

= Activity Y: Class allocation

At the end of this work definition it is recommended to use:

e the NEPTUNE checker to check the physical design rules,

e the NEPTUNE document generator to generate the "Test Cases
Forms" from the produced diagrams, and specially from the
sequence diagrams that show the processes collaboration .

Activity a: Physical architecture description

This activity consists in building the physical architecture that will
settle the organisation of the computers, devices, communication layers
Note: this concept is similar to the HOOD virtual nodes [refl5].

Recommendation: The physical architecture is usually made - in its first
version - parallel to activity A.

Important: This synchronous start can help the Analyst to find actors.

Modelling software 69

ReaderW ork
Station

Shared

Printer

AnalystWork
Station Server Data
Base

<<http>>

<<th>>

WriterW ork
Station

Shared
Printer

Example of a physical architecture

To build such a diagram, the most important things to wonder are:
"WHAT ARE THE COMPUTERS AND DEVICES of our system, and
WHAT ARE THE COMMUNICATION TECHNIQUES BETWEEN
THEM ?"

Activity : Identification of processes and components

For each computing resource, this activity first consists in identifying
all the processes, in other words, the main programs of the application.
These processes enrich the physical architecture defined in the activity o.
Then after, each of the identified processes is split into several smaller
entities called physical components. Component diagrams are used to do
sO.

This step of the process is another (one more) opportunity to complete
the logical model.

70 The NEPTUNE method

Recommendation:
This identification is usually made - in its first version - parallel to
activity D.

ReaderWork
Shared Station
Disk B
Printer
A-Client
<<hﬁp>>

AnalystWork
Station Data
Base

<<http>>

A-Client
<<hﬂp>>

WriterW ork
Shared Station
Printer | |
A-Client

Example of a physical architecture with the processes (A-Client, A-
Server ...)

To build such a diagram, the most important thing to wonder is: "WHAT
ARE THE PROCESSES THAT RUN ON THE COMPUTERS?”

To ease this activity, it is also interesting to use sequence diagrams to
show the collaboration between the processes. On these diagrams, each
process is represented by one object, while the events describe the
exchanged data. Important: The study of the exchanged data between the
processes can be a great help for the analyst in finding new classes in the
logical model.

To build these sequence diagrams, the most important thing to wonder is:
“WHAT ARE THE EXCHANGES BETWEEN THE PROCESSES?"

Modelling software 71

Activity Y: Classes allocation

This activity consists in allocating the classes and/or the packages to its
various physical components, this being done for each process.

Recommendations:

1. For this work, the default approach consists in trying to map the
logical components directly into the physical ones.

2. The classes allocation is usually made - in its first version -right after
the class design activity,

3. Searching for the components content highlights the fact that some of
them might possibly be implemented by the classes of the actual
design while others might not. Among these ones, we will distinguish
the components identified as existing frame works, COTS
[refl4]...from the components that do not exist in the “shops”, which
a significant example is a configuration component.

4. One or more classes can be allocated to each component.

4 Rational Rese - Schuml.md - [Component Diagram: Component View / Client] = | B1 I ISR [-:])

il | PSETE |
=18l x|

[E]l Ble Edt Yiew Browse Hepet Quey Jook Adddns Windaw Help

|Dl=(al e &) ¥E slwalo] v 2leElE]

: 3
,M: A-Client UsertM] A-Server User
=
£]
E |_Use|
=l
5] Component Specification for User 2 x| BY Component Specification for UserdMI
O] Gioreral | Detail Fiodieos |Fies | IDL | Cos | M3VC] General| Detail Realzes |Fies | iDL | Cos | MsvC]
% I Show all classes I Show all classes
— Class Name Logical Package ... | Language Class Mame Logioal Package . | Language
E| o C_Analyst Package] T+ C_tnasttiMl Packagel Cor
El S C_Erwianment Packagel Cos E7C_LognhMI Logioal View o
== B C_User Packagel Cev 57 C_Aciministatordh Package! [
B C_taministalor Packagel Cev 57 C_Userhitl Logical iew o
- |_User Packagel Co+ B2 C_Othertdi| Packagsl Cas
B F51C_Other Package] o
EC_Subetwork Packagel [
) l_I
For Help, pre: I
i Démarrer | 5] Explorateu - Umicssi | B Microsoit wiord - A071298...| ¢ Rstionl Rose - Schumim.. | Se@mE nn2

Example of classes allocation

72 The NEPTUNE method

To allocate the classes properly, the most important things to wonder are:
"WHAT ARE THE COMPONENTS ISSUED FROM OUR DESIGN?"

"WHAT ARE THE COMPONENTS ISSUED FROM OUTSIDE?"

"WHAT ARE THE NEEDS OF EACH PROCESS, IN TERMS OF
ENVIRONMENT?"

The component diagrams bring together the physical components
coming from the logical design of the actual model and those from other
models, frame works, files, libraries...

For many reasons, this work can later be updated, and in particular,
during the integration and validation phases of the project. Consequently,
the constraints appearing during the implementation lead the physical
organisation away from what was originally the logical one, which should
never be modified in the context of this activity. This is really important.
The optimisation due to physical constraints is always performed on the
classes and packages allocation within the physical design, and never on
the logical design. Let’s take the example of a process "P1" running on a
computer "C1" and made of three components, "X", "Y" and "Z". If the
execution timing of this physical organisation is not good enough, one
solution consists in reallocating the "X" component to another process
"P2" running on computer "C2". We naturally suppose that this
reallocation implies a better performance of our system.

About the method and the NEPTUNE software 73

CHAPTER 4: ABOUT THE METHOD AND THE
NEPTUNE SOFTWARE

Here below is a chapter showing how easy it is to slip from the
NEPTUNE method to the use of the NEPTUNE software. We highlight
the key points of the method that will make the use of the software tools
even more efficient.

Additional NEPTUNE features for efficient modelling

The method presented in the previous paragraphs sets up the structure
of the analysis and design model. As this structure hardly differs from one
model to another, we thought that it would be interesting to take benefit
of this frozen structure. To do so, we have developed a plug-in that allows
the user to have the architecture pre-defined in its development
environment [ref13]. This instrumentation allows the user to create a first
browser architecture that will next be completed during the various steps
of the modelling process.

Here after is a visual example of the use case view of a model (namely
system) that has automatically been created with the plug-in
aforementioned. Each of the packages or diagrams defined in the method
as part of the use case view can be found in the created architecture.

74 The NEPTUNE method

% R ational Roze - system_mdl - [Clazs Diagram: Log... =] E3

File Edit “iew Fomat Browse Heport Quenp Tools
Add-n: Window Help _|5’|5|

F
@ spstem - _I

EID Ilze Caze Wiew
=7 <<hctary> Actors

----- @ Actors General Yiew
- _—>_>} Azzaciations

-7 <<Classy> Analysis Classes
-3 <<Classy> Domain Clazzes
-3 <<hctary > External Entities e
----- @ |lze Caze General Yiew
----- Data Flow General Yiew
----- B <<Systemy> spstemn

—* -

L«

-

-

il b [m

2[4 4] b [M1[Log /
For Help, press F1 Diefaul Languag

L

About the method and the NEPTUNE software 75

The method and the Checker

Our objective here is to focus on the benefits to be taken from the
method for the use of the checker. A logical interpretation of this method
presented in the previous paragraphs can lead to the identification of
many rules, namely the methodological rules. As an example, one of
these rules is: “The use case view must contain a package called analysis
classes”. Many of these rules, though not formally expressed in the
method, have anyway been identified, described textually and then after
translated into OCL. These rules are available in the NEPTUNE checker.
They can be applied to the model during the software lifecycle.

The method and the Documentation generator

How to take benefit from the method for the use of the documentation
generator? This question has an answer in this paragraph.

The recommendations given in the process, regarding the use of
specific UML diagrams, but also regarding the use of XML format for the
documentation associated, have been chosen so that they can be a great
help for standard documentation generation. For example, in software
engineering, the generation of a validation plan will be very easy with the
document generator if the guidelines have been followed during the
modelling process. Indeed, the templates used to generate the standard
documents basically rely on the guidelines defined in the method. That
makes another good reason for documenting the UML elements while
modelling.

We have already mentioned the validation plan which generation
template is available in the tool. It is also the case for the interface manual
and other software engineering standard documents.

76 The NEPTUNE method

Getting started with NEPTUNE software

Within this chapter, the NEPTUNE GUI is presented in a general
approach. The aim is to give a description of all the basic GUI features
needed to work with the NEPTUNE software. As we have chosen a
sequential description of what can be seen on the screen, and though
several snapshots are supplied here after, it is even more efficient to run
the software in parallel.

Once NEPTUNE is launched, the main frame is split into three
different zones, as shown on the following snapshot.

’ Meptune

File Edit Project Tools Help
Model
------ =MoModel=
Metakodel Leng Name
= umli1 4

----- [Attribute] --= xmins: UnL="ht
#1-Z1 Foundation

[:I BehavioralElements
E-] ModelManagement

4 | »

o project currently opened

The model browser (top left) aims at presenting a convivial view of the
model (once it’s been loaded). The meta-model browser (bottom left) is a
representation of the UML meta-model. The last zone (the biggest on the
snapshot) is the working zone, which role will be presented further on.

As with many other pieces of software, the highest level objects
manipulated by NEPTUNE are the projects. Once a project has been
created (use file popup), it can be filled up with a big amount of data.
Among these data, the most significant is the model, as the NEPTUNE
tools use it as their raw material. Consequently, after the project creation,

About the method and the NEPTUNE software 77

the import of the model comes next. To attach it to the project, use the
File popup again.

The next figure shows the model browser displaying the Neptune
analysis model, after it has been attached to the actual project.

 Neptune

File Edit Project Tools Help
Model

E-MNeptuneAnalysis

-8B (DummyClass)

s | DataType

F7 Use Case Wiew

3 Mode

- Stereotype

Metatdodel Lang Hame

- umlit4

- [Attribute] = ¥mins: UML="hi]
1 Foundation
1 BehavioralElernents
-1 ModelManagement

4 | »

Froject Mame: boak

The creation of a project and the choice of a model constitute the
starting point of any work done afterwards with the NEPTUNE tools.

What’s next then? It depends on what the user wants to do, but
whatever its choice, he has to manipulate some small objects, compared
to the projects. These objects are the basic bricks necessary for running
the checker or the documentation generator.

For checking purpose, the user will manipulate some OCL rules. They
constitute the OCL expression of what has to be checked on the chosen
model. A sub part of the model can be checked by application of one or
more OCL rules, depending on the checking needs. To launch a check,
once the user has chosen in the model browser the sub part he wants to
check, he has to select a sub set of rules in order to apply them to its sub
model selection.

78 The NEPTUNE method

The following figure is an example in which the whole analysis model
is used as input of the rule used to count the number of classes.

todel

Rules Browser

Metatadel Lang Hame

B3 umi14
e [Attributa] = xmins: UML="h
1 Foundatian

=] BehavioralElements |
-1 ModelManagement o e

4 | »

Froject Mame: book

Nombre de classes

For documentation purpose, the NEPTUNE user can be led to deal
with two different sorts of objects. The smallest ones are the XSL
transformations. Their role is the extraction of some information from a
model in order to transform it into textual information. To make a
parallel, we can say that the XSL transformations are for the
documentation generator what the OCL rules are for the checker.

Let’s talk now about the second aforementioned object, namely the
shape: Several XSL transformations are often needed to achieve the
extraction and transformation of the requested information. These
transformations, put together and organised, constitute a kind of template.
This is what we call a shape. Once processed by the NEPTUNE core,
such a template is turned into a complete generated document.

About the method and the NEPTUNE software 79

NEPTUNE provides several sets of pre-defined OCL rules, XSL
transformations, and shapes. Each object of these sets can be seen as an
implementation of a standard need in terms of model checking or
documentation generation. The NEPTUNE user can directly use this
material. These sets can also be seen as sets of examples. These examples
constitute a good basis and can be the starting points of brand new
designs. Of course, it is possible to start designing an object from nothing.

The following snapshot shows the interface obtained on object creation
request.

:"l.-::_éh_.‘_.' Heptune
File Edit Project Tools Help
odel

El-Meptunesnalysis | -
B Use Case view Hew File
1 Stereotype

1 DataType - LN
3 Mode " X
#=-B8 DummyClass) | I P
Metamodel Long h
= a urmit4 Shape Fule Transformation

s [Aattribute] —-= xmlns: UKL
1 Foundation

1 BehavwioralElements
-1 ModelManagerment

Cancel |

| |

Froject Mame: book

For a detailed description of the design features and GUI facilities,
please refer to the chapters named “tool usage”. They can be found in part
Il and III, and are respectively dedicated to the checker and the
documentation generator.

To conclude this first approach of the tools, it is important to mention
the data storage. As any other software, NEPTUNE offers a backup
feature. It is possible to save any opened project. This backup can be seen
as contextual backup. In other words, when re opening a previously saved
project, all the elements composing this project are opened again, the
model, but also all the rules or transformations used inside of the project.
Moreover, NEPTUNE also provides an individual backup for any of the
elements that can be edited in the tool: rule, transformation or shape.

80 The NEPTUNE method

However, after a while it is possible to have in a project, a certain
amount of rules, transformations and shapes that can be considered as
generic or standard. It means that they could be used again in another
context, in another project. To do so, the user can export these data to a
global storage, and then import them into any different project.

PART II

Checking Models

Model checking has an important goal: detect incoherence early in the
modelling phase to limit the impact in the development process. This
chapter shows how the different kinds of checks can be performed with
OCL over any model, and focuses on the different categories of checks
needed.

82 Checking models

CHAPTER 1: CHECKING PURPOSE

An UML model contains textual, graphical and formal information.
There is not at the moment any link between those formalisms nor a
recommended way to use them. This implies that the only insurance of
the correctness of the model relies on the expertise of the modelling team
and the exchanges with the client. Verification with the client cannot be
avoided as the starting point of a modelisation is a textual document that
no automatic tool can compare with the proposed model. The purpose of
UML model checking is thus to offer a help to verify graphical and
formal aspects of an UML model. After having defined the different
objectives of model checking and the state of art concerning this field, we
show how the recommended language OCL must be checked when used
as a modelling language and can be used to express checking rules over
UML diagrams. As an UML model is continuously evolving, check
points must be established in conformance with a modelling process.

The worth of the UML model correctness

UML model correctness is certainly a very important aspect
unfortunately ignored by many specialists of the modelling domain. A
model is said to be correct if it fulfils the syntactic and semantic
constraints of the modelling language. These constraints are defined by
the UML specification proposed by OMG and take several forms. First
the concrete syntax of UML is presented through the description of the
visual form of nine diagrams. Second, the abstract syntax of an UML
model is defined using UML class diagrams. It describes the links
between UML modelling elements. Third, the usage of the UML
modelling elements is restrained through natural language and OCL
constraints. These constraints are then reinforced to take into account
application domains through the use of methodological rules. The goal of
Neptune is to check constraints expressed over the abstract syntax of
UML, which can be imposed either by the UML notation or by a given
methodology.

Checking purpose 83

Checking UML Models — state of the art

The usage of formalisms such as script languages or formal languages
(different from OCL) has some drawbacks. In order to be rigorous, we
have to demonstrate for each WFR, the equivalence between its
specification in OCL and its specification in the used formalism,
supposing that WFR rules are correctly specified in OCL. Another
problem, even more embarrassing, can appear when the checks are done
using a UML CASE tool. This is because even in the best case, i.e. when
the CASE Tool repository fully implements the UML metamodel, the
tools do not allow the user to create any model elements or to declare
certain relationships among the existent model elements. The most used
CASE Tools — Rational Rose, Together, Poseidon, efc. have not yet
implemented the Inheritance Relationship among packages, the
Permission Relationship between packages (including standard
stereotypes for this relationship), the Collaboration ModelElement, and
other concepts defined in UML 1.4. Moreover, the Repository Interface
for the above-mentioned tools is pretty different from the interface that
would directly derive from the UML metamodel, completed with
additional operations (AO) used to make easier the navigation inside the
metamodel. Our position is that a minimal UML repository interface
should include at least the AO and the set and get operations. Among the
existent CASE Tools offering OCL support (see http://www klasse.nl/ocl)
neither Argo (Poseidon) nor Use or ModelRUN do provide user access to
the tool repository by means of AO. Consequently they do not support
UML model checking in a straightforward manner.

Checking UML models at different levels

The meaning of this title is very important in understanding the
checking mechanism. The UML language uses two different formalisms:
a graphical formalism and a textual formalism (OCL). The textual
specifications are described in the ModelElement context. The correctness
of the UML models thus implies the correctness of all kinds of
specifications (graphical and textual). This is why the checking has to be
done strictly respecting the above-mentioned sequence. The OCL
constraints described at the model level are meaningful and must be
checked only after the part of the UML model referred by these
constraints has been checked against WFR.

84 Checking models

CHAPTER 2: CHECKING CORRECTNESS OF
BUSINESS CONSTRAINTS RULES

UML is not sufficient to model a system. The OMG has proposed the
OCL to express constraints over model elements. OCL constraints are
used either to specify invariants or behavioural properties of the system.
This chapter presents the different contexts of OCL use and some
extensions proposed by either NEPTUNE or UML 2.0 (though UML 2.0
extensions are not yet supported by NEPTUNE). Verification of such
constraints must be understood at two levels:

e Business Constraints Rules are constraints over the dynamics of the
system. They act as a partial specification of each dynamic view of
the model, which incorporate target language implementation of
methods and dynamic diagrams. Thus checking a model also means
checking that its dynamics conforms to its (OCL) specification.

e Because they depend on the system being modelled, Business
Constraints Rules evolve during the specification and design phases
and can be syntactically or semantically incorrect as well as any
piece of user written code. Thus, the syntax and the semantics of
these rules must be checked.

The OCL syntax and semantics analyser of NEPTUNE can perform the
first level of verification. However, the second level needs specific
techniques: the validation of the target language code needs either run-
time testing of assertions obtained after the compilation of OCL
specifications, or theorem proving techniques to guarantee the full
covering of execution paths. The checking of dynamic models needs
temporal logic model checking techniques.

Consequently, the rest of this chapter will concentrate on the
presentation of the different uses of OCL for specification of models.

Checking correctness of Business Constraints Rules 85

Designing Business Constraints Rules (BCR)

By Business Constraint Rules we understand the rules expressed at the
user model level. Consequently, they access model level information such
as class attributes and association roles for navigation. The BCR have to
fulfil some design principles. For example, a constraint attached to a class
should not access private information of other classes. Otherwise, the
fundamental encapsulation principle of object oriented programming
would be violated. This principle must be imposed if constraints are used
to produce runtime tests, but it is hard to follow in general because the
expression of properties for verification purposes often needs to see
hidden data.

Invariant and pre- and post- conditions

Invariants and pre- and post- conditions are the key features of the
design by contract paradigm popularised by the Eiffel language and
supported by formal development methods like the B method. These
features are mandatory to allow the large-scale reuse of components.
They appear in four major steps of software development:

e They define a guideline for components documentation. The
interface of a component, a class in an object-oriented application,
defines the operations it exports, the properties that are maintained
during the life time of an instance (the invariant), the required
conditions for an operation to be invoked (the operation pre-
condition), and the enabled property after the operation has returned
(the operation post-condition). These features are part of the
component and of the operation signature.

e They can be used to help in the development of test suites. The
formal specification of a component can serve at the automatic
generation of test suites that will be run on the implementation. This
point is an active research topic that surpasses the objectives of this
book.

e They can be used as assertions inserted in the code of the application
for run-time testing. This feature is used for maintenance purpose and
allows the earlier detection of run-time errors.

e They can be used to develop a formal verification of the code of the
application, thus reducing the need for unit tests. Such verification

86 Checking models

can be automatic if the object behaviour is described by finite
automata, or if the data model of the application is finite and static.
Otherwise, proof techniques must be used, with partial human
assistance.

In UML, invariant and pre-post conditions are OCL formula associated
respectively with classes and with operations. They are thus part of the
model and must be syntactically and semantically checked as any other
modelling element. Consequently, the NEPTUNE tool allows the
verification of the well-formedness rules (WFR) and the type
conformance of OCL constraints that are part of the application.
However, inter-formalism verification between OCL constraints and
behavioural specifications are not in the scope of the NEPTUNE tool.
Furthermore, such verifications are generally not possible. Consequently,
we concentrate in the following on the description of the use of OCL for
expressing invariants and pre-post conditions.

Class invariants

A class invariant is a property about class attributes expressing
integrity constraints of class instances. Consequently, a class invariant
must be true for each observable state of the whole life time of an object,
which means that it is satisfied after the creation of an object and
preserved by each public method. A class diagram describes structural
invariants of object models. It includes typing constraints of attributes as
well as multiplicity constraints over roles. When these notations are not
sufficient, UML proposes two ways to attach an OCL-based invariant to a
class: a graphical notation where an OCL constraint is linked to a class,
and a textual notation in pure OCL where the invariant is specified within
a class context.

For example, let us consider the class Person given in the OCL
specification documentation. A person has a gender (male or female) and
is possibly married. When married, a reflexive association designates her
husband or his wife, depending on the person’s gender. Several integrity
constraints can be attached to the model and are either expressed
graphically or via OCL formula:

1. A person has at most one husband or one wife. This constraint is
expressed by role cardinalities.

2. A married person has exactly one husband or one wife. This
constraint is expressed by an OCL property.

3. A male has no husband and a female has no wife. These constraints
are expressed by OCL properties.

Checking correctness of Business Constraints Rules 87

4. The conjoint of a married person is also married. This property is in
fact a consequence of the previous ones and need not be expressed.

The following class diagram defines the class Person with the
attributes gender and isMarried and the reflexive association. The
cardinalities of its two roles specify the first property. Constraints (2) and
(3) are expressed using three OCL formula attached to the class Person.
The first formula says that a person is married and is a male if and only if
he has a wife. The second formula says that a person is a female and is
married if and only if she has a husband. The third formula says that a
person cannot have both a wife and a husband.

{(isMarried and gender=Gender::Male) =

wife->notEmpty} TN~

™ Person husband

{(isMarried and gender=Gender::Female)= [0..1

husband->notEmpty} -gender : Gender

— -isMarried : Boolean
wife

{wife>isEmpty or husband>isEmpty} [~~~ ~~ o1

However, this is not the only possible model of the real world. In fact,
the choice of a better representation can avoid the use of too many
representation invariants. Here, it is possible to suppress the need for a
gender attribute by creating two subclasses of Person. This is possible if
we suppose that the gender of a person does not change. This is an
important property of the model that is exploited by creating an
inheritance hierarchy. Now, a person cannot have his gender dynamically
changed. The association is no more reflexive but links a Man and a
Woman, defined as the two subclasses of Person. This new design implies
that the third property is implicitly satisfied. It remains to express the
constraint checking the coherency between the value of the isMarried
attribute and the association role. This is the purpose of the two
constraints attached to the classes Man and Woman.

Person
. . - isMarried : Boolean - 3

{isMarried = {isMarried =
wife>notEmpty} husband->notEmpty}

r p/' X i ~

: :

Man Woman
usband wife

0..1 0..1

88 Checking models

Pre- and post- conditions

Pre- and post- conditions are attached to an operation. They specify
that if the pre-condition is satisfied by the caller then the execution of the
operation will ensure the post-condition: pre-post conditions specify what
is performed by an operation. The post-condition may make reference to
the value assigned to features before the operation has been called. This
before value is denoted by adding the suffix @pre to the name of the
feature. There is no graphical notation for the attachment of pre-post
conditions to operations. In fact, CASE tools propose text boxes to edit
these specifications. On the other hand, pre-post conditions can be
specified in pure OCL using the signature of the operation as context.

Let us take the previous example and try to specify the GetMarried
operation in the class Person having the two attributes gender and
isMarried. This operation takes as parameter another person. The pre-
condition must say that both persons are not married and of different
gender. The post-condition must say that the roles husband and wife
designate the correct persons. It is useless to assert that the persons
become married because this property is in the class invariant.

context Person::GetMarried(p: Person)
pre: self.gender <> p.gender and not
self.isMarried and not p.isMarried
post: if self.gender = Gender::Male then
self.wife = p and p.husband = self
else self.husband = p and p.wife = self
endif

The same operation can be specified in the framework of the second
design. Getting the gender of the person is now performed by comparing
the dynamic type of the person with Man or Woman. Then, a type
conversion must be performed to access the value of the roles wife or
husband.

context Person::GetMarried(p: Person)
pre: self.oclIsKindOf (Man) <> p.oclIsKindOf (Man)
and not self.isMarried and not p.isMarried
post: if self.oclIsKindOf (Man) then
self.oclAsType (Man) .wife=p and
p.oclAsType (Woman) .husband=self
else self.oclAsType (Woman) .husband=p and
p.oclAsType (Man) .wife=self
endif

Checking correctness of Business Constraints Rules 89

Constraints over communications

Constraints over communications specify the messages that can be
sent, and possibly in which order messages are sent by an operation or
during the life time of an object. Contrarily to invariants and pre-post
conditions, such constraints deal with how an operation is implemented
and not only with its side effect or its result. A first step in this direction
has been done by the UML2.0 proposal of message constraints which
specifies the messages that are sent by an operation. As sequence or state
chart diagrams are used to specify the behaviour of an operation or of an
object, NEPTUNE proposes to use temporal logic [ref4] as a specification
language for these diagrams. Temporal logic generalises invariants and
allows to express that a property will become true in the future, or will be
true infinitely often.

Messages

Message constraints are intended to be included in the incoming OCL
2.0 specification in order to specify properties over the messages that are
sent by an operation. As for invariant and pre- and post- conditions, such
constraints apply to the behavioural description of the modelled system,
which can be defined through the use of sequence, statechart and activity
diagrams, or using target language code. Two constructs are mainly
introduced, that can be used in the context of an operation:

e r”op(args)returns true if the considered operation sends the
message op to the object r with arguments matching args.

e r~~op(args)returns the sequence of messages of name op
sent by the considered operation to the receiver r, with arguments
matching args.

In both cases, unconstrained argument positions are identified by question

marks. In the second case, a set of oc1Message is returned, which gives

access to the actual arguments of the message, or to its return value, if

any. It is thus possible to check constraints over the arguments of a

message.

As an example, in a banking application, we can specify that a grant is
always requested to the bank if the amount to be withdraw is greater that
some given value.

context Client::withdraw(amount: Float)
post: amount > 1000.0 implies
bank”request (self, amount)

90 Checking models

Note that at that time, no tool exists either to check the satisfaction of
message constraints by user models, or to check the well-formedness of
these constraints. Currently, metamodel level constraints can be written to
verify restricted forms of message constraints on UML dynamic
diagrams. Furthermore, the power of message constraints make them
impossible to be statically verified in general, but run time tests could be
generated.

Temporal constraints

Invariants and pre-post conditions define business rules attached to
elements of class diagrams of the system to be modelled. They constrain
the dynamic behaviour of the system, which can be expressed using
sequence, activity or state chart diagrams. However, the properties that
can be expressed in such a way are somewhat restricted: a pre-post
condition specifies the before and after states of an operation while an
invariant specifies a property that must be satisfied by the state of an
object after each operation. Thus, properties over the sequence of
successive states of the system are limited to invariant assertions, and
properties over intermediate states traversed during the execution of an
operation cannot be expressed. Furthermore, the language used to express
pre-post conditions and invariant make them impossible to verify
statically in general. The purpose of our proposal is to overcome these
negative points. It is based on the use of the temporal logic CTL
(Computational Tree Logic) [ref4], to express for example that some state
will necessarily be reached in the future or that a property remains always
true.

The temporal logic CTL is a state-based logic, which means that
atomic properties are predicates over states. It is tree-based because it
allows the expression of properties about the different futures of a given
current state, which defines a tree of reachable states. The two prefixes A
and E express universal (for All) and existential (there Exists)
quantification over the successors of the current state. Then we
distinguish immediate successors (or next) states, designated by X and
future states, designated either by G (Globally) or by F (Finally),
depending on the quantification over the states contained in the
considered execution path. Lastly, the binary operator U (Until) expresses
that a property remains true until a second one becomes true. A temporal
atomic property is build by the juxtaposition of a quantification (A or E),
a path operator (F, G or U) and a state property. Such atomic properties
can be assembled into state temporal properties using usual propositional
logic connectors (conjunction, disjunction, negation, implication).

Checking correctness of Business Constraints Rules 91

The CTL logic is used to specify safety and liveness properties. Safety
properties express that something bad will not occur in the system while
liveness properties express that something good will append. For
example, a safety property for a traffic light controller is that lights of the
two directions will not be green together. This can be expressed in CTL
logic, which can be written: AG not (ns_green and ew_green). A
liveness property may be that the traffic light will always become green in
both directions: (AF ns_green) and (AF ew_green). This property can be
weakened if we consider the presence of a presence detector: the traffic
light will become green if the detector is activated: AG (ns_detector
implies AF ns_green). Note that the AG prefix is useful because the
property must not only be true at power on but at any time.

Temporal logic and OCL

The insertion of temporal logic to OCL supposes the definition of
context declarations and of atomic predicates over states. These two
notions, as well as the notion of state, will depend on the kind of dynamic
diagram we want to constrain. On the other way, temporal connectors are
independent of these choices and can be defined and linked to existing
OCL constructs without making references to the target diagram. In order
to make temporal formulas more readable, we have renamed the temporal
connectors and supposed that the universal quantifier is implicit.
Consequently, the following operations can be invoked on a state, with a
specific syntax:

state-operation-call ::=

Possibly ? Finally expression
| Possibly ? Globally expression
| Possibly ? expression until

expression

which respectively mean:

e The expression will be satisfied by some state of all execution
paths (some execution paths if Possibly is present) starting from
the current state.

e The expression will be satisfied by all states of all execution paths
(some execution paths if Possibly is present) starting from the
current state.

e The first expression will be satisfied by the successive states, until
the second one be satisfied, in all (or some) execution paths
starting from the current state.

The following paragraphs will describe diagram dependent extensions,
mainly the notion of state and atomic predicates over states.

92 Checking models

Temporal constraints over sequence diagrams

UML 2.0 [ref5] provides a means to specify properties over the
messages sent by an operation. If we can reason about the messages sent
by one operation, it is not possible to reason about the whole sequence
diagram, which describes a set of the messages exchanged by several
objects. Temporal logic will allow the expression of such properties. For
this purpose, we have to define what we intend to be a state in the context
of a sequence diagram. In UML 1.4, a sequence diagram contains a
partially ordered set of messages so that a message has a set of
predecessors and a set of successors. The successor relation defines the
tree-like structure of messages that may be sent after a given message.
Temporal logic is used to specify properties over the possible future
messages. For this purpose, we introduce atomic propositions over
message attributes such as its name and the name of its source and
destination. The transition relation is the successor relation partially
ordering messages.

It has to be noted that in UML 2.0, a sequence diagram does not
define a partial ordering over messages, but over sending or receiving
events. Consequently, a state should be specified in terms of event
attributes (is it a sending or a receiving event? What is the corresponding
message name? What is the name of the source and destination objects?).

In the following, we conform to UML 1.4 semantics: a state is
supposed to be defined using messages.Consequently, next states are
immediate successors of the current message. In order to define predicates
over such states, we must give access to some information about
messages. For this purpose, the OCL library is extended with a Message
class containing the following declarations:

class Message
{
String name () ; // name of the message
String sender(); // name of the sender’s role
String receiver();// name of the receiver’s
// role
Set<Message> next(); // immediate successors
// of the current message

Finally, OCL context declarations must be extended to support the
attachment of temporal constraints to sequence diagrams. The syntax of

Checking correctness of Business Constraints Rules 93

context declarations is modified as follows. It allows the attachment of a
constraint to all sequence diagrams or to the named diagram.

contextDeclaration ::= context (operationContext
| classifierContext | sequenceContext)
sequenceContext ::= SequenceDiagram : (* | name)

Within this context, the current object is a sequence diagram. The
messages () operation must be called to obtain the first messages of the
interaction. Graphically, a constraint over a sequence diagram is
represented by a note attached to the sequence diagrams and containing
the constraint enclosed within curly brackets.

For example, let us consider a banking application where transactions
are described by sequence diagrams. We want to specify that a
withdrawal is necessarily preceded by a successful authentication. This
property applies to every sequence diagram and is specified by the
following constraint expressed in the OCL extension we propose:

context SequenceDiagram:* inv:
self .messages()
->forAll ((name ()<>‘withdraw’ until
name () =‘ack’) and
globally (name ()= ‘authenticate’
implies (not(sender ()=‘bank’ and
receiver ()=‘client’)
until name ()=‘ack’)))

This constraint says that in every sequence diagram, a withdraw
message cannot be sent by the client until he receives an
acknowledgement and that the acknowledgement is the reply associated
with the request of authentication. It could also be checked that for
example a withdraw is emitted by the client and the acknowledge by the
bank, but such checks are also performed by type-checking messages.

As a second example, we want to assert that in each sequence diagram
of the application, one cannot start a car already started. This constraint
can be specified as follows:

context SequenceDiagram::* inv StartOk:
self .messages () ->forAll (globally
(not ((name=’Start ()’ or name=
"Drive ()’) and next (name=
"Start()")))

94 Checking models

If the current message is Start or Drive, the next message cannot be
Start. We only consider three kinds of messages: Start, Stop and Drive
and we suppose the existence of a rule verifying that a car can be driven
only after a start.

Temporal constraints over statechart diagrams

Temporal logic states match with the notion of state defined by
statechart diagrams, but can also be associated with action states of
activity diagrams. Their common metamodel allows the use of the same
language to constrain both kinds of diagrams. As for sequence diagrams,
states, next states and predicates over states must be defined. A difficulty
comes here with the existence of concurrent states and composite states.
The state of the system is in fact defined by a so called configuration
which contains the set of states in which the system can be. In presence of
concurrent states, the states of all the components must be mentioned.
This only atomic predicate that the user can call is the oc1InState ()
predicate which checks that the state given as argument is within the
current configuration. The transitions from that state designate the
possible next states, which are returned by the next () operation.

class OclConfig

{
Boolean oclInState(oclState st);
Set<OclConfig> next () ;

As for sequence diagrams, a new context declaration is introduced to
allow the attachment of constraints to all or to named statechart diagrams.
Within this context, the current object self designates the initial
configuration of the selected diagram, containing its initial state. A
graphical notation is also introduced, which consists in attaching a note
containing the constraint to the initial state of the diagram.

For example, consider a traffic light controller managing two
concurrent sub-systems (ns and ew) associated with the two directions,
each defined by three states, corresponding to the three usual colours. The
safety property specifying that subsystems cannot be in the green state
together can be expressed as follows:

Checking correctness of Business Constraints Rules 95

context StateDiagram::trafficControler
inv safety: globally not (oclInState(ns::green)
and oclInState(ew: :green))

Business Constraints Rules Correctness

Business constraints rules apply to dynamic views of the user model,
which may be either dynamic diagrams or target language code.
Consequently, it is not always possible to verify the coherence between
BCR and other parts of the model, and notably if target language code is
concerned. However, these rules can be inserted as assertions into the
generated code for testing purpose. Thus their syntactic and semantic
correctness must be checked. The NEPTUNE tool provides a mean to
perform these verifications.

96 Checking models

CHAPTER 3: CHECKING UML MODELS

Contrary to chapter 2, this chapter concerns the verification of the
structure of UML models. The properties that are checked here are
independent from the user defined model, but are linked to the definition
of the UML notation itself. Such properties are not expressed at the model
level, but at the metamodel level as metaclass invariants. This chapter is
concerned with the verification of constraints having three main sources:
constraints provided by the OMG, as the UML WFR (mainly intra-
diagram rules), inter-diagram rules extending this set of rules and finally,
target language dependant rules and methodological rules.

Design principles

The constraints expressed at the metamodel level offer users the
opportunity to specify profile rules (rules depending on the kind of
problem domain, target programming language, efc.). These kind of rules
are presented by means of examples.

The UML Metamodel as support for expressing
constraints over models

This paragraph focuses on the use of the UML metamodel to define
OCL constraints specifying the well-formedness rules of UML models.
The meta level allows the definition of universal rules, i.e., rules that are
satisfied by any instance of a metaclass. They are expressed using OCL
invariants attached to metamodel classes.

Metamodel Navigation and Additional Operation

The UML Additional Operations (AO) have different roles. Firstly, it
is very important that OCL specifications are suggestive and easy to
understand. Taking into account the AO specification complexity, it is not
difficult to guess that without using AO, the WFR understanding will be
significantly diminished. For example, some AO return the set of model
elements that are visible from a given context and take into account
protection and (recursive) importation mechanisms. The second aspect is

Checking UML models 97

directly connected to the reusability. The major part of AO is used in
specifying several rules. Consequently, AO are reusable entities used to
make easier the writing of WFR. Furthermore, replacing direct
metamodel navigation by AO calls make WFR less dependent of
evolutions of the UML metamodel.

Well-formedness rules

The UML notation is specified by its metamodel that defines the
syntax of the language. It is completed by a description of its static
semantics that restricts the set of legal constructs. The static semantics is
defined by constraints over the metamodel expressed both in natural
language and in OCL. This set of constraints is usually called well-
formedness rules. A minimal set of well-formedness rules is normalised
and proposed in the UML semantics document. They mainly concern
intra-diagram rules. The purpose of the following section is to present
some extensions of this set of rules, as they are implemented in the
NEPTUNE checker. These rules are either general purpose or depend on
the use of the UML notation, as defined by an UML profile.

Inter diagrams coherence rules

An UML model consists of several views described using different
types of diagrams. Verifying the coherence of the model is supposed to
address the problem of inter-diagrams verification. We study several
couples of diagrams and how to express their relationships with OCL at
the metamodel level. The following table summarises some of the inter-
formalism checks that could performed.

Checking performed

Connections between objects must

Class diagram | Object diagram be compatible with associations

Messages must be operations or

Class diagram Sequence signals of the class of the receiver.
diagram The receiver must be known by the

sender
Statechart Actions and guards should be valid

Class diagram diagram with respect to the class model.

98 Checking models

Sequence diagrams should describe
behaviours allowed by state chart
diagrams.

Sent events must be defined in the
state chart of the receiver class.

Sequence State chart
diagram diagram

Class and Object diagrams

Object diagrams are not widely used in UML because they are not
supported by most UML CASE tools and can often be replaced by
collaboration diagrams which also represent class instances and relations
between instances. Some coherence checks have to be performed between
object diagrams and class diagrams. In fact, class diagrams describe
properties that must be verified by their instances. For example,
associations between classes correspond to links between their instances.
Thus, we can verify that if there is a link between two instances, an
association is present between their corresponding classes. We can go one
step further if we look at role cardinalities. However, the verification
cannot be complete because object diagrams are partial representations of
the set of existing objects. Thus, it is only possible to check that the
number of links starting from an object is not greater than the upper
multiplicity declared in the corresponding association role.

For example, let us consider the class Person with an association role
named parents connecting a person to his/her live parents. The cardinality
of this role is thus 0..2. A collaboration diagram can represent one person,
say John, and his two parents. An error will be signalled if John is linked
to three persons.

Checking UML models 99

parents
Person
0.2
Class diagram
Peter: Person Jack: Person Mike: Person
arents parents parents

John: Person

Invalid Collaboration diagram

Class and sequence diagrams

Sequence diagrams describe messages exchanged between class
instances. Consequently, they are strongly linked to class diagrams and
their coherence should be checked. Messages exchanged between
instances are either asynchronous events or operation calls. This leads to
two verifications: signals must be accepted by some transition of the
statechart associated with the destination class; called operations must be
declared in the interface of the class of the destination, or inherited. It is
possible to verify that the name of the message is that of an operation.
However, such a verification must not be systematic: in analysis phases,
the analyst may want to give a textual description of the message. The
message becomes an operation class in more advanced phases. This
verification is thus dependent on the analysis and design methodologies.

A second verification concerns the destination of sent messages. It
must be known by the sender. Its direct knowledge depends on the
associations declared in the class diagram: an object can send a message
to an instance of a class connected by an association to the class of the
sender. This condition can be weakened if messages already sent are
taken into account: the destination is valid if it is directly known or if its
name may have been communicated by previously received messages.

100 Checking models

For example, let us consider the class Person with an association to the
class Agenda containing the phone number of his dentist. An instance of
Person must first send a message to an instance of Agenda before
contacting an instance of Dentist. An immediate communication with a
dentist would be invalid. Such an incorrect behaviour can be detected.

Agenda Profession

Person Dentist

Class Diagram

Jack: Person Ag: Agenda Dick: Dentist

Get dentist

Dick

Get rdv

R
S I SN A

ey

Sequence Diagram

It has to be noted that the exact contents of messages such as
parameters and return values are not taken into account because it is
generally not possible to know which information has really been
communicated to the destination. Thus, the identity of all the instances of
a class is supposed to be potentially transmitted upon message exchange.

Checking UML models 101

Class and statechart diagrams

Statechart diagrams define states and transitions, both being annotated
by actions or guards. It should be possible to verify the syntactic and
semantic correctness of these annotations. More precisely, it has to be
checked that expressions contained in actions and guards are first legal
with respect to the target language and second that they are semantically
correct with respect to class diagrams. However, this verification is hard
to perform because guards and actions can be described in any language.
This situation will evolve with the diffusion of the UML action language
which specifies the abstract syntax of a platform independent language.
Consequently, for the moment, the coherence between actions and guards
of state/transition diagrams and class diagrams will only be checked at
compilation time and no support for this activity is provided by
NEPTUNE.

Sequence and statechart diagrams

Statechart diagrams describe all legal behaviours of the system while
sequence diagrams describe possible interactions between objects of the
system. The sequence of messages exchanged should be valid with
respect to statechart specifications. Once again, this verification cannot be
complete because statechart describe guarded transitions. It is generally
not possible to verify these conditions before an effective execution of the
application. In fact, this verification requires simulation techniques which
are hard to implement in a pure functional language such as OCL.

For example, let us consider the two classes Referee and Runner. The
Referee sends both the two runners the start signal of the run, waits for
each runner and sends the winner the order to go to the podium. On the
other side, the Runner waits for an event fire, then starts to run until the
end. Then the runner can go to the podium if he receives the event
winner.

The next statechart diagram specifies the behaviour of the referee. For
the sake of simplicity, only two runners can be managed. Furthermore,
forks and joins are used to avoid sending two events in the action part of
the transition.

102 Checking models

Referee Statechart "Runner#1 fire

o=y

WaitSecondRunner’

endRunner#1

ARunner#1.Podium ARunner#2.Podium

The next statechart diagram specifies the behaviour of each instance of
the class Rumner. It is simpler: a runner waits for the fire event and
performs the startRun action. When he crosses the line, he sends the end
signal and waits for the podium signal.

Runner fire / star

aitStart

@dium winner

Now, the next sequence diagram, proposed as an example of the
behaviour of the system, must be checked with respect to the effective
behaviours specified by the previous statechart diagrams.

Checking UML models 103

‘ R1 : Referee ‘ Run‘l:Runner‘ ‘RunZ:Runner‘

1: fire ‘ ‘

2:fire‘ ‘

3: end ‘ u

| 4: gnd |
u 5: podium H_‘

1
| |

Scenario of the run given
as Sequence Diagram

Checking for such properties is in fact complex to write in OCL and
needs the writing of a simulator of finite state machines. The complexity
is reinforced by the incomplete implantation of sequence diagram by the
different UML tools and by the existence of various representations as
metamodel instances of the graphical notions from one tool to another.
On the other hand, a simpler necessary condition can be checked:
messages send to the destination that hold signals must be handled by the
statechart of the receiver class. In the previous example, all the exchanged
messages of the sequence diagram are signals and must be present in the
trigger of one of the statecharts.

Profile rules

This paragraph focuses on the use of new stereotypes and patterns,
introduced for the benefits of software engineering and business process
modelling. Some of the rules constraining the usage of these stereotypes
are given.

For example each profile must be described in such a manner:

104 Checking models

Stereotype Base class | Parent Constraints

Event Class NA* Restricted generalisation. No aggregation

Action Event Class Event Restricted generalisation. No aggregation

iz:;:ug\l;ittlve Class gj;ftn Restricted generalisation. No aggregation

Non- .

Lo Action . L .

Communicative Class Restricted generalisation. No aggregation

. Event

Action Event

NonAction Event | class Event Restricted generalisation. No aggregation

g)ar?élmtment Class NA Restricted generalisation. No aggregation
The domain class must be an agent type and

does Association | NA the range clgss mus-t be a non-
communicative action event type.
Multiplicity is one-to-many.
The domain class must be an agent type and
the range class must be a non-

Perceives Association | NA communicative action event type or a non-
action event type. Multiplicity is one-to-
many.

The domain class must be an agent type and

Sends Association | NA the_range class must be.a gomn}unicative
action event type. Multiplicity is one-to-
many.

The domain class must be an agent type and

Receives Association | NA the'range class must be'a @_mrpunicative
action event type. Multiplicity is one-to-
many.

The domain class must be an agent type and

HasClaim Association | NA the range class must be a commitment/claim
type. Multiplicity is one-to-many.

The domain class must be an agent type and

HasCommitment | Association | NA the range class must be a commitment/claim

type. Multiplicity is one-to-many.

Software engineering profile (Formerly Methodological

rules)

This paragraph focuses on the definition of the list of new stereotypes
introduced by the NEPTUNE methodology for the benefits of software
engineering. Each stereotype is described by a set of constraints
expressed both in natural language and in OCL.

% Not Applicable

Checking UML models 105

Methodology
Phase

Stereotype Base Class Parent

Constraint (Natural Language + OCL formulation)

System | Class | NA | “A”

A class stereotyped 'System' must exist

package Foundation::Core
context Package inv system_exists:
name='Use Case View' implies contents->exists(c |
c.oclIsKindOf(Class) and c.oclAsType(Class).stereotype->
exists(name='System'))
endpackage

System | Class | NA | “A”

There must be a unique class with stereotype 'System’

package Foundation::Extension Mechanisms
context Class Inv Unique_System_Class:
(name='System' and baseClass = 'Class') implies
extendedElement->size = 1
endpackage

System | Class | NA | “P3”

All the operation of the stereotyped Class 'System' are described by an

Activity Graph

package Foundation::Core

context Stereotype Inv SystemClassOpSpec:
Self.stereotype->exists(name = 'System') implies
self.allOperations->forAll(op |Op.behavior->
exists(ocllsKindOf(ActivityGraph)))
endpackage

106 Checking models

System | Class | NA | “B”

All entities of the static data flow diagram must exclusively communicate
with the system

package Behavioral Elements::Collaborations
context Interaction inv Static_data flows to System
name='{Use Case View}Data Flow General View' implies
message->forAll((sender.base.stereotype->
exists(name='System') or receiver.base.stereotype->
exists(name = 'System"))
endpackage

Actor | Package | NA | “A”

A package named 'Actors’ must exist in the Use Case View

package Model Management
context Package inv Main_actors_exists:
name = 'Use Case View' implies contents->
exists(ocllsKindOf(Package) and name='Actors' and
oclAsType(Package).stereotype->exists(name =
'Actor'))
endpackage

Actor | Package | NA | “A”

The 'Actors' package only contains actors

package Model Management
context Package inv Main_actors_contents:
(name = 'Actors' and stereotype->exists(name='Actor')) implies
contents->forAll(oclIsKindOf(Classifier) implies
oclIsKindOf(Actor))
endpackage

Actor | Package | NA | “A”

A package of passive entities must exist in the UseCase View

package Model Management
context Package inv Passive entities _exists:
name = 'Use Case View' implies contents->
exists(ocllsKindOf(Package) and
name='External Entities' and
oclAsType(Package).stereotype->
exists(name = 'Actor'))
endpackage

Checking UML models 107

Actor | Package | NA | “A”

The "External entities" package only contains classifiers stereotyped as
'External Entity' or 'Other System'

package Model Management
context Package inv External_entities _contents
name = 'External Entities' implies contents->
forAll(oclIsKindOf(Classifier) implies
(stereotype->exists(name = 'External Entity' or
name = 'Other System")
endpackage

StaticDataFlow| Collaboration | |

A static data flow diagram exists in the UseCase View

package Model Management
context Package inv DataFlow General View_exists
name = 'Use Case View' implies contents->
exists(ocllsKindOf(Collaboration) and
oclAsType(Collaboration).interaction->
exists(name = '{Use Case View}Data Flow General View'))
endpackage

Actor | Package | NA | “B”

The static data flow diagram must contain all passive entities and the
system

package Model Management
context Package inv Static_data flow ok
let passive =contents->select(oclIsKindOf(Package) and
name='External Entities').oclAsType(Package)->
select(stereotype->exists(name='Actor"))

let static =contents->select(oclIsKindOf(Collaboration)).
oclAsType(Collaboration) ->select(interaction->
exists(name = '{Use Case View}Data Flow General View'))
in name = 'Use Case View' implies (static.contents->

select(oclIsKindOf(ClassifierRole)).oclAsType(ClassifierRole).
base->asSet->includesAll(passive.contents->
select(oclIsKindOf(Classifier)).oclAsType(Classifier)->asSet)

endpackage

108 Checking models

Facade

Library Class NA E

A package which is not stereotyped 'library’ must have an interface class

package Model Management
context Package inv Packagelnterface
not (stereotype->exists(name="library')) implies self.contents->
exists(ocllsKindOf(Class) and stereotype->
exists(name="facade"))
endpackage

Checking UML models 109

Facade

Library Class NA D

An association between classes belonging to two different first level
packages is allowed only if classes are stereotyped 'facade' or 'interface’,
unless their package is stereotyped 'library’

package Foundation::Core
context Association inv CrossPackageAssocsRestriction
let exported(p:Namespace): Set(ModelElement) = p.contents->
select(oclIsKindOf(Interface) or (oclIsKindOf(Class) and
stereotype->exists(name='"facade')))

let ns(me:ModelElement): Namespace =
me.elementOwnership.namespace

let path(me:ModelElement):Sequence(Namespace)=
if me.oclIsKindOf(Model) then Sequence{}
else path(ns(me))->append(ns(me))
endif

let enclosing(me:ModelElement): Set(Namespace) =set{ns(me)}->
closure(oclAsType(ModelElement).elementOwnership.
namespace)->including(ns(me))

let visible(p:Namespace,c:Classifier) = enclosing(c)->includes(p)

let roots(o1:ModelElement, 02:ModelElement):

sequence(Namespace) =
if ns(ol) = ns(02) then Sequence {ns(o1),ns(02)}
else

sequence {Sequence{1..path(o1)->size.min(path(o2)->
size)}->any(i | path(o1)->at(i)<>; path(o2)->at(i)) }->
collect(i | Sequence{path(o1)->at(i),path(02)->at(i)})
endif

let check(r: Sequence(Namespace), m1: ModelElement, m2:
ModelElement) = r->at(0) = r->at(1) or (exported(r->at(0))->

includes(m2) and exported(r->at(1))->includes(m1))

in connection->forAll(c1,c2 | c1 <> c2 implies check(roots
(cl.participant, c2.participant), cl.participant, c2.participant))
endpackage

110 Checking models

Business process profile

A business rule is defined as “a statement that defines or constrains
some aspect of the business” [ref6].

Business rules are in the heart of the production of correct models for
the business, and in consequence, in the production of good supporting IT
systems.

By uncovering the rules behind the scene, and formulating them in
such a way that a tool can take the model and check it against them, it is
possible to detect in the very first phases of the process critical errors that
otherwise would propagate to the design and implementation phases. This
leads to less development time and more suitable IT systems.

In a previous chapter we have shown techniques for identifying
business rules. This section shows some rule patterns identified after
applying those techniques to the analysis of several payment processes
within a real organisation. They are part of a more complete repertoire of
patterns that can be easily applied to formulate business rules for and to
check the corresponding UML activity diagrams modelling the details of
business processes. Similar patterns could also be defined for other views
of the business modelling after the corresponding work of identification
and abstraction.

Rule patters are shown in the tables below. For each one, a business
rule example and an OCL expression are given.

Rule pattern: A certain guard must be present in all the existing
paths between two points of an activity diagram

Business rule example: Once the order has been received, it will be
admitted and checked whether its issuer has been already introduced in
the SAP IF its value is less or equal than 1502 Euros.

Business rule and UML activity diagram: verifis that there is no a path
without the gard [value <= 1502] between the “OrderReception” activity
and the “DoesProviderExistinSAP?”

--OCL Expression
package Behavioral Elements::Activity Graphs

context ActionState

Checking UML models 111

inv ProviderOK CheckBeforePayment:

name="OrderReception" implies Set{self.oclAsType(StateVertex)}-
>closure(e | e.outgoing->select(guard->isEmpty or
guard.expression.body<>"value <= 1502").target->asSet)-
>select(name="DoesProviderExistInSAP")->isEmpty()

endpackage

Rule pattern: A certain activity must be present between two other
activities if there is a path connecting them

Business rule example: A first funds reservation will be made by the
office of the treasure according to the amount indicated by the economic
evaluation.

Business rule and UML activity diagram: Verifies that between the
start (or an activity) and other activity (PaymentProcessing) all the paths
that connect them include an activity ("Reserve"). It does not verify IF
THERE IS A PATH

package Behavioral Elements::State Machines
context StateVertex

inv ProvisionOfFunds:

name="start" implies Set{self}->closure(

e | e.outgoing.target->reject(name="Reserve"))-

>select(name="PaymentProcessing")->isEmpty

endpackage

112 Checking models

Rule pattern: Existence of a certain object data flow between the
start and the end of the activity diagram

Business rule example: An authorization will be signed by the
responsible before giving course to the payment.

Business rule and UML activity diagram: Verifies that between the
start (or an activity) and other activity (PaymentProcessing) a certain
object data flow will be present

package Behavioral Elements::State Machines
context StateVertex

inv ProvisionOfFunds:

name="Start" implies Set{self}->closure(

e | e.outgoing.target->reject(name="Signed Authorizaton"))-
>select(name="PaymentProcessing")->isEmpty
endpackage

Rule pattern: Presence of a certain activity within a certain swimlane

Business rule example: The Management Unit is the responsible of
receiving and processing the orders.

Business rule and UML activity diagram: Verifies that a certain
activity appertains to one swimlane

package Behavioral Elements::State Machines
context StateVertex

inv ActivityPresentinSwimlane:

name="OrderRecption" implies partition-
>select(name="ManagementCenter")->notEmpty

endpackage

NEPTUNE checker 113

CHAPTER 4: NEPTUNE CHECKER

From many points of view, the NEPTUNE OCL evaluator represents a
novelty in CASE tools supporting OCL and (or) checking UML models.
The main objective of this part of the book is to support the user in
understanding our checker philosophy, helping to an efficient use of this
evaluator.

Tool Description

In this paragraph we present the architecture of the NEPTUNE
checker. First of all, note that all external documents in input of
NEPTUNE checker are expressed in XML. It is for example the case for
the UML metamodel, but also for the user’s model and at last for the OCL
rules to verify. Both model and metamodel are stored in XMI files which
DTDs are compatible with version 1.4 of UML.

As described in the figure below, the OCL checker takes for input a
database of OCL rules, together with the UML metamodel and a user
model. It returns diagnostic information indicating which rules are
syntactically or semantically incorrect, and the model element on which
rules fail. As most current tools only export UML 1.3, some
transformations must be applied to their output XMI so that it becomes
compatible with UML 1.4. These transformations are performed using an
XSLT processor. XMI files are then parsed and transformed into an
internal form that is accessed by the checker through an API compatible

with UML 1.4.
OCL Rules
XML File
v
@ XMI-Parser API Checker —}

XSL
Transfor
mation

Model
UML 1.4
XMI 1.1 file

Model
UML 1.3
XMI 1.1 file

\ 4

114 Checking models

The checker loads the metamodel and uses it to validate and compile
the OCL rules. The model is then loaded and traversed so that each model
element is made an instance of its associated metaclass.

Checking rules

This section presents a classification of the OCL constraints verified by
the NEPTUNE checker. As previously mentioned, they can be split
into two subsets: rules attached to metalevel classes and constraining the
structure of every UML model and, rules included in a user model and
constraining the implementation of the model.

Metamodel level rules

The starting point for the specification of this set of rules is the UML
semantics document. It uses the OCL language to formalise constraints
over metamodel instances. We have enriched this first set of well-
formedness rules by including inter-diagrams coherence rules, software
engineering rules, target language rules, and business process rules.

e Well-formedness rules: Most of the rules, appearing in the UML

semantics reference document [ref7], are intra-diagram rules.
They add structural constraints over model diagrams that cannot
be expressed graphically at the metamodel level.

o Inter-diagram coherence rules: Inter-diagram rules require
checking properties between at least two different kinds of
diagrams. They are in general not specified in the UML semantics
document and may depend on the UML methodology. Inter-
diagram rules include type-checking rules that require verification
of method calls encapsulated in messages relative to the class
contents and the inheritance hierarchy. At the object level, the
number of links between objects in a collaboration diagram must
conform to the multiplicity declaration of the corresponding
associations. Sequence diagrams describing possible execution
traces can also be checked against statechart diagrams describing
all possible execution paths.

e Target language oriented rules: Target language rules are rules
that require checking properties dependant on the target language
chosen for the implementation. For example, one can check the

A description of a set of related activities that, when correctly performed, will satisfy an
explicit business goal.

NEPTUNE checker 115

Java requirement disallowing multiple inheritance of classes.
Such rules are grouped and can be activated from the NEPTUNE
interface.

Software engineering rules: They address the verification of
properties that depend on the methodological process imposed to
develop an application and on metric constraints defining
modelling rules. The first point concerns the definition of rules
applicable at the end of each phase of a development. They are
defined in accordance with the NEPTUNE process and concern,
for example, the way that external actors must be specified and
their interaction with the system. The second point is more project
dependent and can express naming conventions, size limitations
for classes or packages, efc.

Business process rules: Business process design relies on
methodological rules, which describe the mapping of business
concepts into the UML notation. The Ericksson-Penker [ref2]
business extensions have a stereotyped note for defining rules.
The note is stereotyped <<business rule>> and is attached with a
dashed line to the model element (class, operation, etc.) to which
it applies. Three categories of business rules are extracted:
Derivation rules define how information in one form may be
transformed into another form, or how to derive some information
from another piece of information.

Constraints govern the structure and the behaviour of objects or
processes, ie., the way objects are related to each other or the
way object or process changes may occur.

Existence governs when a specific object may exist — usually
inherent in the class model.

Model level rules

Model level rules are defined by the application designer and are

associated with user-level model elements in order to constrain the
application code. The model element to which a rule applies is called its
context and can be a class, a method, or a dynamic diagram:

Class invariant and operations pre- and post- conditions: This
usage of OCL constraints is already allowed by UML. The
NEPTUNE tool only checks their syntax and semantics. A more
extensive static checking would require proof techniques;

116 Checking models

e Action clauses proposed by UML/OCL 2.0: They offer the ability
to specify which messages can be sent by an operation, thus
allowing some kind of verifications over dynamic diagrams.
However, such verification is limited to a one step transition. The
current version of NEPTUNE checker only verifies the semantics'
correctness of these rules;

o Temporal constraints over dynamic diagrams: The
NEPTUNE tool introduces the ability to specify
temporal properties over dynamic diagrams through an
extension of the OCL language. Temporal operators are
borrowed from the Computational Tree Logic (CTL)
[ref4] and applied to sequence and state chart diagrams. In the
first case, properties over the occurrences of specific messages
are asserted. In the second case, properties concern the state of the
current object.

Tool Usage

This chapter intends to show how all the checking capabilities can be
used within the Neptune tool so that UML models can be checked to
verify their consistency and coherence.

To take advantage of all Neptune checker’s features, the tool is
composed of different features to make it easy to handle:
[1 a Rule Designer supporting both edition and creation of new Rules,
[J a Set of Rules embedding the most useful ones for software design,

[1 a Rule Checker to verify whether the UML model is compliant with
the rules or not

[J an Explorer to browse through the outputs from the Checker.

Usually the user will not be required to create his own rules as Neptune
offers a host of them grouped into several categories to make them easy to
find. These rules are likely to suit any requirement, even though new ones
can also be designed to enlarge this initial host.

NEPTUNE checker 117

The Rules

Overview

Each rule is defined in order to check that the model is compliant with

a specific design criteria. The rules can be created or modified by using
the Rules Designer.
package Foundation::Core =
context Method.

inv Method6: .
self. owner. all Methods -> Unigue (specification).
End package.

! Code Area
[0 eS| ol
There may be at most one method for e given classifier(as owner of the method) L D intion A
and operation (as specification of the method) pair. | R

Rules Designer

The Rule Designer is divided into two different areas:
[J The Code Area where the source code of the rule is displayed

[J The Description Area where the system displays a short description of
the checking actions performed by the rule.

Creation of new Rules

]

To build new Rules, go to “File | New” and select “Rules”

option from one of the three options available:

118 Checking models

Shape Rule Transformation

Cancel |

Creation of Rules

This action will open a new blank Rule Designer in the Neptune work

area:
B MewRula

3 L,_..|

A new Rule Designer

The OCL source code of the rule has to be written within the white
area, while the description can be attached when saving the rule or at
anytime by using “File | Properties”.

While writing a rule, the MetaModel Explorer can assist the user in
both selection of package and context clauses . For instance:

NEPTUNE checker 119

Package
context Method
inv Methodo6:
self.owner.allMethods->isUnique (specification)

endpackage

The MetaModel explorer can help us to find the package path and all
its possible contexts. The next figure is a snapshot of the MetaModel
Explorer with both path and context highlighted.

Metamodel Long Hame
= umiT4 N
[Attribute] --= xmins:UML="http_fiorg.oma/ImMLT 3"
=+ Foundation
=-|Core

-] Classifier
#-] Class
#-] DataType
-] StructuralFeature
=[] Mamespace
#-_] AssocialionEnd
=[] Interface
=] Constraint
-] Associalion
=] Element

®-] GeneralizahleElement

-] Attribute

-] Operation

-] Parameter

o ethos]

-] ereralization =

Using the MetaModel Explorer as an assistant

When the rule has been completely designed, it can be saved into the
Project by choosing “File | Save “RuleName””. As the rule is
unnamed yet, Neptune will ask for a name and a description:

s Mame % Description Speecification f x|

) B e

Descrpdaln |Checiks if ther: iz At l=ast one
pperarice.

| ik I Cancel

Specifying Rule Name and Description

120 Checking models

Modification of Rules

To create new rules, you can simply start from an empty one.
Nevertheless, this task can be also carried out more easily by editing an
already existing one. Later on, this operation to be performed usually only
when the rule has not been well defined or has any error (look chapter
Performing the check for further information).

As the rules being part of the global storage are supposed to be fully
functional and tested, they (a priori) can not be modified. However, it is
possible to do it, but it is first necessary to import the rule to modify into
a project using “Project | Add Files..” menu

Then, to edit a rule, simply open the Project Explorer, by choosing
“Project | Explorer” and double-click on the one to modify. This
operation will open a new pane with a Rule Designer showing the
selected Rule.

To save the Rule simply type Ctrl-S or choose “File | Save”.

Deletion of Rules

A rule can be deleted with the Project Explorer window, as this is the
place where all Project’s elements, including Rules, of course, are
displayed. To do so, open the Project Explorer using “Project | Add
Files..”.

Inside the Project Explorer, right-click on the Rule to delete and
choose “Delete™

"f Project Explorer

B~ pri
H-3 Rulas

FeConstraing2
Polass_ick
e onslraintz
FeClass_col
F-izonstraintl
E-LinkE Rt
i BubactiviyStaEte
s onstraintd

i Modelnsta nrsm

FeCompositaBtaled
F-Modelnstance?
Fizomposits States
Fe-Modelnstanie
i Composite Giaied

NEPTUNE checker 121

=l

Deleting a Rule from the Project

Exporting a Rule to the Global Storage

The rules created by the user are always project dependent, which
means that they only exist in the context of the Project in which they have
been created. It is slightly different from the global Rules that are

available independently of the current Project.

So that new rules may be used in any other project, they can be exported
to the Global Storage. They will so far be shared by all the NEPTUNE

projects.

&3Export Files

Instances
Class_tyl
Instanced
Instance3
ClassifierRoled

ClassifierRoled
1 ke

Froject Transformations

For each Association in which an Instance is

involved, the number of

opposite LinkEnds must match the multiplicity of the

AzsociationEnd.

Ok | Cancel |

122 Checking models

To do so, goto “Project | Export” from the menu and select the
folder “Project.Rules” on the left. All the current Project’s rules will then
automatically be shown on the right:

The next step consists in choosing a rule destination folder into the
global storage.

Invoking the Checker

Once we have the set of rules that express our quality requirements or
our design constraints, time has come to run the checker and thus identify
any kind of deviation or mistake in the model. The required elements are
the XMI file containing the UML model to be checked, the UML
corresponding MetaModel and the rules to be checked.

Both XMI file and rules are user dependent. They are chosen according
to the user needs, while the UML MetaModel is intrinsically included
within the Neptune Tool.

The following section we detail how to apply these rules and then take
advantage of the results to improve the model quality.

Selection of the Elements

Though the NEPTUNE checker can perform the checking actions on
the entire UML model, the user can also choose to run the tool on a
specific part of its model, let’s say a sub part of the model.

For instance, rules regarding actors and use cases may only be applied
to the Use Case View, while Business Rules may be used to check the
specific parts of the model dedicated to business process.

These selections can be carried out from the two Neptune’s explorers,
ie: the Model Explorer and the MetaModel Explorer.

NEPTUNE checker 123

From the model hierarchy

i) Neptune _lolx|
File Edit Project Tools Help
Model

-7 Use Case view =
7 Actors J
B3 DomainClasses
B BusinessProces:
=7 ExtemalEntities
=] AnalysisClasses
-1 Association

---Q__Unmtem retedActic -

| | »

Metabtodel Long Hame|
= umig =
- [Attribute] = xmins:UnML=
=1+ Foundation

=1 Care

=~ DataTypes

=-_1 BxtensionMechan__|

#-_] BehavioralElements =
= .
M e

Froject Mame: prj

The Neptune’s Model Explorer

To select one element, click on the corresponding node. Of course, more
nodes can be selected by holding the Ctr1 key and clicking on them. To
deselect any previously selected node, the Ctr1 click does the trick.

To perform a check on the whole UML model, simply click on the root
node of the tree.

It is important to notice that, when performing a multiple selection, it is
not necessary to explicitly add elements that are represented inside an
already chosen parent node as the checker adds recursively all the
elements selected.

From the corresponding metaclass

We have seen in the previous chapter how to add the elements
searching them in the model explorer, which is the exact view of the
actual UML model. Let’s now focus on an other view, the MetaModel
Explorer one:

124 Checking models

<3 Neptune []

File Edit Project Tools Help
Model

=7 Use Casze view =

= Actors

#-F] DomainClasses

#-F7 BusinessProces:

=7 BtemalEntities

E7 AnalysisClasses

1 Association

[_1 Uninterpratedéstic =
4 | r

Metabiodel Long Mame|
= umita A
o [Attribute] = xmins ML=
= {3 Foundation

1 core

1 DataTypes

1 ExtensionMechan__|

] BehawioralElements .
== .
Lo

Froject Mame: prj

The Neptune’s MetaModel Explorer

This view is very useful to find model elements using their
corresponding metaclass. For instance, looking for a specific actor may be
easier by means of the node “BehavioralElements | UseCases | Actors”
than having to remember its exact location in the model.

In addition, right click on this element, and choose “Go To Model”
will highlight it in the Model Explorer, thus showing the exact location
where it’s been defined. In addition, the button labelled “Long Name”
will show the whole path to avoid ambiguity between elements having the
smae name in different .namespaces.

Performing the check

Once the elements have been chosen, the menu “Tools | Rule
Checker...” will launch the checker GUI.

Then first appears a dialog with all the Rules available in the tool, the
Project’s ones and the global’s ones.

The window is divided into two areas: on the left zone are shown the
different categories while the right zone details the rules contained in
each category. Of course multiple selection is available on both sides of
the window : Simply hold the Ctrl key.

NEPTUNE checker 125

les Browser

Project Rules =

L eDest
UseCaseFirstCollaborationMessageMame

UseCaseAreFired
UseCaseFirstCollaborationMessageSre
UseCaseCollaborationMarme
UseCaseBehavior

c_____Ei 50k

A usze case 15 only fired by an actor or by
another use case.

Qk | cancel

Choosing the Rules to check

Once the rules have been selected, clicking on the “OK” button triggers
the Checker. The following splashscreen is a witness of the checker
activity. It is displayed until the selected rules have all been evaluated on
the UML (sub) model.

L

S NEPTUNE

-
L

Checker running..

The checker is running
Depending on the results of the checking process, NEPTUNE might
return various outputs:

» No errors: a dialog will show a message informing that no
error has been detected for the Rules and elements selected:

126 Checking models

=4 Checking finished F x|

& There is no error for the selected elements

No errors dialog

» A list of errors of the following types:

o

Tokenising error: the OCL Rule could not be
tokenised:

package Model Management. E
icontext Model.

lendpackage .

ie: starting «’» is missing

ol _»l_I
TokenErrorRule

Tyne Elerent | Message | offset |
tokenizing I nfinished string constant J111 |

An example of tokenising error

Neptune highlights in red the line where the
untokenizable word is found.

Syntax error: the OCL Rule is not compliant with
the OCL specification syntax.

package Model Management. E
context Model.

endpackage .

o ie: incorrect symbol «-»
1 — _’l_I
SyntaxErrorRule

Type Element | Message |orset]
syntax I |s:nia error expected "endpackage” 71

An example of syntax error

NEPTUNE checker 127

Semantic error: a feature requested on the OCL rule
is not compliant with the OCL specification:

package Model Management. -
context Model.

Endpackage.

ie: typographic mistake

T E— _>l_I
SemanticalErrorRule
Type Element Message Offset

An example of semantic error

Evaluation error: this is a rule defined message

informing about some situation regarding the model
loaded.

[package Model Management. 4]
context Model.

inv MethodNumber: Operation.alllnstances—>size.fail('Method number: ').
lendpackage .

T — _>l_I
Met hodihurber
Nethod number

Type | Element | Message | offset |
evaluation | SimpleClasses Method number: 4 |51 |

An example of evaluation error

In the example above, the rule counts the number of
methods of the SimpleClasses model.

Rule failed: the rule could not apply to the model

inv MultipleInheritance: . |

self.generalization. parent—>select (oclIsTypeof [¢Class) | ->size <2.
endpackage.

T |

MultipleInheritance

miltiple inheritance is not allowed.

Type Element hWessage Offget

An example of Rule failed

128 Checking models

In case of multiple errors, whether it comes from one rule on several
elements or from different rules, NEPTUNE displays as many lines as
errors found.

Moreover, each click on one of these lines highlights the concerned
UML element and its metaclass. This is done thanks to the NEPTUNE
explorers. To make the error even more explicit, both the rule and its
description are displayed at the top of the window. This is shown on the
following snapshot.

[Neptune - CheckingResults (8)

File Edit Project Tools Help

(i milz) Bl CheckingResults (3)
= = 0,1} = 'is' and nane.substring (2,2} = name.substr ing (4
 Not determinable b (0.1 : g 221 : 9
00 At or neme = elementOunership. namespace. nane.
=3 Operation or mame = name.substring (0,0} . telower.
B resize). Rule

=B ParentClass2

o Not determinable N
£ tribute endpaciage.

=3 Operation] <
o« 3
— Operationtiane

Constructor has the same name as the class, set and get litterals are folloved

] Interfa an Upercase letter .For set and get accessors, boolean accessors are labelle inti
O3 Constaint 07 o U IS o €18 Gl 63 b Bl S Description
Element = with 'is' and a vord beginning vith an uppercase levter,
: 3 Etement
- elloved (_, <, % \
signaled o 8 seneralzaitiemen 8 !
= O3 Ainute
= Qperation Tyee Element Wessage [oreet]
50 y
% 01 associations evaivation Chigt svaluaion esued I a non Bostean e (Undeine. -1 141
= S Alnetnies evaluation Chisz evaluaton resulied in non boolean type (Undefine..
S getiame evaluation chig evaluaton resulied in non boolean type (Undefine..
S resizs evaluation Chid4 evaluation resulted in a non boolean type (Undefine. .-t Errors
evaluation FarentClass levaluation resulted in a non boolean type (Undsfine..|-1
& oethame evaluation ParentClass2 evaluation resulted in a non koolean type (Undefine...-1
Soo (Ongefie.. -

9 01 Parameter evaluation esize evaluation resulted in an 5
.03 Method = |CETR osion ociios o T
[« v [[Jevaluation SimpleClasse: Nombre de cycles: 0 A Lo

Froject Name: prj

Rule Selected Element Reason
The whole Neptune with checking results

Exporting the Checking Results

Once the check has been performed, it is possible to export the results
in an XML file. The checking results are stored and can thus be used
anytime. It is easy to understand that the reading of these checking results
might not be very easy because of the XML tags. To make it easier, a
simple trick consists in transforming the XML output into an HTML or
PDF file. This is obviously done with the NEPTUNE document
generator. The backup of the checking results is done through the “File
| Save CheckingResults” menu.

PART Il
DOCUMENTING Models

In this third part, we focus on the documentation aspects to be
considered during and after the UML modelling process. After a
presentation of what is documentation in general and why it is so useful
in various business fields, we will introduce the two main concepts of the
NEPTUNE automatic documentation generator, namely transformation
and shape. Then we will focus on the tool with a detailed description of
the documentation generation process followed by a chapter related to the
tool usage.

130 Documenting models

CHAPTER 1: DOCUMENTATION PURPOSE

An important element of a process is its documentation. The
documentation associated with a process contains its complete
description, and highlights the most important events that occur during its
progress.

This is even truer for software as experience has shown that the
success of software projects is largely dependent of the quality of their
documentation. Because the software projects have a very expanded life
cycle going from their specification and their design to their realisation,
their tests and their maintenance, a bad documentation or even the
absence of documentation cannot assure the continuity between the steps
of the software’s life.

In addition, software is realised and maintained by engineering teams,
often dispersed among various companies, various geographical
locations: a bad documentation does not assure a good co-ordination
among the different engineers implicated in the software project.

In other words, the documentation is a required quality of modern
software. Thus, the constitution and the automatic generation of
documentation for software process become more and more necessary.

This chapter can be seen as a global presentation of what is
documentation generation. After a sub chapter about the added value of
documentation generation, the reader will be presented a state of the art.
The very end of the chapter consists in a first introduction of the
NEPTUNE document generator.

The worth of documentation generation

This section points up the added value of the automatic documentation
generation.

The actual progress of technology (performances, networks...)
improves the software performances and can provide new functions and
features. It follows that the application domains become more and more
large and varied. In business areas like space or automotive, the software
is becoming an essential (sometimes the main) part of the systems
developed. Consequently, collaboration at all levels in lives of software

Documentation purpose 131

becomes necessary between software engineers and application domain
specialists.

For example, the graphical user interfaces are elaborated by software
engineers in tight collaboration with the final users. Of course, the
documentation is part of this collaboration, and thus must be accessible
by all people implicated in the software projects and not only software
engineers. There follows a true (r)evolution of methods, techniques and
tools of the documentation because this one must be accessible by all
people implicated in the software projects and not necessarily software
engineers.

In such conditions, it is important to consider the generation of
documentation that can be a great help, saving time and automatically
bringing into the documents a normalised formalism. This standardisation
makes the communication easier between the people implicated in the
project.

Let’s now focus on the use of UML and try to understand how
automatic generation naturally fits into model based developments.

UML offers the user different views of process activities, both static
and dynamic, based on different technical and functional users’ profiles.
Being a standard, UML is now widely used to model software. Its
graphical approach facilitates easy use by people. The UML formalism is
adapted to users who are not specialised in software development:
without having need for a deep understanding of its possibilities, they can
follow the modelling of their projects. For this reason the project domain
of UML applications is wide open. Consequently, UML is used for
modelling diverse information systems, bank and financial services,
telecommunications, transportation, military, and distributed Web
services. We can easily draw a parallel between software engineering and
other domains where modelling also plays an active role in terms of
communication: for example, architectural models of houses and
buildings nowadays consist for the future occupants in a first opportunity
to view the final result.

Pushing the concept even further, we can say that UML use is not
limited to software modelling. This language is sufficiently expressive for
modelling systems that do not belong to this category. For example, the
workflow of a judicial system, the structure and behaviour of a health
system, the design of computer system or, more generally, a business
process, topic which has been under study in the Neptune project.

132 Documenting models

In order to set up an exchange process between the organisation and
the information system, it is consequently fundamental to have a
documentation system accompanying the models. Moreover, it should be
based on automatic generation of end user oriented documents.

If documenting a software application is quite common and widely
approved to be a great help through the co-ordination of software teams,
the documentation of a process model that is not in the framework of
software engineering is not yet a usual practice. Because of the specificity
of each business, each of them may require a different approach for end
user oriented documentation. In this framework, NEPTUNE offers a great
support, but this subject will be discussed in details within the next
chapters.

Documentation purpose 133

Documentation generation: State of the art

In terms of generation around UML, the source code has been more
explored that any other type of natural language documentation. This can
easily be explained and understood. First of all, even though the radical
changes and improvements done in software engineering, the production
of source code can not be avoided. On the contrary, documentation rarely
appears as the first priority. This is one of the reasons why more efforts
have already been done on code generation that on documentation
generation. Moreover, the source code can be seen as text only, with a
formal syntax, while documentation is composed of text with a particular
rendering, a particular style; it can also include some draws, or other extra
information that does not automatically appears in a standard UML
model.

In spite of this delay, some interesting things have already been done
on documentation generation: The evolution of the modelling languages
makes them closer and closer from the natural languages. UML seems to
be a perfect example, with the opportunity to use graphical stereotypes or
with the diagrams that remain quite intuitive even for someone that does
not know UML perfectly. Consequently, the diagrams have been widely
used by the documentation generation tools. Unfortunately, most of the
time, they are simply extracted from the models and copied into a text
document. We could give some more examples but most of them would
converge to the same conclusion: The tools available on the market do not
really provide the flexibility required for a good textual documentation
generation. In addition the model parsing is often based upon an internal
form which make these tools sharply linked to UML case tool associated.
Well, it is clear that the documentation generation topic seems to be an
open job where most of the things are still to be done.

These thoughts and studies led us to think that basing our work on a
standard was quite interesting. We naturally chose XMI, kind of
repository of the information contained in the model. In addition to be
able to manipulate a big amount of information from the model, we
thought that as for checking, the methodology had to drive the
documentation generation. Indeed, it is essential to specify:

[J What are the modelling elements to document?

134 Documenting models

[l How can the analysts and the designers document the modelling
elements?

[J What are the checking rules dedicated to the documentation in order to
check the presence of documentation on modelling elements and where
these modelling elements are documented (notes, containers, ...). In
addition, these checking rules will provide for the analysts or designers
an easy way to detect information that is missing or not useful.

Introduction to our document generator

The aim of this chapter is to highlight the essential points that make the
NEPTUNE documentation generator different from what had been done
previously in the domain of documentation generation around UML.

General concept

The NEPTUNE documentation generator aims at producing some
professional documentation that results from the exploitation of UML
models. This documentation is an end-user-oriented documentation,
which takes into account the professional expertise of the reader. It is the
result of transformations applied on both UML elements and
documentation available in the actual model or purely external.

Multiple points of view

Among the features of the NEPTUNE documentation generator, its
ability to give many views of the same information is essential. If the
extraction of information from a UML model leads to one view,
transforming this extracted information can produce many other views.

The NEPTUNE document generator is in a way based on this idea of
transforming the information. While specifying our tool, the
transformation feature has quickly appeared to us as being one of the
most essential.

The transformation’s layer is fully customisable in the NEPTUNE
document generator, making the number of views as wide as the

Documentation purpose 135

documentation designer imagination. The access to multiple points of
view highly contributes to make the tool different from the others.

Multiple compatibility

Today, each UML case tool has its own proprietary back up format,
but due to the increasing number of tools emerging around UML, none of
the case tool editors can avoid to supply a model export feature. To do so,
the format used is always XMI, which is indeed an XML format using a
DTD adapted to UML. This format (described in appendix C) is part of
the UML norm. It thus can be can considered as a standard and is said to
be the UML exchange format. The NEPTUNE documentation generator
is based on this format; the models used as input of our tools must be
expressed in XMI. This makes NEPTUNE compatible with any case tool
compliant with the norm. As to conclude, we can say that there is no kind
of coupling between NEPTUNE and any other UML case tool.
NEPTUNE tool is a standalone tool.

Multiple sources of information

Though the UML model is the main source of information used to
generate the final documentation, the tool can also make use of other
sources. It is possible to extract and transform the information initially
located in an external document, whether this document is referred in the
model or not. There is however one restriction concerning the external
documentation. It must be some XML documentation. NEPTUNE is able
to handle any tagged document and make use of any part of such a
document, small pieces but also the whole document if needed.

136 Documenting models

CHAPTER 2: BUSINESS DEDICATED
DOCUMENTATION

Depending on the business domain, the look, the use, the life cycle,
etc.... of the documents are slightly different. These differences lead to
specific definitions of what is the standard documentation for each
domain. The following chapters will present the documentation in two
different business fields: business process and software engineering

Documentation in business process

This sub-clause aims to focus on the usage of NEPTUNE document
generator tool in the domain of business process modelling related
documents.

The advantages that models represent for business are well known.
Explanatory documents of these models (which in fact are explanatory
documents of the business themselves) are a crucial element for building
up an agreed and shared knowledge of the business among relevant
parties (managers, stakeholders, other staff members, etc).

NEPTUNE process has identified a number of work definitions each
one focussed on modelling specific aspects of the business. The models
produced there can be accompanied by explanatory documents. What
follows is a list of elements that business modellers could take as starting
point for defining such a documents. This list is organised by business
views, that nicely correspond to the different NEPTUNE work
definitions.

For the Vision Business a document should be drafted containing,
among others, text with the company mission, some general objectives,
the business domain boundary, an opportunity/problem statement
describing the opportunity for the business, external major threats, critical
factors, core competencies of the business, high level description of the
organisation, and a TOWS matrix.

The work definition dealing with business concepts identification and
definition should complement the models produced with a lexicon for the

Business dedicated documentation 137

business containing, among other things: traceability identifiers,
definition of the concepts, short explanation of the relationships that
connect concepts in the conceptual model, remarks on those concepts that
require additional clarification. The second activity of this work
definition deals with the identification of the processes, stakeholders and
resources. An accompanying worth document would give information on
each process containing its brief description, the estimation, justification
and explanation of its required resources as well as the relevant
considerations affecting the involved stakeholders.

Goals and problems identification work definition could be
complemented with a document with information on them. For goals,
suggested items could be: traceability identifier for each goal, its short
description, any additional remark (as how critical it is for the wealth of
the business), whether it is a qualitative or a quantitative goal (and if it is
the later one, information helping to assess its achievement, like goal
value, current value, measurement unit, etc), detailed rules for assessing
its achievement degree, criteria for classifying the achievement degree,
the list of sub-goals, contradictory goals and estimation of desired
balanced achievement of them. For problems: traceability identifier, short
description, additional remarks, list of causes of the problems
(accompanied by explanations of each one), list of actions foreseen to
overcome the problem (with additional descriptions of such actions),
prerequisites, resources requested by them and processes in charge of
solving the problem.

Documents complementing the models for resources could include
information on skills required for playing the different roles, availability
needs, hours needed and envisaged period of engagement for them, when
dealing with people. For physical resources issues like required units,
frequent suppliers, costs, conditions, average delivery time, reposition
frequency required by processes and foreseen period For the business
structure, each organisation unit could be additionally documented giving
details on the employees, resources, methods for allocating them,
methods for assigning tasks, rules for arrangements and links with other
OUs, its expertise, etc.

Documents explaining the business processes can include, among
others: traceability identifier, short explanation of the purpose of the
process, its scope, how critic it is, the goal that tries to achieve, the list of
resources required, the actors involved, its owner, its outputs, its risk, etc.
Next clause gives an example of document including most of them.

138 Documenting models

NEPTUNE document generator tool makes extensive usage of XML
files for producing the final documents. Inside the XML files the different
pieces of information appear as content of XML elements. The XML tags
qualify these pieces of information, which allows their automated
processing by XSLT engines as a step in the production of the final
document. Future activities on the business modelling and documenting
area would focus on producing proposals for files containing information
on all the issues mentioned above and other that could be identified as
relevant, like NEPTUNE has done for generating the document
containing details of a number of business processes and their
corresponding business rules.

Examples of business modelling documentation

One of the most relevant documents in medium to big organisations is
that one containing detailed description of the processes that take place in
that organisation.

In this section, we present the contents of such a kind of document,
produced with NEPTUNE tools. It is based on UML, and part of the
required information is available in XML files specifically defined for
these purposes.

The document itself consisted in a number of chapters, each of one
contained the detailed information of one process dealing with payments.
All the chapters had the same structure. Sub-clauses below provide
information on their contents.

Process identification and scope

This section contains a short sentence explaining where and when the
process applies.

Involved entities and their responsibilities

It contains a table with two columns: the first one contains the names
of the different parties participating in the process and the second one
gives a short hint of their roles in the process, as shown below:

Business dedicated documentation 139

Entity Responsabilities

Management center Manage good adquisistion,

Register accounting phases

Payment authorizer Order payment

Diagram of the process

This section contains the activity diagram of the process that is part of
the whole business model.

Detailed description of the process

This section contains a table of four columns containing the details on
the process.

e The first column contains a detailed description of the more
relevant phases of the process. Usually, all the activities required
to successfully perform the process are explained in this column: it
concentrates the core knowledge of the process.

e The second column contains references to forms that during the
process the different entities have to manage somehow.

e As payments were supported by an information system, the third
column contains references to its user.

e Finally, the fourth column contains references to normative
documents (both, internal to the organisation and external —
national laws).

Process Description Forms | User’s | Normative
manual | references

Business rules governing the process

The final section is a list of business rules that govern the process,
expressed in natural language.

Documents on-line containing information on the processes, as HTML
presentations with navigation capabilities that can be posted in a web

140 Documenting models

service and made available to all members of the staff of an organisation
for educational and consulting purposes, are also a good example of how
NEPTUNE technology can give support to the business model
documentation.

Documentation in software engineering

Any software-engineering project makes use of several specific
languages, each one being associated to a particular technology used on
the project. Of course, the language of the business area concerned with
the information system is also in use on the project. This variety of
vocabulary is declined at each step of the process. For instance, the use of
UML brings into the project a specific terminology, from the first steps of
the development process until the end.

Consequently, there are very few project teams in which each member
is totally skilled and familiar with the whole vocabulary in use: if we can
expect from a software engineer to read and understand an UML model, it
is not the case for the other members of the team. In this particular case,
and in a context that always gives more importance to the models (MDA),
it is thus fundamental to give an easy and friendly access to the whole
information contained by the models. This information should then be
understood by any member of the project team, whatever its knowledge
of UML. To do this, the textual documentation remains the most efficient
tool.

Moreover, the modern software development (process, quality,
methods) has brought in big needs of documentation (from specification
to validation).

This sub-chapter intends to point up the main role played by
documentation in software engineering.

Business dedicated documentation 141

Different types, different means

Documentation as part of the process

Let’s start with a piece of history. Once upon a time, there was
software development, which principles were mainly based upon
algorithmic. Software development has always (and still) been in
evolution and today, it has reached kind of adulthood. But in the
industrial software domain, the knowledge of algorithmic is not sufficient
anymore to assume a good quality of the pieces of software developed.
Because they need to be maintained, reused, because of scalability
requirements, these pieces of software need to be thought and designed in
reference to techniques, guidelines, methods and principles, that all
together constitute what is known as software engineering. In such a
context, the documentation has obviously found a role to play in the
development process. Some documents are now said to be standard
documents: from one project to the other, they document the same part of
the process, they have the same names, and finally the same objectives. A
classical example is the interface manual. These documents are often
mandatory on the projects and though their reason of being is the same
from one project to the other, what they look like (rendering and content)
is often constrained by the software development process in use on the
project, in the company.

Documentation as alternative views of the model

Among the objectives of the documentation in software engineering,
giving an easy access to the information contained in the models is
essential, whether the models are UML models or not. To do so, several
approaches can be chosen:

A first option consists in inserting in the model some pieces of
documentation. Of course, that means that the modelling tool used on the
project supplies such features. Moreover, this way of documenting a
model is very often left at the initiative of the project members that design
the model. This writing technique is well adapted to the documentation of
a precise part of a model, like a class or a package. In this case, we will
talk about an object oriented documentation.

Another option consists in writing some documentation beside the
model. This documentation is not as close to the model as the one
presented in the previous paragraph. That means that it can be dealing
with general considerations on the model, or be much more business
oriented. Because of this, and often depending on the level of
organisation of the company, there can be some templates for this type of
documents.

142 Documenting models

Examples of software engineering documentation

Among the classical software engineering documents, the validation
plan appears as a standard. It is on many operational projects a mandatory
deliverable. The main objective of such a document is to check that the
high level specifications of a project are fulfilled by the software. To do
this, the software is used as a black box.

In this section, we present the content of a validation plan, produced on
a project on which the NEPTUNE process is the one in use. It is based on
UML, which assumes that the whole information needed for the writing
of a validation plan should be available in the model itself. The use cases
are supposed to be the mirror of the specification. Consequently, we will
also give some detailed information on the places in the model where the
needed information can be found.

Pre-requisites

First of all, it is important to mention that the UML/NEPTUNE process
recommends that each use case should be documented in a textual form,
respecting the following categories.

Summary Brief presentation of a use case

Use context Conditions of use by triggering
elements (frequency of activation,
synchronous or asynchronous
triggering, etc.)

Triggering element Actor or use case

Pre-conditions Stable system condition necessary
before use case can be accomplished

Input data Data used

Description Detailed description of interaction
between triggering elements and the
system

Post-conditions Stable condition achieved by the system
at the end of the interaction with a use
case

Output data Data produced

Exceptions Error condition that the system cannot
resolve

Business dedicated documentation 143

The information included in this document will be very useful all along
the generation of the validation plan.

Definitions
¢ Execution case : execution for a particular scenario (defined by a
sequence diagram)
e Test case : sequence of execution cases
e Validation case: use case name in validation phase. A validation
case makes reference to a test case
e validation plan : set of validation cases

The validation plan

A validation plan is composed of several tables. The first one is the
table of the validation cases, in which some references are made to test
cases. As a test case is a sequence of execution cases, each test case
description will include:

e one table for the sequence of execution cases

e as many tables as execution cases in the sequence

The table of the Validation Cases

One raw in the table is needed for each validation case. The table of the
validation cases is presented below:

hyperlink

e TEST TYPE: functional, robustness, performances, ergonomic,
documentation. As this information is at the moment not available
in the model, we have to improve the Neptune process to add this
information.

e TEST ID: Identifier of the test.

144 Documenting models

e USE CASE REFERENCE: Name of the use case described
(there is one validation case per use case). This hyperlink gives
access to the test case of the current validation case.

e« USE CASE VALIDATION TEST DESCRIPTION:
Description of the use case. It is extracted from the associated
documentation mentioned in the former paragraph.

e NEXT TEST IF ANOMALY: The name of the test to perform
in case of current test failure. As this information is at the
moment not available in the model, we have to improve the
Neptune process to add this information.

e TRACEABILITY: Traceability information from the model,
available in the model through the Neptune traceability tagged
value.

Test Case

In the first table below is given the sequence of execution cases
required for the test case and some additional information describing the
test case. All this information is extracted from the use case
documentation described in a former paragraph.

This sequence is said to be the primary scenario. Within the model, this
information is contained in the main sequence diagram associated to the
use case.

OBEJCTIVES Summary field of the external documentation

PRE- Pre-conditions field of the Use Case External

REQUIREMENTS Documentation

PROGRESS Sequence of secondary scenari. (secondary

INSTRUCTIONS sequence diagrams)

INPUT Input data field of the Use Case External
Documentation

EXPECTED Exceptions field of the Use Case External

RESULTS Documentation

Business dedicated documentation 145

There are as many tables as execution cases in the test case.

There are as many execution cases as secondary scenarios (or sequence
diagrams) associated to the use case in the model.

In addition to the descriptive fields of the execution case, we plan to
generate an empty filed dedicated to the observed results.

OBJECTIVES Secondary scenario name.

PRE- Sequence from Primary scenario to the
REQUIREMENTS described secondary scenario.
PROGRESS Secondary scenario description
INSTRUCTIONS

INPUT Incoming message to the secondary scenario.
EXPECTED Outgoing message to the secondary scenario.
RESULTS

OBSERVED

RESULTS

146 Documenting models

CHAPTER 3: THE DOCUMENT GENERATOR
CONCEPTS

This section aims at introducing the fundamental concepts of the
NEPTUNE documentation generator, namely transformation rule and
shape. More than a definition of the concepts, this chapter, matching the
path followed by the NEPTUNE team while designing the documentation
generator tool, will present the concepts as logical answers to the
problematic of documentation generation.

Transformation rules

An UML model is a huge piece of information. It is the repository of
the whole modelling work performed by the project team, whatever the
state of achievement of the modelling process (specification, design). As
a consequence, inside a model, it may not necessarily be obvious to focus
on a small part of the system, simply because the information we are
interested in is embedded in more generic, wider topic information. To
help through this problem, a first important step can consist in extracting
from the model the sub parts where the useful information is hidden.
However, the product of such an extraction is still carrying some useless
information. A filtering operation can be a great help to get rid of this
additional information.

Performing both extraction and filtering is the goal of the
transformations as we define them in NEPTUNE. As a specific type of
filter, each transformation specifies the rendering of the information.

This chapter aims at showing what a transformation is, what it does
and how it works.

General transformation rules

The transformations are the smallest entities built and manipulated
while designing some documentation. They can be split into two
categories, depending on the kind of parameter they take as an input.

The document generator concepts 147

On the one hand, we have transformations that take an atomic part of
the model as an input, this one being any kind of object, like a class or an
association. The number of parameters of the transformation is not
limited. This type of transformation is used to document one or more
specific elements of the model.

On the other hand, we have the transformations that do not need any
kind of model object as input but one single type of UML element. While
processed, these transformations will successively deal with all the
instances of the specified parameter. The documentation designer will use
them for systematic treatment. For example, building up an exhaustive
table of the actors defined in the system. These transformations are called
meta transformations.

Now that we have justified the existence of the transformations, time
has come to think about the formalism chosen in order to give concrete
expressions of these transformations.

The UML models manipulated in NEPTUNE are in their exchange
format (XMI). As XMI is an XML format, and knowing that XSL is
known to be the reference for manipulating some XML documents, it
then appeared like an evidence that XSL was the most adapted language
for the writing of our transformations. What is also interesting in XSL is
the whole set of graphic libraries associated. These libraries can be used
while designing a transformation.

Furthermore, the spectrum of XSL dedicated tools is really wide.
These tools are often free of charge and open source. Besides, several of
these pieces of software are already approved and widely recommended
by the community dealing with XSL for a while. Among these tools, we
can cite the XSLT transformation engines SAXON or XALAN as
significant examples.

The use of XSL has also increased the number of features of the
transformations. For example, whether they are meta or not, the
transformations can deal with some external pieces of documentation,
provided these pieces of documentation are written in XML. For instance
we can imagine a transformation which aims at exhaustively extracting
the text inside a specified hierarchy of XML tags.

To make things clear, the following chapters present some examples of
transformations, organised by business.

148 Documenting models

The shape

It’s been already showed that the transformations are the means used to
transform the information contained in a model. We still have to find how
to use it and how to organise it. If any document has a semantic content, it
also has a structure. If we consider the notion of title, the chapter
numbering, or even the styles, as the transformations do not handle these
essential features, it is vital to define another concept to do so. This is the
role of the shape.

The shape constitutes the higher designing level of documentation. It is
the most significant view of the final documentation and the main
interface with the documentation designer. If the transformations are the
tools, the shape will be the toolbox.

Shape Content

To get an elementary piece of information (The content of a chapter,
for instance), a transformation must be associated to at least one UML
modelling element and eventually some external pieces of documentation.
The NEPTUNE document generator embeds all the facilities to make
these associations.

Shape Structure

During the design process of a document, the organisation of the
information leads to the definition of a structure, which means titles,
subtitles, and styles applied to the various levels. This structural
information is handled by the shape.

NEPTUNE document generator 149

CHAPTER 4: NEPTUNE DOCUMENT GENERATOR

With the emergence of UML as a standard in software development,
software projects are now very often based on this technology. This
statement is true in many business fields, like software engineering of
course, but also for knowledge management or business process.
Although all the participants in a software-engineering project may be
able to read and understand an UML model, this does not necessarily
happen with people in other domains. Thus, it is useful to transform the
information contained in a UML model into different representations,
easier to read for someone not necessarily being fully skilled in UML.
The main objective of the NEPTUNE [refl 1] documentation generator is
to produce some professional documentation that results from the
exploitation of UML model sub parts. This documentation is an end-user-
oriented documentation, which takes into account the professional
expertise of the reader. It is the result of transformations applied on UML
elements available in the actual model. The transformations turn the
information expressed with the UML formalism into textual easy to read
information. It is important to say that there is no need to be UML skilled
to understand the documentation produced. This makes the tool not
specifically dedicated to software engineering, but also to other business
fields like knowledge management or business process.

Throughout this chapter is detailed the NEPTUNE documentation
generator. The description of the tool is given with a sequential approach
of the documentation generation process: inputs, processing chain,
outputs...then after is given the tool user approach, based on a wide GUI
description.

Tool description

Though the NEPTUNE user may have a more or less clear idea of the
look like documentation he wants to produce, he has to provide several
inputs to the document generator core. Some of them are mandatory, and
some are optional. This set of inputs constitutes the information source
used by the document generator core to function. The available
information will be manipulated so that it can be organised and
transformed as specified by the user. To understand how it works, this
section will introduce some fundamental NEPTUNE concepts. The

150 Documenting models

objects presented are the ones to be built and gathered together by the
user in order to specify the documentation to be generated. Once these
concepts will have been be assimilated, we will focus on the key steps of
the generation process. To conclude, we will give a presentation of the
outputs of the document generator.

Inputs

This chapter aims at presenting the inputs of the documentation
generator. We will successively introduce the UML model, and UML
meta model, which are two mandatory inputs. Then after, we will talk
about the eventual external documentation and the documentation
templates provided with the NEPTUNE tool.

The UML model

The UML model is the most important input. As NEPTUNE is case
tool independent, a model should easily be loaded, whatever the case tool
used to design it. As a consequence, XMI seems to be the most suitable
representation’s format, as it is the UML exchange format. Thus, it is the
one we chose to use in NEPTUNE. The XMI specification is part of the
UML recommendation, which means there are significant differences
between the XMI format from one UML version to the other. As the
NEPTUNE tool is UML 1.4 compliant, the user will pay attention to the
UML1.4 compliance of its XMI file.

The UML metamodel

The UML metamodel is systematically loaded during the NEPTUNE
sessions and displayed in the metamodel browser. Thus, for systematic
treatments (over all actors for example), the documentation designer will
not have to select all actors one by one in the model but only the actor
concept in the metamodel browser.

The existing documentation

The NEPTUNE document generator gives the opportunity to make use
of XML external documentation. While designing the final
documentation, the user can make references to this external
documentation, which content will then appear inside the produced
documentation, bringing in additional information. This external
documentation can be pure external documentation or documentation
associated to the model in the tool case itself, thus embedded in the XMI
representation of the model.

NEPTUNE document generator 151

Of course, it may not be relevant to extract and use the whole
document. Any user may some day needs to pick up small pieces of
documentation inside of a bigger document. To do so, NEPTUNE offers a
filtering feature, allowing the selection of document parts. To do so, the
user has to specify a hierarchy of tags among the ones used in the external
documentation specified as input of the document generator. Then during
the generation process, only the text contained in this hierarchy of tags
will be extracted for contribution to the generated document.

The standard models of documentation

Though each project has its own specificity, if we focus on the
documentation topic, for each business field, we can identify a standard
set of documents. These documents are the product resulting from the
sharing of a particular knowledge, a common culture, a common
vocabulary....

Regarding software engineering, a good example is the validation plan.
Even if the form may change from one organisation to the other, the
content is always based on the same information. Indeed, in a UML
context, the use cases will always define the validation cases and it is true
that there should be as many sequence diagrams as test cases.

What the NEPTUNE tool offers is a selection of templates (we call
them shapes in the tool) corresponding to these standard documents.
Feeding the documentation generator core with one of these templates
properly parameterised and then applied on the UML model will lead to
the generation of the awaited standard document.

The shape as an input organiser

In the previous paragraph, we have mentioned the standard models of
documentation. If we use the NEPTUNE vocabulary, these models are
called standard shapes. In the following section, we will develop much
further the concept of shape, whether it is considered as standard or fully
designed by the NEPTUNE user. We will detail each of the shapes’
components, so that the reader becomes familiar with the concepts of
style, documentary element, all widely developed here after.

To fully describe the shape, we chose to adopt a bottom top approach.
In other words, we will first describe the atomic constitutive objects of a
shape, before gathering them together to build up a bigger element, itself
merged with one other object to finally constitute a full shape.

152 Documenting models

XSL elementary transformation:

Though we have already presented them in a previous section, it can be
worthy refreshing the reader’s memory.

These transformations, written in XSL, are able to perform the
extraction of information from the model and to define the way this
information will be presented. It can be with the means of arrays, with a
particular size of column, etc. These transformations can also be seen as a
way to generate different views of a same piece of information, and by
extension, different views on a model.

Documentary element

A documentary element is composed of the whole information needed
for a full paragraph generation, expressed at the shape level. To define a
documentary element, the reader has to associate one or more elements of
the UML model with an XSL transformation. The UML model elements
are the parameters of the transformation. A documentary element can be
defined at the metamodel level — meta documentary element — or at the
model level — documentary element -. The main difference is the level of
appliance of the XSL transformation. A model level documentary element
needs an instance of object as parameter of the transformation, whereas a
meta documentary element only needs a type of UML element.

Whether it is meta or not, the documentary elements constitute a raw
brick of a higher level concept in NEPTUNE, namely the shape.

Structural elements

The structural elements are used to insert titles or sub titles, with text
and styles. They define organisation of the documentary elements all
together, with features such as chapters, sub chapters... The access to the
structural elements is done during the shape design. They can easily be
inserted, removed, or modified.

Shape

The shape is a frame containing the structure of the documentation the
user will produce, together with some documentary elements. The shape
can be defined at metamodel level — the generic shape - in order to
provide generic models of documents, and at model level — the user shape
- in order to be fully adapted for the user’s needs. A user shape may be
defined from a generic shape and extended by the user. The generic

NEPTUNE document generator 153

shapes will lead to the generation of standard documents, often dedicated
to a particular business.

Internal Generation process

The previous paragraph has shown what the shape was made of. Now
that we have it built or loaded from a library, it is time to launch the
automatic generation. Even if this generation is hidden behind a single
mouse click, the process is indeed performed in several sequential steps,
all described throughout this section.

From a Shape to a User Document Definition (UDD)

The first step consists in a first interpretation of the shape as specified
by the user. It is turned into an XML document called UDD. The tags of
this document are pre defined in the tool. This operation aims at making
the shape information compatible with a second interpretation made by an
XSL processor.

From a UDD to an XMI processing style sheet, using the generic UDD
processing style sheet

As the UDD is an XML document, it can be transformed using the
XSL technology. This is what we do thanks to a generic style sheet,
applied on the shape in its UDD form. The main object of this operation is
to replace the references to XSL transformations by the real XSL text of
the transformation. The document obtained is thus a real XSL style sheet,
let’s call it the XMI processing style sheet.

From the XMI original file to the first XML output document using the
XMI processing style sheet

The XMI style sheet previously obtained is ready to be applied on the
model. Both XMI style sheet and model (XMI file) are inputs of the XSL
processor, which output is a first XML version of the document to
generate as specified by the NEPTUNE user.

From an XML output document to any available output format using
the NEPTUNE format transformer feature.

The last operation consists in transforming the first XML document
into a smart document. This last product can be generated into html; but
also rtf or pdf.

154 Documenting models

Outputs

Let’s first remind the reader that the NEPTUNE technology is based
upon XML: The input format is XMI, which is nothing else but XML, the
transformations are written in XSL (XML again), the internal forms are
also XML (see previous chapter)... In other words, the whole stuff is
relying upon XML. Consequently, the generated documentation should
logically be pieces of XML. It is true, and we can even add that the XML
format was the first one to be supported by the tool while it was still
being developed.

Then after came some additional formats, and today, the tool is an
enabler HTML, RTF, and PDF. The production of these new formats does
not constitute a different chain of generation from the one presented in the
previous paragraph but an additional step in this process: Indeed, the
XML produced by the last step is transformed with the help of XSL (one
more time). For the readers the most interested in XSL, it can be
interesting to know that the libraries used to do that transformations are
FO.

Tool Usage

Now that we have already seen all the elements needed to produce the
final document, we are ready to use this knowledge within the NEPTUNE
tool, so that we will be able to configure the documenting process to
make it generate documents, which will fit whatever requirement.

As previously shown, the NEPTUNE document generator makes use of
four different elements to produce the final document. All these inputs
can be designed within the NEPTUNE tool thanks to an easy, integrated
and ergonomic interface, described hereafter. Moreover, we will see that
NEPTUNE has been developed to let the user manage each of these
elements independently from the others, so that each of them can be used
for any future generation of document. This is way, the final efficiency
increases as there is reusability of all components and the final
configuration of all the generated documents can be readjusted implying
only modifications in its minor parts. As an example of this, changing a
Transformation’s behaviour will also be taken into account in the next
generation, or one shape may be applied with as many UML models as
wished.

NEPTUNE document generator 155

This section is, consequently, organised covering all subjects of the
NEPTUNE document generator feature’s to be consulted independently.
But before going on, it is important to remark right now that all Neptune’s
elements initially provided has been also designed by means of the
Neptune Tool, so the interface has been fully tested and it is proved to
fulfil all the possible requirements.

The transformations

Overview

The transformations are the basic elements that give all the
functionality to the NEPTUNE document generator. In other words, we
can say that the efficiency of the tool will improve respectively to the
number of transformations available.

Consequently, although NEPTUNE provides a set of transformations,
it also offers facilities to re-design them or create brand new ones, fully
adapted to the use needs.

An overview of the transformation designer is shown below:

156 Documenting models

Vxsi:template> ——. -
<xslitemplate name="ActorsList” match="/">.
<nepfo:block space-before.optimm="3pt" space-after.optimm="15pt">actors Table</r
<nepfo:table border-style="solid" horder-width='Zpt" horder-color='hlack” bt
<mepfo:table-column column—width="proportional-colurn—width(3) "/:
<nepfo: table-column column-width="proportional-colum-width(
<nepfo:table-headers.
<nepfo:table-row color-"white” border-style-'solid' XSL Transformation
horder-width="0pt" horder-color="black" bat Area
<nepfo:table-cellnepfo:hlock language-'en" hypt—|
<nepfo:table-cell=mepfo:hlock language-'en” hyp!
</nepfo:table-row:.
<{nepfo:table-header>
<nepfo: table-hody>.

<xsl:apply-templates select='descendant::UML:Actor' fx. S
4| | LI_‘
proves: [L] | 3 Image Preview
Area
=l
Name Shor Name Type |
Actor ActorsList [Actor Parameters
Area

Transformations Designer

As we can see, the Transformation Designer is divided into three
different areas:

[1 The XSL transformation area: it is the component area where to
write the XSL transformations. Neptune will automatically highlight
the text according to the syntax.

[J The image preview area: this area is designed to provide a preview of
what the transformation does. The user will thus be aware of the
rendering of the transformation even before applying it through the
documenting process.

[J The parameter area: this area is the edition zone of the parameters of
the transformation.

Creation of new transformations

To build new transformations, go to “File | New”, select the
“Transformation” option., and click on the “OK” button.

NEPTUNE document generator 157

Shape Rule Transformation

Cancel ‘

Creation of Transformations

This operation will open a new blank transformation designer with its
three zones. The first required step then consists in filling the XSL
transformation area. The syntactic XSL analyser embedded in the tool is
running in the background, which is a great help while designing a
transformation.

Due to the fact that no preview of the Transformation’s result has been
caught yet, usually no image cannot be attached in the creation process,
although it can also be assigned later when having any output result. This
Transformation’s image preview is useful when designing the shape,
because it gives an idea on what results the Transformation produces.
However, assigning an image preview is not mandatory and it can be
done after the transformation has been executed or even it can be omitted.

To attach an image, click on the “..” button and select the image in the
local file system.

Within the parameter area, the transformation designer has to specify
the parameters of its transformation. They which are the UML elements
required to correctly run the transformation. If the transformation
designer has properly defined these parameters, once used in the
document generation process, the transformation will need to be
associated to UML elements which types match the ones previously
defined.

To add or delete one parameter, simply use the right click button. This
action will pop-up the following contextual menu item.

158 Documenting models

[Delete |

Adding new Transformation's Parameters

Once it’s been chosen to add a parameter, the corresponding area is

enhanced with one additional row. Each parameter (each row) has tree

columns:
MHarme Short Hame Type
Main Class el Class
Parameters' Fields
[J Name: it is the name of the parameter and should be human-

0

0

understandable, as it will be the main parameter’s identifier when
using the transformation in future.

Short Name: it is the exact string used to identify the parameter used
in the core of the XSL transformation.

Type: it is the UML type of the parameter.
Depending on the parameters’ types that the Transformation has, it can

be grouped into two different categories:

0

Meta Transformation: This sort of Transformation has only
parameters of type “XML Files” or no parameter at all. As it does not
have any model-dependent parameter (such a Class or an Actor, for
example), the Transformation applies to meta-classes as defined in the
XSLT, thus implying that all elements on the model are processed.

Normal Transformation: This other sort of Transformations, on the
contrary, contains at least one parameter different from XML files and
the user has to provide some model element of its type when using the
Transformation.

Once all these fields have been filled, the transformation is fully

defined. It can be saved by choosing “File | Save” from the menu.
The user has to give both a name and a description of the transformation,

NEPTUNE document generator 159

shortly explaining what it’s been designed for. From that point, the
transformation becomes part of the actual project. Consequently, it will
appear inside of the “Transformations” node of the project explorer
(Ctrl-E).

Modification of transformations

Modifying a transformation is a task that can be necessary to adjust its
final behaviour to the user needs. The aim can also be to attach the
preview image once the transformation has been processed, and its output
turned into a relevant view of the rendering.

As it happens with all the NEPTUNE’s elements being part of the
global storage, the transformations can not be modified, simply because
the global storage location means that they are supposed to be fully
functional and tested. However, the modification of a transformation is
possible, but it is first necessary to import it into a project using
“Project | Add Files..” menu.

To edit a transformation, use the“Project | Explorer” menu,
and double click on the transformation to modify.

Then, the transformation designer is opened showing the content of the
transformation. If an image has previously been attached to the
transformation, the preview is displayed though its path field remains
empty. This is because the image is fully part of the transformation. It is
not only a link to the file.

Any modification can then be performed on the transformation, that
can be saved at any time by pressing Ctrl-S.

Deletion of transformations

On the Project Explorer window (Ctrl-E), look for the
transformation to be deleted and right click on it. In the pop-up menu
choose “Delete”.

160 Documenting models

'Project Explor '

Eﬁ pFi
-] Rules

[:I Shapes
=i Transformations
©OAC

Deletion of Transformations

Exporting a Transformation to the Global Storage

All the transformations created by the user are project dependent. This
means that when closing a project and opening another one, the UML
model and the various elements available in the project interface
(Transformations, Shapes and Rules) are the ones attached to the last
opened project

However, the elements stored in the Global Storage, which the ones
provided initially with NEPTUNE are part of, will remain completely
project-independent and available all the time. This notion of project
dependence is a first justification of the export feature available in the
tool

Indeed, it seems quite easy to identify other good reasons for
transferring some elements from a local (or project) storage into the
global storage. For instance, when a user has designed a transformation
that should be shared (it may be useful for another person in the company,
not necessary involved in the same project), then the transformation
should be exported into the Global Storage.

This Global Storage is categorised, the information is organised, easing
the access to the elements

To export a transformation, use the “Project | Export” menu
and then select the transformation (or several transformations holding the
Ctrl key) to transfer to the global storage.

NEPTUNE document generator 161

Hport Files x|

Froject.Shapes Actors
Froject Rules

Project Transformm

2k Cancel

Browsing the Local Elements

The next step consists in clicking on the “OK” button. All the available
categories of transformations then appear on the screen An other choice
has now to be made in order to select the destination category of the
transformation. It is interesting to notice that several categories can be
selected, thus defining multiple locations of the transformation to export.

162 Documenting models

Global

Cancel |

Global Storage Categories selector

Of course, the creation of new categories is also available: Right
clicking on the window above will launch the devoted interface.

The Shapes

Overview

The shapes configure the formatting of each document. They are
interpreted by the core of the NETUNE document generator. They
contain the entire set of instructions needed to launch the information
extraction from the user’s UML model. Indeed, the shape regroups the
singular functionality carried out by each transformation. They also
embed the information needed to organise the output document in
chapters, sub chapters...

As for the transformations, a design feature devoted to the notion of
shape is available in the tool (see next figure).

NEPTUNE document generator 163

Opened Leafs Chooser

StructuralEiement || & Lear Bl Lsar2|
= (1 Document |
=0 Uj Narne Gz
Structural Element =53 Actors | Transformation [UseGaseDocument]
Editor < Model Fifter valug
Parameters Description | Element | Type Leaf
5 UseCase cenerate UMLtUseCase Designer
L »
- Level|Color| Font B
Style
Ed?,tor — | Documentation Dot URL Tag [
\L, =
Element Image i
Freck CDncurments and SemnaewER bRrae NP T ‘L Images To Model
J’ Elements association
Shapes Designer

As we can see, the shape designer is divided into five different areas:

[Structural Element Editor: in this area the shape’s structure is
defined, thus allowing the creation of new chapters and the selection of
leafs where to attach the transformations.

[J Style Editor: this is the interface dedicated to the styles’ definition for
each level (chapter, sub chapter...) For each level, the user can choose
a size, a font, a colour...

[Leaf Designer: this area defines which transformation is attached to
each leaf, with its set of parameters (if any).

[1 Images to Model Elements Association: it contains a table where to
assign icons to each UML model element in particular, in order to be
represented as specified from here.

[J Opened Leafs Chooser: all of the opened leaves appear here as
different tabs, so that the user is given a quick access to each of them.

Creation of new Shapes

To build new Shapes go to “File | New”, select the “Shape”
option, and click on the “OK” button.

164 Documenting models

| ‘L
Shape Rule Transformation
Cancel |

Creation of Shapes

When the shape Designer is opened, an empty tree in the structural
element editor appears. No Leaf is opened, no image is neither associated
and only the default level is available within the style editor. This state of
the shape designer is typical of a blank shape. It is the starting point of the
creation of a new shape.

The first thing to do is to build the document structure by means of the
Structure Element Editor. Each folder in the tree represents a chapter
level, which can contain:

[1 A Structural Element: it represents a new chapter of the document
structure.

[l A MetaDocumentary Element: it contains a Meta Transformation,
applied to all the metaclasses of the UML model.

[J A Documentary Element: it contains a Normal Transformation that
will apply to any particular user-selected model elements.

In the next chapters we will see how to handle these elements.

Adding Structural Elements

To add, remove or rename Structural Elements, right click on the
parent folder (a Structural Element, in fact), and choose among the
available options of thethe pop-up menu:

NEPTUNE document generator 165

StructuralElement

=-(1 Dacument
=
i | Add Structural Element

E- Add MetaDocumentary Element
Add DocumentaryElement
Rename
Remave

Modifying the Document's Structure

In this case, we will select “Add Structural Element”.

Remark: the rename operation can be performed by pressing F2 key
when the node to change has already been selected (highlighted in blue).

Creating a Documentary Element

New Documentary or MetaDocumentary Elements (Leaves in any
case), can be created by choosing the corresponding option after doing a
right-click on the parent Structural Element (see previous chapter to get
more details).

When the new leaf is created, a new Leaf Designer will open.

166 Documenting models

Marne |Lears Name JLears

Transformation Transfarmation _I
hietaode| Filter: Model Filter: Walue

Parameters Parameters Description | Element | Type
Documentation Doc URL Tag Documentation Doc URL Tag

Links Valug Links value

Meta & Normal Leaf Designers respectively

Both Meta and Normal Leaf Designer work in a similar way, but due to
the fact that they address different targets, it would for instance not be
relevant to insert a Meta level transformation inside of a Normal
Documentary Element. Because of this, the content of the window
dedicated to the choice of a transformation is already filtered and the
Transformations displayed in there are the ones belonging to the
appropriate family.

The Leaf Designer is composed of the following fields:

[J Name: The string chosen here also appears on the Structural Element

Editor tree.

[Transformation: it is the field where to attach the Transformation to
be used within this Leaf.
[J MetaModel & Model Filter: it is used to filter the results of the

Transformations Chooser, the previous field indeed.

[J Parameters: it is the field which lists all the required parameters of
the previously chosen transformation As already mentioned, these
parameters refer to specific UML model elements and only exist in
case of Normal Transformation.

[J Documentation: this field is the location where to attach the external
documentation file possibly required by the Transformation.

NEPTUNE document generator 167

In the subsequent subchapters we will focus on the parameter fields,
and detail how they can be filled.

Entering the Name

To change the name of a Leaf (usually named LeafX when created),
select the former one with the mouse and type the new one.

Choosing the Transformation

The assignation of a Transformation is a required step of the Leaf
definition. The available Transformations are either located in the Project
or the global storage.

To launch the interface giving access to the Transformations, use the
“...” button on the right. This action shall pop-up the Transformation
Explorer, where all the available Transformations will be grouped by
categories displayed on the left column.

Once a category has been selected, the Transformations it contains will
be displayed on the right. Select any of them and click on the “OK”
button.

The Transformation Explorer will be closed and the Transformation
will be transferred to the Leaf designer.

Adding Transformation Filters

The set of transformations available for attachment (previous section)
can be the result of a filtering action. To makes things clear, let’s see that,
for instance, it is possible to set a filter which effect is to restrict the set of
transformations to the ones that have a use case as parameter.

To add a filter, perform a right-button click on the “Model Filter” box
and select “Add™:

Model Filter: Yalue |

A new dark grey row will appear in the table. Dropping an UML
element into that zone is the same as choosing a filter on the
transformations. To do so, simply drag from either Model or MetaModel

Adding Filters

168 Documenting models

explorers, any Model Element into that row. As an example, we can
analyse the effect produced by dragging from the MetaModel explorer
one of the elements contained under
ModelManagement/Package/AllInstances. As a result, the
only Transformations listed in the Transformation Explorer are the ones
that have packages as parameters.

Adding Transformation Parameters

When a Transformation applies to specific Model Elements, these
Model Elements must be selected by means of this table.

There are as many Model Elements to specify as parameters defined in
the Transformation chosen. Here is an example:

Description Element Type

fain Class I (ML Class

Transformation Parameters Field

The columns are detailed hereafter: Description: The text displayed is
the one typed by the Transformation creator. It is thus under its
responsibility to make this text self-explanatory.

[] Type: specifies the required type of each parameter. In the previous
example, only instances of Classes are allowed to be dragged into the
field.

[J Element: this is the column where to drop the parameters required.
Their type must be the one given in the “Type” column. They are
picked up from either the Model or MetaModel Explorers.

Once an element of the correct type has been dropped into the
dedicated field, it is displayed on a green background.

Description Elemernt Type
Main Class Frame LML Class
An UML Element attached
Adding Documentation

Concerning the Transformations that are enriched with external XML
documentation, a table is provided by the GUI, which number of rows
depends on the chosen transformation, as some require one single piece of
documentation while some others need more. In other words, there are as

NEPTUNE document generator 169

many rows as pieces of documentation specified by the Transformation
creator.

Dioc LIREL Tag
Documentation

Documentation Field

Each columns stands for:

[Doc: contains the label for each document required and is shown as
typed when defining the Transformation.

[J URL: is the field where to type the path the XML file containing the
document.

[Tag: contains the path within the XML tree where to extract the
information for this Leaf.
To choose the XML file, perform a click in the right of the field. Two
buttons will appear:
LIRL
AL ...

Choosing the XML file

The “...” button will open a File Chooser window and will browse the
file system to attach the XML file.

The “XML” button will open the external XML Editor as configured in
“Tools | Configure Neptune”.

Once the file has been attached, its XML structure can be browsed by
clicking on the right side of the “Tag” field. This will make appear a
“Tree” button:

Tang

I Tree

Opening the XML tree window

The “Tree” button will open a new window showing a tree with the
XML structure:

170 Documenting models

2'Representation Tree El
=4 Docurment
-] Triggering_type
[+ Entity_type
|
& | Responsihility

(0] 34 Cancel

Choosing the documenting tag

When chosen the folder where stands the root of the information to
attach, you can click on the OK button and this path will be transferred to
the field.

Adding Links between Leafs

The links are the last missing element concerning the Leaf and let
joining information; so similar Leafs can be grouped.

To add links, simply perform a right-click in the links box and choose
“Add”:

Yalle

[relete |

Adding links between Leafs

This way, a new dark grey row will appear. To assign another Leaf,
drag the related one from the Structural Element Editor and drop it into
the row. The Leaf’s name will be cached and displayed in yellow:

NEPTUNE document generator 171

Yalle

Actors

A link between Leafs

Defining the Shape’s Style

By default, when creating a new Shape only one style level is
available, which is named as “Default”. Each of these levels applies to the
corresponding level of the Shape’s structure starting from the root node.

Once the Shape’s Structure has changed, it is habitual to define a new
style for the new coming chapters. This task is accomplished by means of
the Style Editor:

Level Colar Font |
R . guick |

Style Editor row

The Style Editor has three columns:

[Level: contains information on the style level it is defining. It must be
either “Default” or “LevelX”, where X is a number greater than 0
pointing to the right structural level.

[J Colour: assigns the font foreground colour.
[J Font: let the user specify the font type and shows a preview.

To add or delete rows, click on the table with the right button and
choose the wished option:

Level Caolar Fant

The quick [

_IThe quick brown fox jumped over the lazy d|

L~
Delete

Adding new styles

To edit the colour, click on the colour cell and a colour picker dialog
will appear. You will be given the opportunity to choose colours from a
range of three different ways:

172 Documenting models

[J From a swatch, thus choosing one of available colours.
[Choosing the hue, saturation and brightness.
[J Choosing the red, green and blue components.

x| x
swatches 58| Ros| swatches| H5p [RGE]
> JI cu o
s oo
cofps
R
ofi23
8p3s
Frevow Frenew Prevew
OB W serve et samoerer OB W s Tet samverer OB W e ot sanvierer
Semple Text Sample Texl Sample Texd Sample Texd Gample Ted Sample Ted
oK Resst ok |[cancel | Resat oK Resst

Choosing colours

The font can be defined performing a double-click on the right side of
the font cell. This operation will make appear a button:

Level Colar Font
o [\ The quick 1
=
Choosing the font face

A Font Chooser dialog will also appear showing all system available
fonts:

3 Choose font : x|
[Font [Style | Size
Camic Sang M5 IEIDId,IlaIiC 26
Batang g Plain 18 g
Book Antigua J 20
Baokman 0Id Style 22
Century 24
Century Gothic 30
Schoolbook
= 48
Courigr hew = 2 =
[Bample

The quick brown fox jumped

QK Cancel

Defining the font appearance

NEPTUNE document generator 173

The Font can be chosen on the left, the style on the middle (if allowed
by the font multiple styles can be selected, as in the image by holding the
Ctrl key) and the size on the right.

Attaching images to elements

This step lets the user specify specific icons to metaclasses or even
particular elements on the model and the definition is performed by using
the Images to Model Elements bottom part of the Shape Designer.

The way to add new associations is to with-click into the table and
choose “Add™:

Elerment | Image |
[Delete

Adding images associations

The meaning of the two columns is the following:

[J Element: contains the metaclass or the particular UML Model
Element associated to the image.

[Image: contains the image associated.

This will create an empty dark grey row. The way to attach the
elements (an instance or a metaclass) is dragging and dropping them into
the Element cell from either Model or MetaModel Explorer. Depending
on the colour the dragged element can be:

Element

An instance —>» | javax
A metaclass —> | I[[[EHHEER
Empty —— | IIII———

111

The three sorts of rows

174 Documenting models

If we use the previous figure as example, there is attached the package
“javax” and the metaclass “Class”, so the association will be used in any
Class instance of the current UML model.

To attach the image, we must perform a double click on the right side
of the corresponding image cell. This action will make a button:

Image
I)
I

Attaching images

After pressing the button an Image Browser will pop up showing the
file system:

File name: |UseCaseDiagram_CIosed.gif Aftach |
Files of type: |.Just|mages LI

Image Browser

When selecting the image and clicking “Attach”, the image selected
will be transferred. This image can be created temporally and there is no
need to make it available in the generation process, so it can be deleted
after attaching it.

NEPTUNE document generator 175

Modification of Shapes

The process of modifying a Shape is to be carried out usually when
creating new Shapes in order to fit its behaviour.

Only Project’s elements can be modified as the others, as they are in
the Neptune Storage, are supposed to be well working. Anyway these
global elements can also be modified by importing them into the project
by choosing “Project | Add Files..”.

The edition of Shapes requires it to be opened. This action is
performed by using the Project Explorer (choosing “Project |
Explorer” from the menu) , and double-clicking onto the Shape.

Note that images associated path will not be visible because they do
not need to exist in its former location.

Deletion of Shapes

To delete a Shape from the Project, open the Project Explorer (press
Ctrl-E) and choose “Delete” from the contextual menu that will appear
after doing a right-click to the Shape.

Exporting a Shape to the Global Storage

The process of exporting Shapes to the Global Storage can be useful to
share user-defined shapes in other Projects, as they are available always
to any project. Anyway, we must take into consideration that the Shapes
that are to be exported cannot make any references to particular UML
model elements, as it would have no sense to generate documentation
when changing the UML model.

The working way is as early explained in chapter called “Exporting a
Transformation to the Global Storage”, so the first step is to choose
“File | Export” from the menu and chose the Shapes (several can
be selected holding the Ctr1 key).

After clicking on the “OK” button, you will be given the Shapes
categories on the Global Storage. In this case, as before, the procedure is
the same as in chapter called “Exporting a Transformation to the Global
Storage”, so several categories can be selected (indicating that the Shape
can be regrouped into several categories), and new ones can also be
created.

176 Documenting models

Invoking the Generator

When having already all elements concerning the generation process in
the Neptune system (it is the Transformations, the Shapes and the UML
Model) , the generation of documents can be performed.

To do it, go to “Tools | Generate Documentation”. Neptune
will show a Shapes Explorer with all Shapes in the Project and with all
the global ones categorised. When each Shape is selected on the bottom

of this window will be displayed a description of it.

The next step is to type the output filename and choose the output

v Output Filename E

format:

j‘) Cutput Filename: jdocument

Typa:

o] oo

FOF

Selecting output document

k|

Neptune can export the results in the following ones:

0 XML
[J HTML
[J RTF
[J PDF

The pressing the “OK” button, Neptune will work for a while and will
show a window indicating that the Document Generator is working:

NEPTUNE document generator 177

W oW

S i EP ;

-

-

Document Generatar running

Document Generator working

The document will be created inside the folder configured for output
documents into the Project’s directory. The Project’s directory can be
known by choosing “Project | Properties”, and the output
directory by means of “Tools | Configure Neptune”.

APPENDIX A

Overview of UML META model
and MOF

180 Appendix A

INTRODUCTION

The UML meta model is presented in terms of UML concepts [],
giving a metacircular definition of this modelling language. In order to
have this description, only some concepts of UML have been considered
as relevant. The set of these concepts constitute the kernel of the
definition of the so-called Meta Object Facility (abbreviated MOF). The
MOF has been adopted and standardised by OMG, and is intended to be
the universal meta model language i.e. the language capable of describing
languages such UML, relational models and so on.

Let us recall that MOF is resting on a four-level standardised
architecture; these four levels conventionally denoted M0, M1, M2, and
M3 are defined below:

MO: information level

MI1: model level

M2: meta model level

M3: meta meta model level

MO is devoted to objects and links. The M1 level concerns a model, for
instance in UML, it consists of class diagrams, sequence diagrams, use
cases, etc. Then higher up, appears the M2 level which is any modelling
language; in our approach the UML language, itself. The top level M3
contains the language whose purpose is to describe any modelling
language that appears at level M3. Thus, each level can be considered as
described by the next level up. In order to avoid an infinite number of
levels, it was decided by OMG to make M3 reflexive. The consequence is
that the MOF must be able to describe itself.

The four level architecture proposed by OMG can be summarised by
the following scheme.

Overview of UML meta model and MOF 181

N\
‘&
N
M1 Model

THE BASIC CONCEPTS OF MOF

Each MOF element is represented by a meta entity. Globally, the MOF
possesses about twenty meta entities. However, four of them are
sufficient to describe the entire MOF. Consequently, four meta entities
are enough to describe the entire M3 level of the architecture.

These meta entities are:
Class

Association

Data type
Package

Let us now give a more detailed description of the above meta entities.

The concept of a MOF class

At the M3 level, a MOF class is a meta entity that allows the definition
of meta objects i.e. objects that occur at level M2. At the M3 level, a
MOF class permits the definition of all the meta-entities at level M3. A
MOF class is similar to an UML class. It contains attributes, methods,

182 Appendix A

associations, etc. A MOF class can be abstract. MOF supports single and
multiple inheritance hierarchies as well.

The concept of a MOF association

A MOF association is a meta entity that is intended to express binary
relations between a pair of MOF classes. Is is important to distinguish the
MOF associations that describe the relations between MOF meta entities
and the so called meta association Association which is devoted to
implement relations between instances of the MOF meta entities.

At the M3 level, the MOF associations describe relations between
MOF meta entities. For instance, the association “Generalizes”
implements the inheritance relation between the so called
“GeneralizabeElements”.

Q>

Generalizes supertype

0..%|, {ordered}

subtypj GeneralizableElement |
0.~

7

Class

summit : Class -
summit

generalizes A

state: Class

The MOF meta entity “Association” is used to establish binary
relations between instances of MOF entities at level M2. For instance, in
UML, a transition that occurs in a state-transition diagram can be fired by
an event. This particular relation is instantiated by the meta entity
“Association”.

Overview of UML meta model and MOF 183

ModelElement

s>

0

containedElement ..
{ordered}

Contains/ contain

TypedElement

AssociationEnd

/N

|Association| | Class |
Started by : Association @
’ : AssociationEnd ‘ ’ : AssociationEnd ‘ Transition

0.*

= Started by
0.1 4

isTypeOf isTypeOf

Event

| Transition : Class

| event : Class |

As the MOF is reflexive, the inheritance relation between the M3
entities “Namespace” and “ModelElement” is also implemented by the
meta entity “Association”. In this situation, this relation belongs to level
M3.

At any level, modularity is an essential concept which is intended to
package scattered information. Among the benefits of modularity, appear
the following points:

e regrouping and classifying elements

e simplification of inheritances, here inheritance processes a group of
elements

e simplification of dependence links between groups

MOF modularity is ensured by the meta entity “Namespace” which can
contain ModelElements through the relation “Contains”. This relation is
depicted by the next figure:

184 Appendix A

Containing | Pgcka | Class | Datatype | Associatio | Operatio | Exceptio
Contained n n n

Package

Class

>

Datatype

Q
SIS

Association

Attribute

Reference

Operation

XX XX

Exception X

Parameter X X

Association X
End

=
>
>
>

Constraint X

Constant X

Alias X

Import X

Tag X X X X X X

MOF generalization is very similar to the one in UML. Inheritance in
the MOF is implemented by the so-called relation “Generalizes” between
“GeneralizableElements” (package or class). This relation allows the
GeneralizableElements to inherit from other ones.

When dealing with associations, the MOF offers two mechanisms. The
first one rests on associations. An association possesses two ends that
define type and cardinality of the elements related by the association.
With such elements, it is possible to reach all the classes related by this
association.

The second way uses the concept of a “reference ”. A reference is
defined within a MOF class for an association. Using two links so-called
“RefersTo ” and “ Exposes ” the reference makes it possible to describe
the two ends of an association and the attached cardinalities.

Overview of UML meta model and MOF 185

The concept of a MOF package

The package is an element involved in the MOF construction that
allows grouping meta model elements in a single entity. Thanks to
packages, it is possible to partition the model space.

A package can contain the following concepts:
class
association
data type
package

The concept of a MOF package supports four forms of construction:
nesting, inheritance, composition, and importation.

Data type

The MOF offers the concept of Data type to define the values of the
attributes and parameters of operations. Data type can be used to
represent two kinds of types:

e scalar types which do not denote any object, and
e external types that are not defined by the MOF specifications.

It is to be taken note that neither instantiation, nor inheritance, nor
composition apply to Data types.

A class may contain Data types. In fact, a class is a Namespace that can
contain ModelElements; since Data type is a ModelElement it can be
included in a class.

MOF GENERAL ARCHITECTURE

The general architecture of the MOF is summarised in the next
diagram.

186 Appendix A

IDependsOn dependent

AttachesTo
0.*
provider
- ModelElement constrainedElement
containedElement / 0.+ : Constrains
{ordered}
‘ o 0." ‘
Contains/ container
5 1#' Namespacel | Constraint | | Tag |
imported,
importer 1
0.* Aliases IsTypeOf

supertype

Gernjeralizes

0.4, {ordered} o
eature

|Associa\ion| | DataTypel | Class |

CanRaise
| Operation Iﬂ Exception |
o o

JExposes

APPENDIX B

Overview of OCL

188 Appendix B

INTRODUCTION

This chapter presents the Object Constraint Language (OCL), a formal
language used to refine UML specifications. OCL typically specify
invariant conditions that must hold for the system being modeled. OCL is
a pure expression language and its evaluations do not have side effects. In
addition, to specifying invariants of the UML metamodel, UML modelers
can use OCL to specify application-specific constraints in their models.

A UML diagram, such as a class diagram, is typically not refined
enough to provide all the relevant aspects of a specification. There is a
need to describe additional constraints about the objects in the model.
Such constraints are often described in natural language that this will
always result in ambiguities. In order to write unambiguous constraints,
so-called formal languages have been developed

OCL can be used for a number of different purposes. It allows to
specify invariants on classes and types in the class model, type invariant
for stereotypes, and constraints on operations. It can be used as a
navigation language and to describe pre- and post-conditions on
operations, methods, and guards.

RELATION TO THE UML METAMODEL

Specifying the UML context

The context of an OCL expression within a UML model can be
specified through a so-called context declaration at the beginning of an
OCL expression.

context Person inv:

context Person::age() :integer

If the constraint is shown in a diagram, with the proper stereotype and
the dashed lines to connect it to its contextual element, there is no need
for an explicit context declaration in the test of the constraint. The context
declaration is optional as in figure 1.

Overview of OCL 189

<<invariant>>

o}

-

Car e
-

carNumber : integer

Figure 1: graphical representation of an invariant

Invariants, pre- and post-conditions

The OCL expression can be part of:

An Invariant which is a Constraint stereotyped as an “invariant”.
When the invariant is associated with a Classifier (for example a
class), the latter is referred to as a “type”. An OCL expression is an
invariant of the type and must be true for all instances of that type at
any time. All OCL expressions representing invariants are of the type
Boolean ;

A pre-condition or post-condition, corresponding to «pre-condition»
and «post-condition» stereotypes of Constraint associated with an
Operation or Method. The context declaration in OCL uses the
context keyword, followed by the type and operation declaration. The
stereotype of constraint is shown by putting the labels ‘pre:” and
‘post:” before the actual pre-conditions and post-conditions.

The reserved word result denotes the result of the operation, if there is

one. The names of the parameters (paraml) can also be used in the OCL

expression.
enrolments Course
* [name : string
enrolledStudents | * 0.1 4peouse
Parent Student * | courseTests
address : string “name : string Test
. students tests
name : string : string ostDare!
o | +setMark(In testDate:Date ,In mark:real) | Eaa— 0.1 |factor : real

+average():real

+age(yiinteger Mark
+isPassed():boolean ar

1 value : real

1 | birthday

Date L !

testDate

Figure 2: example management of the students tests

190 Appendix B

Optionally, the name of the pre-condition or post-condition may be
written after the pre or post keyword, allowing the constraint to be
referenced by name. In the example of diagram 2, we can express the
following pre- and post-condition:

context Student::setMark (testDate: Date,
aMark: Real)

pre validMark : aMark>=0 and aMark<=20

post: self.mark[testDate] .value=aMark

In a post-condition, the expression can refer to two sets of values for
each property of an object:
o the value of a property at the start of the operation or method,
e the value of a property upon completion of the operation or method.

The value of a property in a post-condition is the value upon
completion of the operation. To refer to the value of a property at the start
of the operation, one has to postfix the property name with the keyword
‘@pre’:

context Student::setMark (testDate: Date, aMark:

Real)

pre validMark : aMark>=0 and aMark<=20

post: self.mark[testDate].value=aMark and

average () = average@pre () +
(self.tests[testDate].factor*aMark) /
self.tests.factor->sum/()

In this example, when a new mark is added for a specific date, this
mark as an impact on the average of the student. The post-condition
expresses that the value of the mark for the tests of the festDate is equal to
the parameter aMark and the average of the student is impacted by the
adding of this new mark.

When the pre-value of a property evaluates to an object, all further
properties that are accessed of this object are the new values (upon
completion of the operation) of this object. So:

a.b@pre.c -- takes the old value of property b

-- of a, say x and then the new
-- value of ¢ of x.
a.b@pre.c@pre -- takes the old value of
-- property b of a, say x and
-- then the old value of ¢ of x.

Overview of OCL 191

The ‘@pre’ postfix is allowed only in OCL expressions that are part of
a post-condition. Asking for a current property of an object that has been
destroyed during execution of the operation results in Undefined. Also,
referring to the previous value of an object that has been created during
execution of the operation results in Undefined.

Self

An OCL expression can be associated with the context of an instance
of a specific type. The reserved word selfis used to refer to the contextual
instance. For instance, if the context is Student, then self refers to an
instance of Student. In the definition of an invariant, the keyword self can
be dropped. An explicit name can be used instead of self. For example in
figure 2, consider that all student younger than eighteen must have a
legal responsible. It is possible to express this constraint using self or an
explicit name like aStudent:

context Student inv legalResponsible:

self.age()<18 implies

self.legalResponsible->notEmpty ()

or an explicit name like aStudent :
context aStudent: Student inv legalResponsible:
aStudent.age ()<18 implies
Student.legalResponsible->notEmpty () ;

In the definition of pre- or post-condition, self is an instance of the type
which owns the operation or method as a feature. It is used in the
expression referring to the object on which the operation was called.

Package context

When the context is ambiguous, it is possible to precise clearly the
package containing the classifier where the invariant, pre- or post-
condition is defined. To specify explicitly the package, these constraints
can be enclosed between ’package’ and ’endpackage’ statements. The
package statements have the syntax:

package Package::SubPackage

context X inv:
some invariant
context X::operationName (..)

192 Appendix B

pre: ... some pre-condition
endpackage
BASIC VALUES AND TYPES

In OCL, a number of basic types are predefined and available to the
modeler at all time. These predefined value types are independent of any
object model and part of the definition of OCL. The most basic value in
OCL is a value of one of the basic types.

Types

Each OCL expression is written in the context of a UML model, a
number of classifiers (types/classes, ...), their features and associations,
and their generalizations. All classifiers from the UML model are types in
the OCL expressions that are attached to the model.

Enumerations are datatypes in UML and have a name, just like any
other Classifier. An enumeration defines a number of enumeration
literals, that are the possible values of the enumeration. Within OCL one
can refer to the value of an enumeration.

Let expressions and “definition” constraints

When a sub-expression is used more than once in a constraint, the /et
expression allows one to define an attribute or operation which can
factorize the sub-expression. The scope of a let expression is limited to
the specific constraint.

context Student inv:

let testsPassed: Set (Course) =

self.tests.course->asSet () in
self.testsPassed->includesAll (self.enrolments)

A let expression may be included in an invariant or pre- or post-
condition. To enable reuse of let variables/operations, one can use a
constraint with the stereotype “definition”, in which let
variables/operations are defined. This “definition” Constraint must be
attached to a Classifier and may only contain let definitions.

Overview of OCL 193

All variables and operations defined in the “definition” constraint are
known in the same context as where any property of the Classifier can be
used. In essence, such variables and operations are pseudo-attributes and
pseudo-operations of the classifier. They are used in an OCL expression
in exactly the same way as attributes or operations are used. The textual
notation for a “definition” Constraint uses the keyword def as shown
below:

context Student def:

let testsPassed : Set(Course) =

self.tests.course->asSet()

The names of the attributes/operations in a let expression may not
conflict with the names of respective attributes/associationEnds and
operations of the Classifier. Also, the names of all let variables and
operations connected with a Classifier must be unique.

Type conformance

OCL is a typed language and the basic value types are organized in a
type hierarchy. An OCL expression in which all the types conform is a
valid expression. An OCL expression in which the types don’t conform is
an invalid expression. The OCL expression contains a type conformance
error. A type typel conforms to a type type2 when an instance of typel
can be substituted at each place where an instance of fype2 is expected.
The type conformance rules for types in the class diagrams are simple:

e cach type conforms to each of its supertypes,
e type conformance is transitive: if fypel conforms to type2, and type2
conforms to type3, then typel conforms to fype3.

Precedence rules

The precedence order for the operations, starting with highest
precedence, in OCL is:

1. @pre

‘if-then-else-endif’
E<” 6>’, L<:9’ G>:’

2. dot and arrow operations: ‘.” and ‘->’
3. unary ‘not’ and unary minus ‘-’

4. “* and‘/

5. ‘4’ and binary ‘-’

6.

7.

194 Appendix B

8' ‘:” L<>9
9. ‘and’, ‘or’ and ‘xor’
10. ‘implies’

Parentheses ‘(” and ‘)’ can be used to change precedence.

Keywords

Keywords in OCL are reserved words. That means that the keywords
cannot occur anywhere in an OCL expression as the name of a package, a
type or a property. The list of keywords is shown below:

and context def else endif endpackage
if implies in inv let not

or package ©pre post then xor
Comment

Comments in OCL are written following two successive dashes (minus
signs). Everything immediately following the two dashes up to and
including the end of line is part of the comment.

Undefined values

Whenever an OCL expression is being evaluated, there is a possibility
that one or more of the queries in the expression are undefined. If this is
the case, then the complete expression will be undefined. There are two
exceptions to this for the Boolean operators:

e True OR-ed with anything is True,
e False AND-ed with anything is False.

The above two Boolean expressions are valid irrespective of the order
of their arguments and whether or not the value of the other sub-
expression is known.

Overview of OCL 195

OBJECTS AND PROPERTIES

OCL expressions can refer to Classifiers and datatypes. Also all
attributes, association-ends, methods, and operations without side-effects
that are defined on these types, etc. can be used. In a class model, an
operation or method is defined to be side-effect-free if the isQuery
attribute of the operations is true. For the purpose of this document, we
will refer to attributes, association-ends, and side-effect-free methods and
operations as being properties. A property is one of:

e an Attribute,

e an AssociationEnd,

e an Operation with isQuery being true,
e a Method with isQuery being true.

Properties
The value of a property on an object that is defined in a class
diagram is specified by a dot followed by the name of the property.
context AType inv:
self .property

If self'is a reference to an object, then self.property is the value of the
property property on self.

For example, the factor of a Test is written as self.factor:
context Test inv:
self.factor > 0

The value of the subexpression self.factor is the value of the factor
attribute on the particular instance of Test identified by self. The type of
this subexpression is the type of the attribute factor, which is the basic
type Real. Using attributes, and operations defined on the basic value
types, we can express calculations. over the class model.

Operations may have parameters. For example, as shown earlier, a
Student object has marks set using the function setMark. This operation
would be accessed as follows, for a particular Student aStudent, the date
of the test /12/12/2003 and a mark /2:

aStudent.setMark (12/12/2003, 12)

The operation itself could be defined by a pre-condition constraint.
This is a constraint that is stereotyped as «pre-condition»:
context Student::setMark (testDate: Date,
aMark: Real)
pre: aMark>=0 and aMark<=20

196 Appendix B

The right-hand-side of this definition may refer to the operation being
defined (i.e., the definition may be recursive) as long as the recursion is
not infinite. To refer to an operation or a method that doesn’t take a
parameter, parentheses with an empty argument list are mandatory:

context Student inv:

self.age() > 0

Starting from a specific object, we can navigate an association on the
class diagram to refer to other objects and their properties. To do so, we
navigate the association by using the opposite association-end:

object.rolename

The value of this expression is the set of objects on the other side of the
rolename association. If the multiplicity of the association-end has a
maximum of one (“0..1” or “17), then the value of this expression is an
object. In the example of the class diagram of figure 2, when we start in
the context of a Student, we can write:

context Student

inv: self.legalResponsible.address = “Toulouse”

inv: self.enrolments->notEmpty ()

In the first invariant, selflegalResponsible is a Parent, because the
multiplicity of the association is zero or one. In the second invariant,
self-enrolments calculates in a Set of Course. By default, navigation will
result in a Set. When the association on the Class Diagram is adorned
with {ordered}, the navigation results in a Sequence.

Missing rolenames

When a rolename is missing at one of the ends of an association, the
name of the type at the association end, starting with a lowercase
character, is used as the rolename. If this results in an ambiguity, the
rolename is mandatory. This is the case with unnamed rolenames in
reflexive associations. If the rolename is ambiguous, then it cannot be
used in OCL.

Navigation over associations with multiplicity zero or one

Because the multiplicity of the role manager is one,
self.legalResponsible is an object of type Parent. Such a single object can
be used as a Set as well. It then behaves as if it is a Set containing the

Overview of OCL 197

single object. The usage as a set is done through the arrow followed by a
property of Set. This is shown in the following example:

context Student inv:

self.legalResponsible ->size() = 1

Combining properties

Properties can be combined to make more complicated expressions. An
important rule is that an OCL expression always evaluates to a specific
object of a specific type. After obtaining a result, one can always apply
another property to the result to get a new result value. Therefore, each
OCL expression can be read and evaluated left-to-right.

Association classes and navigation

To specify navigation to association classes (Mark in the example),
OCL uses a dot and the name of the association class starting with a
lowercase character:

context Student inv:

self .mark

The sub-expression self. mark evaluates to a Set of all the marks of a
student has with the tests that he takes. In the case of an association class,
there is no explicit rolename in the class diagram. The name mark used in
this navigation is the name of the association class starting with a
lowercase character, similar to the way described in the section “Missing
rolenames” above. In case of a recursive association, that is an association
of a class with itself, the name of the association class alone is not
enough. We need to distinguish the direction in which the association is
navigated as well as the name of the association class.

Date

weddingDate 1

Person 1
0..1

husband wedding

0..1 |wife

Figure 3 : example of recursive association

isMan : boolean

198 Appendix B

In the figure 3, when navigating to an association class such as
wedding there are two possibilities depending on the direction. We may
navigate towards the wife end, or the husbhand end. By using the name of
the association class alone, these two options cannot be distinguished. To
make the distinction, the rolename of the direction in which we want to
navigate is added to the association class name, enclosed in square
brackets. In the expression:

context Person inv:

let theWife : Person=self.wedding[wife]

let theHusband : Person=self.wedding [husband]

in

self.isMan and self.theWife->notEmpty()and
self.theHusband->isEmpty () implies
theWife.wedding [husband] =self

or

not self.isMan and self.theHusband->
notEmpty () and self.theWife->isEmpty ()
implies theHusband.wedding[wife]=self

or

self.theWife->isEmpty () and
self.theHusband->isEmpty ()

the selfwedding[wife] evaluates to the wife belonging to the association-
end of wife. And the self.wedding [husband] evaluates to the husband of
wedding belonging to the association-end of husband. The unqualified
use of the association class name is not allowed in such a recursive
situation. Thus, the following example is invalid:

context Person inv:

self.wedding->isEmpty ()

In a non-recursive situation, the association class name alone is
enough, although the qualified version is allowed as well. Therefore, the
examples of the figure 2 could also be written as:

context Student inv:

self .mark [tests]

We can navigate from the association class itself to the objects that
participate in the association. This is done using the dot-notation and the
role-names at the association-ends.

context Mark

inv: self.tests.factor ..

inv: self.student.age()

Overview of OCL 199

Navigation from an association class to one of the objects on the
association will always deliver exactly one object. This is a result of the
definition of AssociationClass. Therefore, the result of this navigation is
exactly one object, although it can be used as a Set using the arrow (->).

Navigation through qualified associations

Qualified associations use one or more qualifier attributes to select the
objects at the other end of the association. To navigate them, we can add
the values for the qualifiers to the navigation. This is done using square
brackets, following the role-name. It is permissible to leave out the
qualifier values, in which case the result will be all objects at the other
end of the association. The result of the evaluation of the following
expression is a set of persons containing all tests of the student

context Student inv:

self.tests..

The result of the evaluation of the following expression is the test took
by the student the 12 December 2003.

context Student inv:

self.tests[12/12/2003]

If there is more than one qualifier attribute, the values are separated by
commas, in the order which is specified in the UML class model. It is not
permissible to partially specify the qualifier attribute values.

Using pathnames for packages

Within UML, different types are organized in packages. OCL provides
a way of explicitly referring to types in other packages by using a
package-pathname prefix. The syntax is a package name, followed by a
double colon:

Packagename: : Typename

This usage of pathnames is transitive and can also be used for packages
within packages:
Packagenamel: : Packagename?: : Typename

200 Appendix B

Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the
supertypes can be accessed using the oclAsType() operation. Whenever
we have a class B as a subtype of class A, and a property pl of both A
and B, we can write:

context B inv:

self.oclAsType(A) .pl -- accesses the pl
-- property defined in A
self.pl -- accesses the pl property defined
--— in B

Features on classes themselves

The types are either predefined in OCL or defined in the class model.
In OCL, it is also possible to use features defined on the types/classes
themselves. These are, for example, the class-scoped features defined in
the class model. Furthermore, several features are predefined on each
type. A predefined feature on each type is alllnstances, which results in
the Set of all instances of the type in existence at the specific time when
the expression is evaluated. If we want to make sure that all instances of
Person have unique national student identifier, we can write:

context Student inv:

Student.allInstances->isUnique

(s:Student|s.nationalStudentIdentifier)

The Student.alllnstances is the set of all students and is of fype
Set(Student). 1t is the set of all students that exist at the snapshot in time
that the expression is evaluated.

Collections

Single navigation results in a Set, combined navigations in a Bag, and
navigation over associations adorned with {ordered} results in a
Sequence.

The type Collection is predefined in OCL. The Collection type defines
a large number of predefined operations to enable the OCL expression
author (the modeler) to manipulate collections. Consistent with the
definition of OCL as an expression language, collection operations never

Overview of OCL 201

change collections; isQuery is always true. They may result in a
collection, but rather than changing the original collection they project the
result into a new one. Collection is an abstract type, with the concrete
collection types as its subtypes. OCL distinguishes three different
collection types: Set, Sequence, and Bag. A Set is the mathematical set. It
does not contain duplicate elements. A Bag is like a set, which may
contain duplicates (i.e., the same element may be in a bag twice or more).
A Sequence is like a Bag in which the elements are ordered. Both Bags
and Sets have no order defined on them. Sets, Sequences, and Bags can
be specified by a literal in OCL. Curly brackets surround the elements of
the collection, elements in the collection are written within, separated by
commas. The type of the collection is written before the curly brackets:

Set { \aI, \bl, \cI, \d’ }

Sequence { 1, 2, 3, 2, 3}

Bag {\aI, ‘b’, \a/, ‘b’ }

Because of the usefulness of a Sequence of consecutive Integers, there
is a separate literal to create them. The elements inside the curly brackets
can be replaced by an interval specification, which consists of two
expressions of type Integer, Int-exprl and Int-expr2, separated by °..".
This denotes all the Integers between the values of Int-exprl and Int-
expr2, including the values of Int-exprl and Int-expr2 themselves:

Sequence{ 1..(6 + 4) }

Sequence{ 1..10 }

-- are both identical to

Sequence{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

Within OCL, all Collections of Collections are flattened automatically;
therefore, the following two expressions have the same value:

Set{Set{‘'a’, ‘b’"}, Set{‘c’, 'd’"}, Set{‘e’,

\ f 4 } }

Set{‘a’, ‘b’, ‘C’, ‘d’, /e/, VO

202 Appendix B

Collection type hierarchy and type conformance
rules

Collection

N

Set Bag Sequence

Figure 4: collection hierarchy

Type conformance rules are as follows for the collection types:

e Typel conforms to Type2 when they are identical (standard rule for
all types).

o Typel conforms to Type2 when it is a subtype of Type2 (standard rule
for all types).

e Collection(Typel) conforms to Collection(Type2), when Typel
conforms to Type2.

e Type conformance is transitive: if Typel conforms to Type2, and
Type2 conforms to Type3, then Typel conforms to Type3 (standard
rule for all types).

PREDEFINED OCL TYPES

This section contains all standard types defined within OCL, including
all the properties defined on those types. Its signature and a description of
its semantics define each property. Within the description, the reserved
word ‘result’ is used to refer to the value that results from evaluating the
property. In several places, post-conditions are used to describe properties
of the result. When there is more than one post-condition, all post-
conditions must be true. The basic types used are Integer, Real, String,
and Boolean. They are supplemented with OclExpression, OclType, and
OclAny.

OclType

All types defined in a UML model, or pre-defined within OCL, have a
type. This type is an instance of the OCL type called Oc/Type. Access to

Overview of OCL 203

this type allows the modeler limited access to the meta-level of the model.
This can be useful for advanced modelers. Properties of Oc/Type, where

the instance of OclType is called type.

Property

Description

type.name() : String

The name of #yype

type.attributes() : Set(String)

The set of names of the attributes of #ype, as
they are defined in the model

type.associationEnds()
Set(String)

The set of names of the navigable
associationEnds of #ype, as they are defined in
the model.

type.operations() : Set(String)

The set of names of the operations of #ype, as
they are defined in the model

type.supertypes()
Set(OclType)

The set of all direct supertypes of type.

OclAny

Within the OCL context, the type Ocl4ny is the supertype of all types
in the model and the basic predefined OCL type.

2\

A\
|

| Collection || String ||

Real user defined classes

| Boolean |

Figure 5: type hierarchy

The predefined OCL Collection types are not subtypes of OclAny.
Properties of OclAny are available on each object in all OCL expressions.
All classes in a UML model inherit all properties defined on OclAny. One
can also use the ocldsType() operation to explicitly refer to the OclAny
properties.

Property Description
type.allSupertypes() | The transitive closure of the set of all
Set(OclType) supertypes of fype

204 Appendix B

type.alllnstances() : Set(type) The set of all instances of fype and all its
subtypes in existence at the snapshot at the
time that the expression is evaluated

object = (object2 : OclAny) : | True if object is the same object as object2
Boolean

object <> (object2 : OclAny) : | True if object is a different object from object2
Boolean

object.ocllsKindOf(type - | True if #ype is one* of the types of object, or

OclType) : Boolean one of the supertypes (transitive) of the types
of object.

object.oclIsTypeOf{type .| True if type is equal to one of the types of

OclType) : Boolean object

OclState

The type OclState is used as a parameter for the operation ocllnState.
There are no properties defined on OclState. One can only specify an
OclState by using the name of the state, as it appears in a statechart.
These names can be fully qualified by the nested states and statechart that
contain them. The operation oclInState(s) results in true if the object is in
the state s. Values for s are the names of the states in the statechart(s)
attached to the Classifier of object. For nested states the statenames can
be combined using the double colon ‘::* . In the example of statechart
diagram of figure 6, values for s can be closed, opened, inProcess,
inProcess::opening, inProcess::closing.

inProcess
opening

do/ wait 30 secondes

opened
closed do/ wait 30 secondes

closing
do/ wait 30 secondes

Figure 6: example of statechart

If the classifier of object has the above associated statechart, valid
OCL expressions are:

*In UML, an object can have simultaneously several types. This is a UML specificity.

Overview of OCL 205

object.oclInState (closed)
object.oclInstate (inProcess: :opening)

OclExpression

Each OCL expression itself is an object in the context of OCL. The
type of the expression is OclExpression. An OclExpression includes the
optional iterator variable and type and the optional accumulator variable
and type. For any operation name op, the syntax options are:

collection->op(iter : Type | OclExpression)

collection->op(iter | OclExpression)
collection->op(OclExpression)

Property Description

Results in object, but of known type type.
Results in Undefined if the actual type of
object is not type or one of its subtypes

object.oclAsType(type
OclType) : type

Results in true if object is in the state state,
object.oclInState(state : | otherwise results in false. The argument is a
OclState) : Boolean name of a state in the state machine
corresponding with the class of object.

Can only be used in a post-condition.
Evaluates to true if the object is created during
performing the operation. L.e. it didn’t exist at
pre-condition time.

object.ocllsNew() : Boolean

expression.evaluationType() :|The type of the object that results from
OclType evaluating expression.

For example in figure 2, the method isPassed return true if all marks of
the student are greater or equal to 8 and the average of all these marks is
greater than 10.

context Student::isPassed()

post: result=self.average()>10 and self.mark->

forAll(m : Mark| m.value>8)

context Student::setMark(testDate: Date,
aMark: Real)
pre validMark : aMark>=0 and aMark<=20
post: c.oclIsNew() and c.oclIsTypeOf (Mark)
and c.value=aMark and self.mark=
self.mark@pre->including (c)

206 Appendix B

Real

The OCL type Real represents the mathematical concept of real.

Property

Description

r = (r2 : Real) : Boolean

True if r is equal to 2

r < (12 : Real) : Boolean

True if 7 is not equal to 72

r+ (r2 : Real) : Real

The value of the addition of » and »2

r - (12 : Real) : Real

The value of the subtraction of 72 from r

r* (12 : Real) : Real

The value of the multiplication of » and r2

-1 : Real

The negative value of

r/(r2 : Real) : Real

The value of r divided by »2

r.abs() : Real

The absolute value of r

r.floor() : Integer

The largest integer which is less than or equal
tor

r.round() : Integer

The integer which is closest to ». When there
are two such integers, the largest one

r.max(r2 : Real) : Real

The maximum of » and 2

r.min(r2 : Real) : Real

The minimum of 7 and r2

r <(r2 : Real) : Boolean

True if v is less than r2

r> (12 : Real) : Boolean

True if 71 is greater than 2

r <= (12 : Real) : Boolean

True if rl is less than or equal to 12

r>= (r2 : Real) : Boolean

True if rl is greater than or equal to 12

Integer

The OCL type Integer represents the mathematical concept of integer.

Property Description
i=(i2 : Integer) : Boolean True if i is equal to i2
- i : Integer The negative value of i

i+ (i2 : Integer) : Integer

The value of the addition of i and i2

i-(i2 : Integer) : Integer

The value of the subtraction of i2 from i

i* (i2 : Integer) : Integer

The value of the multiplication of i and i2

i/ (i2 : Integer) : Real

The value of i divided by i2

i.abs() : Integer

The absolute value of i

i.div(i2 : Integer) : Integer

The number of times that i2 fits completely
within 7

i.mod(i2 : Integer) : Integer

The result is i modulo 2

i.max(i2 : Integer) : Integer

The maximum of i an i2

i.min(i2 : Integer) : Integer

The minimum of i an i2

String

Overview of OCL 207

The OCL type String represents ASCII strings.

Property Description
string = (string2 : String) : | True if string and string2 contain the same
Boolean characters, in the same order

string.size() : Integer

The number of characters in string

string.concat(string2 : String) :
String

The concatenation of string and string2

string.toUpper() : String

The value of string with all lowercase
characters converted to uppercase characters

string.toLower() : String

The value of string with all uppercase
characters converted to lowercase characters

string.substring(lower :
upper : Integer) : String

Integer,

The sub-string of string starting at character
number lower, up to and including character
number upper

Boolean

The OCL type Boolean represents the common true/false values.

Property

Description

b = (b2 : Boolean) : Boolean

Equal if b is the same as b2

b or (b2 : Boolean) : Boolean

True if either b or b2 is true.

b xor (b2 : Boolean) : Boolean

True if either b or b2 is true, but not both.

b and (b2 : Boolean) : Boolean

True if both b1 and b2 are true.

not b : Boolean

True if b is false.

b implies (b2 Boolean) True if b is false, or if b is true and b2 is true.
Boolean

if b then (expressionl

OclExpression) If b is true, the result is the value of evaluating
else (expression2 expressionl; otherwise, result is the value of
OclExpression) endif evaluating expression2.

expressionl.evaluationType()

Enumeration

The OCL type Enumeration represents the enumeration defined

in an UML model.

208 Appendix B

Property Description
enumeration = (enumeration2 : | Equal if enumeration is the same as
Boolean) : Boolean enumeration2.
enumeration <> (enumeration2 : | Equal if enumeration is not the same as
Boolean) : Boolean enumeration2.

Collection-related types

Each collection type is actually a template with one parameter. ‘T’
denotes the parameter. A real collection type is created by substituting a
type for the T. So Set (Integer) and Bag (Person) are collection types. All
collection operations with an OclExpression as parameter can have an
iterator declarator.

Collection

Collection is the abstract supertype of all collection types in OCL.
Each occurrence of an object in a collection is called an element. If an
object occurs twice in a collection, there are two elements. This section
defines the properties on Collections that have identical semantics for all
collection subtypes. Some properties may be defined with the subtype as
well, which means that there is an additional post-condition or a more
specialized return value.

Property Description

collection->size() : Integer The m..lmber of elements in the collection
collection

collection->includes(object : | True if object is an element of collection, false

OclAny) : Boolean otherwise

collection->excludes(object : | True if object is not an element of collection,

OclAny) : Boolean false otherwise

collection->count(object : | The number of times that object occurs in the

OclAny) : Integer collection collection

collection->includesAll(c2

. . 0
Collection(T)) : Boolean Does collection contain all the elements of ¢2?

collection->excludesAll(c2

Collection(T)) : Boolean Does collection contain none of the elements

of ¢2?

collection->isEmpty() : Boolean | Is collection the empty collection?

Overview of OCL 209

collection->notEmpty()
Boolean

Is collection not the empty collection?

collection->sum() : T

The addition of all elements in collection.
Elements must be of a type supporting the +
operation. The + operation must take one
parameter of type T and be both associative:
(atb)t+c = at+(b+c), and commutative: a+tb =
b+a. Integer and Real fulfill this condition.

collection->exists(expr
OclExpression) : Boolean

Results in true if expr evaluates to true for at
least one element in collection

collection->forAll(expr
OclExpression) : Boolean

Results in true if expr evaluates to true for
each element in collection; otherwise, result is
false

collection->isUnique(expr
OclExpression) : Boolean

Results in true if expr evaluates to a different
value for each element in collection;
otherwise, result is false

collection->sortedBy(expr

OclExpression) : Sequence(T)

Results in the Sequence containing all
elements of collection. The element for which
expr has the lowest value comes first, and so
on. The type of the expr expression must have
the < operation defined. The < operation must
return a Boolean value and must be transitive
i.e.ifa<bandb<cthena<c

collection->iterate(expr
OclExpression)
expr.evaluationType()

The iterate operation is slightly more
complicated, but is very generic. An
accumulation builds one value by iterating
over a collection.

collection->iterate(elem : Type; acc : Type =
<expression>|expression-with-elem-and-acc).
The variable elem is the iterator, as in the
definition of select, forAll, etc. The variable
acc is the accumulator. The accumulator gets
an initial value <expression>. When the iterate
is evaluated, elem iterates over the collection
and the expression-with-elemand-acc is
evaluated for each elem. After each evaluation
of expression-with-elem-and-acc, its value is
assigned to acc. In this way, the value of acc is
built up during the iteration of the collection.

210 Appendix B

collection->any(expr
OclExpression) : T

Returns any element in the collection for
which expr evaluates to true. If there is more
than one element for which expr is true, one of
them is returned. The pre-condition states that
there must be at least one element fulfilling
expr, otherewise the result of this operation is
Undefined

collection->one(expr
OclExpression) : Boolean

Results in true if there is exactly one element
in the collection for which expr is true

collection->select(expr
OclExpression) : collection(T)

Results in a collection that contains all the
elements from collection for which the expr
evaluates to true.

collection->reject(expr
OclExpression) : collection(T)

Results in a collection that contains all the
elements from collection for which the expr
evaluates to false

collection->collect(expr

Results in a Bag that contains the result of the
evaluation of expr. Because navigation
through many objects is very common, there is
a shorthand notation for the collect that makes

g:jlli);ﬁr:ﬁf;ong()) Bag(expr. the OCL expressions more readable. In figure
yp 2, instead of selflegalResponsible->
collect(address) ~we can also write
self.legalResponsible.address
Set

The Set is the mathematical set. It contains elements without duplicates

Property Description
set->union(set2 Set(T)) The umtion of sef and set2
Set(T)
set->union(bag Bag(T))]

Bag(T) The union of set and bag

set = (set2 : Set(T)) : Boolean

Evaluates to true if set and set2 contain the
same elements

set->intersection(set2 : Set(T)) :
Set(T)

The intersection of set and sez2 (i.e, the set of
all elements that are in both set and set2)

set->intersection(bag : Bag(T)) :
Set(T)

The intersection of sef and bag

set — (set2 : Set(T)) : Set(T)

The elements of set, which are not in set2

set->including(object T) The set containing all elements of set plus
Set(T) object
set->excluding(object T) The set containing all elements of set without

Set(T)

object

Overview of OCL 211

set->symmetricDifference(set2 :
Set(T)) : Set(T)

The sets containing all the elements that are in
set or set2, but not in both

set->select(expr
OclExpression) : Set(T)

The subset of sef for which expr is true

set->reject(expr
OclExpression) : Set(T)

The subset of se for which expr is false

set->collect(expr
OclExpression)
Bag(expr.evaluationType())

The Bag of elements which results from
applying expr to every member of set

The number of occurrences of object in set

set->count(object : T) : Integer
set->asSequence() :
Sequence(T)

A Sequence that contains all the elements from
set, in undefined order

set->asBag() : Bag(T)

The Bag that contains all the elements from set

Bag

A bag is a collection with duplicates allowed. That is, one object can
be an element of a bag many times.

Property

Description

bag = (bag2 : Bag(T)) : Boolean

True if bag and bag2? contain the same
elements, the same number of times

bag->union(bag2 Bag(T)) : .

Bag(T) The union of bag and bag?2
bag->union(set Set(T)) .

Bag(T) The union of bag and set

bag->intersection(bag2
Bag(T)) : Bag(T)

The intersection of bag and bag?2

bag->intersection(set : Set(T)) :
Set(T)

The intersection of bag and set

bag->including(object T) The bag containing all elements of bag plus
Bag(T) object

bag->excluding(object T) The bag containing all elements of bag apart
Bag(T) from all occurrences of object

bag->select(expr
OclExpression) : Bag(T)

The sub-bag of bag for which expr is true

bag->reject(expr
OclExpression) : Bag(T)

The sub-bag of bag for which expr is false

bag->collect(expr:
OclExpression)
Bag(expr.evaluationType())

The Bag of elements which results from
applying expr to every member of bag

212 Appendix B

bag->count(object : T) : Integer

The number of occurrences of object in bag

bag->asSequence()
Sequence(T)

A Sequence that contains all the elements from
bag, in undefined order

bag->asSet() : Set(T)

The Set containing all the elements from bag,
with duplicates removed

Sequence

A sequence is a collection where the elements are ordered.

Property Description
sequence->count(object : T) :| The number of occurrences of object in
Integer sequence
sequence = (sequence2 True if sequence contains the same elements as

Sequence(T)) : Boolean

sequence? in the same order

sequence->union (sequence2 :
Sequence(T)) : Sequence(T)

The sequence consisting of all elements in
sequence, followed by all elements in
sequence?2

sequence->append (object: T) :
Sequence(T)

The sequence of elements, consisting of all
elements of sequence, followed by object

sequence->prepend(object : T) :
Sequence(T)

The sequence consisting of object, followed by
all elements in sequence

sequence->subSequence(lower :
Integer, upper Integer)
Sequence(T)

The sub-sequence of sequence starting at
number lower, up to and including element
number upper

sequence->first() : T

The first element in sequence

sequence->at(i : Integer) : T

The i-th element of sequence

sequence->including(object : T)
: Sequence(T)

The sequence containing all elements of
sequence plus object added as the last element

sequence->excluding(object
T) : Sequence(T)

The sequence containing all elements of
sequence apart from all occurrences of object.
The order of the remaining elements is not
changed

sequence->select(expression
OclExpression) : Sequence(T)

The subsequence of sequence for which
expression is true

sequence->reject(expression
OclExpression) : Sequence(T)

The subsequence of sequence for which
expression is false

sequence->collect(expression
OclExpression) Sequence
(expression.evaluationType())

The Sequence of elements which results from
applying expression to every member of
sequence

Overview of OCL 213

sequence->iterate(expr
OclExpression)
expr.evaluationType()

Iterates over the sequence. Iteration will be
done from element at position 1 up until the
element at the last position following the order
of the sequence

APPENDIX C

Overview of XML and XMI

216 Appendix C

THE CHOICE OF XML

Information processing systems are more and more and more build
from distributed software components which need to exchange
information over networks. It is the case of the electronic mail which
makes it possible for the user to build a message which will be sent to the
recipient site and managed by a software having various suitable
functions (display, storage, answer, ...). Component software can also
need to communicate between them without being distant. For example, a
user can be brought to extract information from a database and
communicate it to a software specialised in statistical processing. These
examples show that there is a significant need for communication
between heterogeneous systems.

The XML standard was developed to define a format for information
exchange independent of any vendor solution.

In the same way, UML related tools (model editors, model checkers,
code generators, documentation generators) must manage UML models.
The use of heterogeneous, vendor independent, tools can be made
possible if some standard way of storing UML models is used. This is the
purpose of the XMI format which is based both on XML and on the
definition of a MOF-based metamodel describing the structure of the
information to be stored. This is also why Neptune takes as input models
stored in the XMI format.

XML PRINCIPLES

To facilitate the exchange of information between two applications, a
solution consists in conveying with each data, the set of information
which describes it - which is generally called meta-data.

An XML document consists of meta-data associated to some value.
Meta-data can be either elementary and valued by a string or composite
and in turn described by valued meta-data. In both cases, meta-data are
associated to additional properties which qualify the data.

For example, if a user wants to send the contents of the message:
"Hello, how are you?", the mail client will send the contents of the

Overview of XML and XMI 217

message with its metadata, which could be: sender, receiver, Message-
content, text, police, size.

Sender:
Name="dupont”
FirstName=“Jean”
Message-Content:
text="Hello, how are you?”
police=“time”
size="12"
Receiver:
Name=“durand”
FirstName=“Paul”
e-mail address=“durand-paul@.. .fr”

XML elements

Thus in a first approach one can define an XML document in the
following way:

XML document::= <name > (elementary information

| XML document*) </name>

XML attributes

XML defined another container of information called “Attribute”
which cannot exist alone but must be attached and included in an XML
element, empty or not. The difference of use of elements or attributes is
not clearly established because each of us can contain the same
information. The w3c norm recommends to use attributes to define a set
of attribute to an element, to establish type constraint for the attribute, or
to provide default values. In practice, attributes are used to qualify the
nature of the element like in versioning, to contain a value specified by a
pre-defined list, to precise that the information is optional or mandatory
or to contain references towards others documents or elements. But
attributes are very useful to reduce the length of XML documents
allowing to give the value directly to the attribute, avoiding the use of an
opening and a closing tag as for an element.

We can thus complete the definition of the syntax of an XML
document with attributes qualifying the nodes of XML trees:

218 Appendix C

XML document::= <name qualifier*>
(elementary information | XML document¥*)
</name>

qualifier::= attribute=value

REPRESENTATION OF AN XML DOCUMENT

The syntactic tree

The definition of an XML document confers to it a tree-like structure,
where each leaf corresponds to elementary information and where each
node defines the metadata associated to the sub-tree. As an example, an
electronic message could be represented according to the following

Message
Sender Message-Content Receiver
Name Firsthame Address Text

dupont paul dupontpaul@._. fr Hello

structure:

Each leaf representing an elementary information can be either a text
or an URL given access to an unspecified document (image, ...).

Non-structuring metadata

Each metadata can have qualifiers also named attributes. Those
qualifiers, which are a’ ’ ’ ure information
or to bring a structure 1 add additional

information to nodes o . - .
Text language="english’, police="tmes’, size="1Z

Hello, ...

Overview of XML and XMI 219

A classical top-down and left to right traversal of the tree can be
performed to univocally transform it into a marked character string. Each
sub-tree is parenthesised by opening and closing markers encapsulating
the metadata. This is the way XML documents are represented and
exchanged by components.

<Message-Content>
<Sender>
<Name>dupont</Name>

</Sender>

</Message-Content>

One can notice that each element (simple or composite) is delimited by
an opening and a closing marker. Then attributes, defined by couples
(meta-data, quoted-value), can be attached to opening markers as follows:

<Text language=’'english’ police=’times’size="12">
Hello,
</Text>

ID and IDREF attributes

ID and IDREF are very useful attributes respectively to identify/refer
an XML element inside a document. Expression of both attributes are
based on XML Names. While ID allows to construct a direct access table
for the identified elements, this table is made during the parsing-
validation phase, see further, IDREF give the capability to access an
element without searching it in the ancestor tree. This mechanism speeds
a lot any XSL process.

The ID attribute must store an unique value although the IDREF may
be expressed as distinct elements or as a list of reference using IDREFS

type.

Example: “Construct your Toc”
<?xml version='1l.0' encoding='IS0O-8859-1"'7?>
<!DOCTYPE Book SYSTEM 'book.dtd'>
<Book>
<Chapter idElt=’Chapl’

220 Appendix C

Title='FirstChapterTitle’
startpage="10’>
<Section idElt=‘Sectionl’ />
</Chapter>
<Chapter idElt =’Chap2’
Title=' SecondChapterTitle’
startpage =’30'>
<Section idElt=‘Section2’/>

</Chapter>
<Toc>
<!--First expression using IDREF-->

<TocEntry chap.idref='1"/>
<TocEntry chap.idref=1'2"/>

<!--Second expression using IDREFS-->
<TocEntry chap.idref='1 2’ />
</Toc>
</Book>

WELL-FORMED XML DOCUMENTS

A marked document is considered as an XML document if it is well
formed, i.e. well parenthesised: each opening marker must be associated
to a matching closing marker. This document must have only one entry-
point called its root. Thus, a minimal document contains at least the root
marker: <rootMark></rootMark>. A more compact notation can be
used if a node does not have sub-trees: <rootMark/>. Such a marker is
both opening and closing.

Document Type Definition (DTD)

Well formed documents can be exchanged between components, but
components understand their contents if the sender and the receiver agree
on the meta-data used to represent information, and on the way meta-data
are structured. Meta-data define the mark-ups used in the XML
document. The set of markups and their organisation are described in the
Document Type Definition (DTD). Thus, an XML document can be
understood by the receiver if the sender and the receiver both agree on its
DTD, i.e. on the vocabulary and on the syntax used to exchange XML-
based information. Furthermore, in order to make communication

Overview of XML and XMI 221

between applications easier, their exists predefined DTD for some
domains. For example, models of document (DTDs) are defined for
banking or commercial data exchange.

Coming back to the previous message exchange example, the DTD of
messages can be the following:
<!Element Message-Content (Sender, text?,
Receiver+) >
<!Element Sender (Name, First-Name, Adress)
<!Element Name #PCDATA>
<!Element First-Name #PCDATA>
<!Element Address #PCDATA>
<!Element text #PCDATA>
<!Attlist text
language CDATA #REQUIRED “english”
police CDATA #IMPLIED (“times” |
"helvetica”) “times”
size CDATA FIXED “12">

The content of Message-Content specifies that Sender is the first
element followed by text and finally followed by Receiver. In this
declaration text is optional (0..1), Sender is unique, and one Receiver is
mandatory but several are authorised. #PCDATA indicates that the
content of the element is XML string type relevant.

While Attlist declaration specifies a default value “english” for
language attribute which is required in the definition of text, the precision
of the police can be forgotten or its value can be chosen in a list of given
possibilities with a default value “times’. At least the size of the police is
fixed at the value “12” and never change.

Concerning our study, there is a standardised DTD whose instance in
an XML form encode an UML model.

Valid documents

Valid documents are well-formed documents obeying to the structure
given in a DTD. The checking of validity can be made using dedicated
tools, called parsers, whose goal is to verify that an XML document can
be considered as an instance of the DTD. The validity check imposes the
parser to analyse first the DTD and verify the presence of all required
information respecting order containment, types, links towards existent

222 Appendix C

internal or external referred information. Validity of documents ensure
that publication of a document is possible conforming to a standardised
way to write.

THE XML METADATA INTERCHANGE FORMAT (XMI)

As explained before, XML documents can be validated according to a
DTD thus ensuring that they are both well-formed and that the XML
document is an instance of the DTD. A DTD specifies the organisation of
meta-data. The same information can in fact be described using an UML
class diagram where classes represent meta-data, the information
metamodel. The purpose of XMI (XML Metadata Interchange) is to link
these two ways of representing the structure of meta-data. More precisely,
given an UML model of meta-data, the XMI norm, proposed by the
OMG, standardises through a set of rules the way to produce a DTD and
to encode information structured according to this meta-data in an XML
file that complies with the DTD. In fact, XMI defines how to produce a
DTD and an XML instance from a MOF representation of the metadata,
MOF defining an interface to metamodel repositories that can be
represented by an UML class diagram. Consequently, UML CASE tools
are used to edit metamodels and tools exist (the XMIFramework of IBM
for example) to transform metamodels specified in UML into DTD.

The XMI norm can be used to encode any information whose structure
can be specified with an UML class diagram, and thus to serialise
instances of UML class diagrams. As the abstract syntax of UML itself is
specified by an UML class diagram -- the UML metamodel -- UML
models can be encoded in XMI and exchanged. This is why most UML
CASE tools propose an XMI import and export facility which should
allow the communication of UML models between CASE tools, model
checkers, code generators, document generators...

Example of metamodel and its associated DTD

An XML document must be validated according to a DTD (or an XML
schema) to ensure that it is both well-formed and a correct instance of the
DTD. In this framework, XMI brings an important help: it permits an
automatic generation of a DTD from any UML class diagram. In fact,

Overview of XML and XMI 223

XMI is a bridge from the UML-based technologies and the XML world
which increases the popularity of the two domains.

DTDs are needed to check that XML documents are valid, i.e. that they
conform to a model of document. This model of document can be written
directly in the DTD language, but reading of some DTDs informed us
about the painfulness of this language. Another way to do is to model the
considered class of documents with an UML class diagram, thus using an
easily understandable graphical notation. Then producing a DTD becomes
automatic and makes UML an important technology for communities
which exchange structured data in XML.

As an example, the following UML class diagram specifies the
structure of a message: it has a date, a contents, one sender and several

receivers, both having a name and an address.
+receiver

Packl::Message m Pack1::Correspondent

-date : string -name : string

-contents : string -address : string
+sender

*

From this class diagram, and using the rules defined by the XMI
standard, we can derive the following DTD defining the structure of a
concrete message:

<?xml version="1.0" encoding="UTF-8"?>
<!-- Extract from DTD Generated by: XMI
Application Framework 1.15 -->

<!-- -—>
<l-- -—>
<!-- XMI.reference may be used to refer to -=>
<!--data types not defined in the metamodel -—>
<l-- -—>

<!ELEMENT XMI.reference ANY >
<!ATTLIST XMI.reference
$XMI.link.att;

>
<!-- -—>
<!-- -—>

<!-- XMI.element.att defines the attributes -—>

224 Appendix C

<!-- that each XML element that corresponds to-->
<!-- a metamodel class must have to conform to-->
<!— the XMI specification. -——>
<l-- -—>

<!ENTITY % XMI.element.att

'xmi.id ID #IMPLIED xmi.label
CDATA #IMPLIED xmi.uuid

CDATA #IMPLIED ' >

<!l-- -——>
<!l-- -——>
<!-- XMI.link.att defines the attributes that -->
<!-- each XML element that to a metamodel -——>
<!-- class must have to enable it to function -->
<!-- as a simple XLink as well as refer to -—>
<!-- model constructs within the same XMI -——>
<!-- file. -—>
<!l-- -——>

<!ENTITY % XMI.link.att
'href CDATA #IMPLIED xmi.idref IDREF #IMPLIED
xml:1ink CDATA #IMPLIED xlink:inline (true |
false) #IMPLIED xlink:actuate (show | user)
#IMPLIED xlink:content-role CDATA #IMPLIED
xlink:title CDATA #IMPLIED xlink:show (embed |
replace | new) #IMPLIED xlink:behavior CDATA
#IMPLIED' >

<l-- -——>
<l-- -—>
<!-- CLASS: Correspondent —-—>
<l-- -——>

<!ELEMENT Correspondent.name (#PCDATA |
XMI.reference) * >
<!ELEMENT Correspondent.address (#PCDATA |
XMI.reference) * >
<!ELEMENT Correspondent (Correspondent.name |
Correspondent.address |
XMI.extension)* >
<!ATTLIST Correspondent
name CDATA #IMPLIED
address CDATA #IMPLIED

Overview of XML and XMI 225

$XMI.element.att;
$XMI.link.att;

>

<!-- -=>
<l-- -—>
<!-- CLASS: Message -=>
<!-- -—>
<!-- -=>

<!ELEMENT Message.date (#PCDATA | XMI.reference)*
>
<!ELEMENT Message.contents (#PCDATA |
XMI.reference) * >
<!ELEMENT Message.sender (Correspondent)* >
<!ELEMENT Message.receiver (Correspondent)* >
<!ELEMENT Message (Message.date |
Message.contents |
Message.sender |
Message.receiver |
XMI.extension) * >
<!ATTLIST Message
date CDATA #IMPLIED
contents CDATA #IMPLIED
$XMI.element.att;
$XMI.link.att;

Example of a metamodel instance and its XML

A concrete message conforming to the message structure can be
represented at the metamodel level by an object diagram. Inter-objet links
match associations between the corresponding classes and class attributes
are valuated by each instance.

226 Appendix C

pl:Person p2:Person p3:Person
name="‘Joe’ name=‘Li’ name="‘George’
address=‘New York’ address=‘Beijing’ address="Paris’
sender receiver receiver
ml:Message

Date=10/01/2002"
contents="Hello World”

The XMI standard defines how to transform an object model into an
instance of the DTD, so that XMI associates a DTD to a metamodel and
an XML document conforming to the DTD to a model instance of the
metamodel. Thus, models can be linearized and exchanged over a
network.
<?xml version="1.0" encoding="UTF-8"?>
<XMI xmi.version="1.1" timestamp="Mon Apr 03 14:00:10
PDT 2000">

<XMI.headers>

<XMI.documentations>
<XMI.exporter>XMI Application Framework
</XMI.exporters>
<XMI.exporterVersion>1.05
</XMI .exporterVersions>
</XMI.documentations
</XMI.headers>
<XMI.content>
<Message xmi.id="ml" Date="10/01/2002"
contents="Hello World"s>
<Message.sender>

<Person xmi.id="pl" name="Joe"

address="New York"/>
</Message.sender>
<Message.receiver>
<Person xmi.id="p2" name="Li"
address="Beijing"/>
<Person xmi.id="p3" name="George"
address="Paris"/>
</Message.receivers>
</Message>

</XMI.contents>

</XMI>

Overview of XML and XMI 227

APPLICATION TO UML

Each UML CASE tool uses a specific format to store UML models, so
that exchanging UML models between tools is only possible if the
corresponding import functionality has been proposed. In the other way,

Person

;

Create ‘
\ Message J
/N

o
/ Selectthe ™

\ Receiver |

|

J

Fix the object o \
he message /

i

Write Content \

I 1

Send the

Message /

g |1

f

7y
LJ

the writing a tool to analyse an UML model is
CASE tool dependent and supposes the existence
and the knowledge of a CASE tool dependent
language to navigate within the model.
Consequently, using XMI to store and exchange
models opens wide perspectives. In the following,
we illustrate the use of XMI to store an UML
model.

For each model, there are two levels of
information which are taken into account: the
modelled information and the constructions used to
model the user’s information, as for the considered
diagram. In this example, we describe operations
needed for a person to send a mail. To describe this
process we have chosen to use an activity diagram,
in order to show that not only UML class diagrams
can be stored in XMI, but that XMI permits the
description of any diagram. The actions performed
by a person for the described process are
represented as round rectangles. This diagram
presents the succession of actions needed to
perform the sending of messages since the starting
point (initial Peudostate) until the end of the
process (final state). The diagram indicates that
each action needs to be completed before the
following one starts and that no conditions are
attached to each transition. Finally, we remark that

the ‘Select the Receiver’ activity can be performed several times without
limitation before triggering the ‘Fix the object ... activity.

Each modelled information is rendered with its metadata which is
defined in the framework of the UML metamodel. All common activities
are described by an UML:ActionState metadata, whereas initial and final

228 Appendix C

states are qualified in another way where attributes are sometimes used to
distinguish a particular element. Note that each ActionState is described
here with a name given by the modeller, incoming and outgoing
transitions connected to the previous or following action, represented by
arrows. The sequence of activities builds an UML: ActivityGraph which
can be described in XMI as follows:

The sequence of activities builds an UML:ActivityGraph which can be
described in XMI as follows:

<!—Whole UML:ActivityGraph -->

<UML:ActivityGraph xmi.id='S.282.1535.01.6"
xmi.uuid="'3DA5743C031D"
name="'contactSomeone'
context='5.282.1535.01.5" >

<UML:StateMachine. top>

<!-- Correspondance::contactSomeone:: {top}
[CompositeState] -->
<UML:CompositeState xmi.id="'XX.10.1535.2.3"
name="'{top}"' .. >

<!—Set of states -->
<UML:CompositeState.subvertex>
<!--Correspondance: :contactSomeone: : {top}::
[Pseudostate] —-->
<!—=Initial state -->
<UML:Pseudostate xmi.id='G.1l' name='""
kind='initial' outgoing='G.2' />
<!-- Correspondance: :contactSomeone: : {top}::
[FinalState] -->
<!—=Final state -->
<UML:FinalState xmi.id='G.3' name="'"'
incoming='G.14"' />

<!-- Correspondance::contactSomeone:: {top}::
Select the Receiver [ActionState] -->
<!—Common Activities -->

<UML:ActionState xmi.id='G.4"
name="'Select the Receiver'
outgoing='G.5 G.6' incoming='G.6 G.12'> ..
</UML:ActionState>
<!-- Correspondance::contactSomeone:: {top}::
Fix the object of the message
[ActionState] -->

Overview of XML and XMI 229

<UML:ActionState xmi.id='G.7'
name='Fix the object of the message'
outgoing='G.8' incoming='G.5' >..
</UML:ActionState>

<!-- Correspondance::contactSomeone:: {top}::
Write Content [ActionState] -->
<UML:ActionState xmi.id='G.9'
name='Write Content' .. outgoing='G.10’

incoming='G.8"' >

</UML:ActionState>

<!-- Correspondance: :contactSomeone:: {top}::
Create Message Sheet [ActionState] -->

<UML:ActionState xmi.id='G.11"'
name="'Create Message Sheet'
outgoing='G.12' incoming='G.2' >

</UML:ActionState>
<!-- Correspondance: :contactSomeone: : {top}::
Send the Message[ActionState] -->
<UML:ActionState xmi.id='G.13"
name='Send the Message'
outgoing='G.14' incoming='G.10' >

</UML:ActionState>
</UML:CompositeState.subvertex>
</UML:CompositeState>
</UML:StateMachine. top>
<!—Set of transitions connecting
activities-->
<UML:StateMachine.transitions>
<UML:Transition xmi.id='G.2' name=""
source='G.1l' target='G.11' />
<UML:Transition xmi.id='G.5' name="'"
source='G.4' target='G.7' />
<UML:Transition xmi.id='G.6' name='""
source='G.4' target='G.4'/>
<UML:Transition xmi.id='G.8' name="'"
source='G.7' target='G.9' />
<UML:Transition xmi.id='G.10' name=""
source='G.9' target='G.13' />

230 Appendix C

<UML:Transition xmi.id='G.12' name="'"
source='G.11' target='G.4' />
<UML:Transition xmi.id='G.14' name=""
source='G.13"' target='G.3' />
</UML:StateMachine.transitions>
<UML:ActivityGraph.partition>

<!-- Correspondance: :contactSomeone: :Person
[Partition] -->
<!— definition of responsible of
activities -->

<UML:Partition xmi.id='G.22"'
xmi.uuid="'3DA5760700B0"
name="'Person' visibility='public'
isSpecification="'false'
contents='G.1 G.4 G.7 G.9 G.11 G.13 G.3' />
</UML:ActivityGraph.partition>
</UML:ActivityGraph>

XMI PRODUCTION RULES

In any way, XML elements cannot be suppressed totally to benefits of
compactness of attributes. Each XML feature has its own particular
utility.

Production by object containment

“Most of metamodels are characterised by a composition hierarchy”
[ref8].” XMI takes benefits of the major characteristic of XML: it is a
hierarchical language. XML elements are principally used to enlighten
composition depicted at metamodel level. For instance, a classifier which
can be a Class, is a namespace which can be aggregated of
modelElements like Attribute trough cascading inheritance via Features
and structuralFeature. This example explains how attributes can be part of
a class.

Overview of XML and XMI 231

Person

-name : string

-firsName : string
-address : string

The composition relationship is well adapted to be related as
containment or hierarchy of objects. This containment is expressed XML
tag containment, each step representing a navigation step trough
intermediate constructions like:

<!— ‘Class’ inherits from Classifier-->
<UML:Class xmi.id=’cl’ name='Person' >
<!— Content of Classifier is a set of

Feature—--—>
<UML:Classifier.feature>

<!— This content can be an Attribute as
StructuralFeature child-->
<UML:Attribute xmi.id=’"al’ name='name' .>

</UML:Attribute>

</UML:Classifier.feature>
</UML:Class>

This principle allows to declare each feature as part of its composite
structure following the composition links given at the metamodel level by
associations with filled-diamond at the origin point of the navigation.
This allows too, to declare one time each feature which can be qualified
by an unique identifier named ‘xmi.id’, that constitutes an unique
reference of the declared element. More than given an extra
representation of models, XMI gives an understandable version of

232 Appendix C

implementation of the UML structure and syntax using any model an user
can make.

This first principle — object containment for composition links — is
after all insufficient to relate the full richness of UML. In the latest case
attributes were part of their Classifier which was a Class, but relationships
between modelled elements cannot be expressed fully — this principle is
only usable for diamonds associations, but what about the others? To
complete this mechanism XMI defines production by package extent.

Package extent production

Relating modelled information forces to describe each construction
defined by the modeller. But there is no need to find in this description
multiple declaration of these elements. To prevent from multiplying
occurrences of the same element in the XML file, XMI defines a way to
reference already or not yet declared structure. This facility is given by
the use of the xmi.idref attribute which can both contain a reference
towards a local element (contained in the same XMI file) or in an external
document as an URL expression. Any xmi.idref attribute value must be an
xmi.id existent value. For instance, any attribute of a class must have a
data type we don’t need to declare several times. DataTypes in the UML
metamodel inherits features from Classifier and are linked to attribute via
StructuralFeature inheritance. One can say, as regard to the UML
metamodel a StructuralFeature see a Classifier as its type.

<UML:Class xmi.id='S.244.1337.52.1"
name="'Person' .. >
<UML:Classifier.feature>
<UML:Attribute xmi.id='S.244.1337.52.4"
. type='G.7' >

</UML:Attribute>
</UML:Classifier.feature>
</UML:Class>

<!-- ======= String [DataType] ======= -->
<UML:DataType xmi.id='G.7'
name='String' .. />

The reference is inserted as content of the association’s role name that
allows to access the datatype feature. This mechanism implies that the
knowledge of the whole XMI file must be effective when trying to

Overview of XML and XMI 233

navigate over those types of links. This implies too, that verifications of
destination links must be done to retrieve distant information. Both of
these considerations are sufficient to force this mechanism to be active
only if the file is valid as regard of its DTD.

Major’s change between XMI 1.0 and XMI 1.1

As we have seen in the preceding example, the expressions of the two
XMI versions are rather different. The same information is present but
attributes are more used in the latest form of XMI than attributes were in
the past one. This major change allows to reduces significantly the length
of the XMI files and bring a notice-able gain in any transformation
process with XSL. In fact, this change is due to philosophy change in
representing information. We can understand this change taking a look to
the UML Metmodel (UML Metamodel for Attribute).

In the fist XMI version (1.0) each information is declared in the
context of the belonging abstract or concrete metamodelElement. As for
example the declaration of the attribute name ‘fisrtName’ obliges to
enclose this declaration in the ‘modelElement’ class where it has been
specified. This mechanism forces to have similar redundant information
for each concrete information the user has modelled. The novelty of the
XMI 1.1 version is to consider that if a concrete class inherit features
from ancestors, these features must be considered as local and can be
represented as attributes of the class they are propagated in, without the
original class of this feature have to be precised. This view allows a better
readability of the XML documents produced

OTHER

The main idea which leads to elaborate a new language such XML was
to offer a language everybody can extend, read, control, use to
mix/extract information, use to present information in different ways for
different supports, use to interchange data.

The reduced complexity compared to SGML (Standard Generalized
Markup Language) and its connection with HTML (HyperText Markup
language) has lead to the quick emerging of XML as a standard for data
storage and exchange.

234 Appendix C

XML is now used to exchange information, because this information is
qualified by its means and so easily identifiable, to model information
because of its capability of structuring this information and for
manipulation of the information using tools. Today lot of tools implement
an XML export of proprietary storage formats or store all their data in
XML.

Within Neptune project we have used XML format to be independent
of proprietary storage formats. XML is both used to feed UML models
into Neptune in order to check or document those models. XML is also
the storage format for all the transformations graphically designed by the
user.

In this part we focuses on data representation with XML and optional
XML declarations are out of our scope.

XML document

“An XML is a text document composed of declarations, elements,
comments, character references, and processing instructions, all of which
are indicated in the document by explicit markup.” This document must
have at least one XML element as entry-point called the ‘root’ and must
be well-formed, that means each element, within the document, opened
with its start-tag must be closed by its respective end-tag or be an empty
XML element — included the root element.

An XML document must have an XML element as content. This
element can be split in several elements or can be an empty element with
no content. The two examples following are well-formed XML
documents:

Ex 1: <Book>

<Title>My Title</Title>
<Summary> Nowadays .. >/Summary>
</Book>

Ex 2:

<Book/>

but the following example doesn’t satisfy the well-formed constraint,
that means this document is not an XML document:
<Book>
<Title>My Title
<Summary> Nowadays ..</Summary>
</Book>

Overview of XML and XMI 235

We can formalise this definition by giving a definition of what is an
XML document:
XMLDocument: := XMLElement | XMLEmptyElement

DTD and valid documents

As already stated an XML document must be contained in one element
called “the root” and be well-formed to be considered as an XML
document. This basic principle constrains to close any opened tag, and
that’s all. But, if a document can be so easily written it must be also easily
understood. Due to the fact that all is allowed if the well-formed
constraints are satisfied, no one could say that a document has similar
meaning of another if its content has changed or if the tags to express
information have changed. This means that if a community of users wants
to use XML to exchange XML coded documents this community has to
decide what kind of information she needs and so fixes the vocabulary
used to encapsulate information. This process implies that together the
community users defined a particular grammar of their language in a non
XML-based particular document called DTD (Document Type
Declaration).

The benefits of this DTD are multiple:

e First, everyone has the insurance that if an XML document conforms
to its DTD then the document uses only the vocabulary fixed in the
grammar,

e Second, everyone can be sure that required information is present,

e Third, everyone can be sure that the expressed information respect
the containment hierarchy defined by the DTD authors,

e Fourth, everyone can be sure internal references expressed with
IDREF(S) are resolved.

To describe the content of a document class in a DTD, the writer
describes all the elements and attributes used in the XML documents. No
particular order is mandatory, but for a better understanding it is logically
admitted to begin with the description of the root element.

For each element the writer must specify the name of the element and
its content. The content of the element can be given by a list of sub-
elements or several sub-lists of elements, enclosed within parenthesis.
The list of elements may be affected with a multiplicity (?: 0 or 1, *: 0 or
several, +: 1 or several) to specify if the whole content can be optional,
mandatory one or several times. More, in the list each element may also

236 Appendix C

be affected with a multiplicity to constrain its presence. Connectors
between sub-element may be:
|: indicates only one of the elements or list connected with this
operator may appear,

,: indicates elements must appear in the given order,

[T

(): delimits elements or lists of elements connected with “|” or ,

The content of an element can also be PCDATA (String) or a mix with
PCDATA and lists or elements declarations.

The declaration of each attribute must include the name of the
attribute, its type and the clause specifying if the attribute is IMPLIED,
REQUIRED or FIXED .

Example: DTD for last Book document
<?xml version='l.0' encoding='IS0-8859-1"'?>
<!ELEMENT Book (Chapter*, Toc) >
<!ELEMENT Chapter (Section)* >
<!ATTLIST Chapter

idElt ID #REQUIRED

titleChap CDATA #REQUIRED

startpage CDATA #REQUIRED >
<!ELEMENT Section EMPTY >
<!ATTLIST Section

idElt ID #REQUIRED >
<!ELEMENT Toc (TocEntry)* >
<!ELEMENT TocEntry EMPTY >
<!ATTLIST TocEntry

chap.idref IDREF #IMPLIED >

To complete the process and to use a such DTD the writer must specify
an additional declaration <!DOCTYPE Book SYSTEM 'bookDTD.dtd">
specifying that the XML document must be analysed in conformance with
its external DTD. This declaration for an external DTD must obey the
following syntax:

<!DOCTYPE NameOfRootXMLElement SYSTEM
‘DTDPathFile’ >

APPENDIX D

Overview of Model transformation
and XSL

238 Appendix D

Software development consists in writing and transforming models, i.e.
more or less precise representations of a physical or conceptual world.
Models can describe interactions between a system and its environment,
the internals of a system with architecture, data or behavioural
considerations. Several formalisms can be used to represent these models.
Graphical high level descriptions are intended to be read by non
specialists; executable (binary) models will be executed on the target
architecture. For the sake of reusability, intermediate models will be made
independent of the architecture. They come from high level programming
language sources to software architecture description models that can be
mapped to various physical architectures. Model transformation is needed
here and generalises compilation of a code written in a programming
language into binary code. Consequently, model transformation is an
important concept which has been recently emphasised by the OMG
through the MDA (Model Driven Architecture) proposal. The starting
point of this proposal is the UML notation which supports the expression
of various models at very different levels of detail. For model
transformation to be automated, it is necessary to define the precisely the
syntax of the modelling language. In fact, two notions of syntax must be
distinguished. The concrete syntax of the formalism defines how
specifications are displayed in terms of correct sequences of characters or
in terms of graphical elements. The abstract syntax is not concerned by
such visual features, but defines at a more abstract way what concepts are
needed and what are the relations between these concepts. The abstract
syntax representation of a document captures its essence and ignores
visual aspects, which can be retrieved through the use of pretty printers.
Meta modelling consists in specifying these concepts and relations. A
meta modelling language can be used to define the abstract syntax of
several languages and thus can be a support to write transformations
between these languages.

In the framework of UML, the concrete syntax is graphic and
informally specified. It is based on rectangles, lines, arrows, etc.
However, the abstract syntax of all UML diagrams and thus of all the
formalisms defined by the UML notation can be described formally using
the MOF, which is mainly a subset of UML restricted to class diagrams. It
is thus graph-based as opposite to textual languages which are tree-based.
Then, transforming a model is to rewrite a graph. Consequently, it is
possible to tackle models transformations using graph grammars. This
way was notably experienced by a German team which has produced the
system PROGRESS. A special version of PROGRESS is dedicated to
UML models.

Overview of model transformation and XSL 239

PROGRESS appears as a tool devoted to process graphs ; it is
composed by :

e a graphical and textual editor,

e an incremental analyser,

e abrowser to travel through the graph to be processed.

According to the authors, PROGRESS mainly addresses the following
areas :
e huge graphs where little ones are to be recognised,
e environments including customised indexation system,
e graph grammars with a low number of alternatives to be
considered at each rewriting step.

Moreover, according to the background of graphs rewriters, in general,
graphs grammars are ambiguous thus designing transformations systems
resting on this approach will lead to inefficient results. Another way to
deal with models transformations is to rest on meta models and related
tools. According to this approach, the semantics of modelling languages
are described in the same formalism, Meta Object Facility (MOF) for
instance, transformations are then considered as translations from a
source language to a target language, the semantics of both of the
languages are depicted using the same meta model. This solution was
adopted by the Distributed System Technology Center through a specific
software called « dMOF». A similar approach was taken by France
Telecom which has produced Univers@lys devoted to UML. This system
is used to store the models, the transforming processes are implemented
by the mean of API automatically generated by the software according to
the transformation requirements.

Among the models transformations process, the ones resting on the
language XSLT are very popular. In the following, we are going to
describe this approach.

Currently the norm to format digital texts is the eXtended Mark up
Language (abbreviated XML). XML is a revisited version of the former
standard SGML avoiding some drawbacks at syntax and semantics
levels. Dealing with text encoded in the XML format, supposes the
existence of a software processor to transform the XML encoded texts
according to an output format, HTML for instance, such an output
protocol is called a « style sheet ». Thus XML was provided with a
specific language devoted to process style sheets; this language is called «
XML Stylesheet Language » (abbreviated XSLT). The aim of XSLT is to
transform any text encoded in the XML format into another text the

240 Appendix D

structure of which is expressed by a stylesheet. In the field of models and
meta models for software engineering, graphical formalisms are very
commonly used but, in order to process or exchange them, textual
standards are necessary involved. As a model in a textual form is but a
text, XML was chosen as a standard to encode textual representation of
graphical models. The most popular example is the standard XMI (XML
Models Interchange) devoted to the exchanges of UML models depicted
in textual format. Consequently, it appears that transforming and
processing ? models necessitates a language able to implement
transformations of XML texts, of course XSLT was the natural
candidate to do such a job.

XSLT is a declarative language; a program is set of unordered rules.
Each rule called a »template » aims at matching a sub-tree of a syntactic
tree describing an XML text in order to produce any relevant information
corresponding to the sub-tree. Syntactically speaking, the general form of
rule is:

<xsl :template match = « sub-tree attribute » >

produced information

</xsl :template>

« sub-tree attribute » qualifies the root of a sub-tree, it can be the name
of a node, the children of a node, a line descent; a node can also be
depicted by its XML attributes. In order to facilitate the traversal of a tree,
XSLT provides the programmer with conditional, loop and procedure call
statements. The expressive power of the XSLT language is difficult to
state: such a point is not clearly tackled in the reference documents
provided by W3C. Some Finnish works about this topics conclude that
this language possesses the power of Turing’s machine, but this
conclusion is not well established in the material we could access to;
according to our experience, it seems that XSLT is a kind of attribute
grammar allowing to compute semantic attributes in one traversal of the
syntactic tree, so multi-visits of a tree requires as many XSLT processors
calls as necessitated passes on the tree.

XSL

As opposite to HTML which mixes information and presentation,
XML documents only encode information. XSL has been introduced by
the W3 consortium to define stylesheets applying to XML documents.

Overview of model transformation and XSL 241

These stylesheets define how to visualise information stored in XML
documents compatible with a given DTD. XSL is composed of three
parts: XPATH, XSLT and XSL-FO. Due to the extensible structure of
XML documents, which is tree-based, the W3 consortium was driven to
define first a language based on the core features of a tree: its hierarchical
node structure. This has been made through the XPATH specification that
provides functionalities to navigate within the tree structure. Then, the
XSLT specification has been published, including XPATH facilities, in
order to allow any transformation of an XML source document through
the attachment of transformation rules to the nodes of an XML tree.
Finally, the XSL environment has been completed with the evolved
formatting capabilities of XSL-FO. Implementations of this set of norms
are available today and allow any transformation of an XML document
through a given set of transformation rules defined by an XSL stylesheet.

XPATH

XPATH is not an XML-based language but a functional language over
path expressions, strings numbers and booleans. Path expressions provide
a way to designate a set of nodes of an XML document, either using
relative or absolute navigation expressions. XPATH essential contribution
is the definition of a syntax that allows addressing any part of an XML
document using meta-data spelling. Regular XPATH expressions follow
the model “Axis::FilterNode[ListOfPredicate]” where:

e Axis: may be a forward axis as Child or Descendant or a reverse axis
as ancestor, preceding-sibling, and others. Some shortcuts allow
more compact expressions,

e FilterNode: may be a list of node given in expanded form specifying
all the nodes to access data, or shortcut expressions,

e ListOfPredicate: allows conditional selection of a subset of the
current set of nodes.

Using axes the writing of navigation gains on compactness and allows
a good readability of XSL stylesheets. Using child or descendant axes do
not penalise the performances of an XSLT processor, but using the
ancestor axis is very awful. Such a traversal is not the natural traversal of
an XML document using XSLT, that naturally performs top-down
traversals.

Sometimes, navigation needs to reach distant ancestors or distant
elements, for example in order to retrieve a context or to point to a type

242 Appendix D

declaration. XPATH provide a mechanism to prevent from long search
through ancestors: it is possible to declare pointers to designate nodes and
to follow them. This mechanism is based on the XPATH functions key
and id. The id function is of higher level and acts as follows: it takes as
argument an XPATH expression of which value must be the one of an
attribute of a node of the XML tree. This attribute must be declared of
type ID in the DTD. Nodes containing this attribute must be uniquely
determined by it. Then, the id function returns this unique node.
Consequently, such a navigation is only possible within a valid document
with respect to its DTD. The use of the id() function speeds a lot any
navigation using the ancestor axis if the child element specifies a reverse
link towards its ancestors using an IDREF typed attribute.

For example, consider the following XML document describing the
possessions of a person. This document contains internal links between a
car and its owner, and between a parking and the car it is assigned to.
<doc>

<Person id="pl” name="Dupond”>
<Owns>
<Car num="cl” mark="renault”
parking="pkl” />
<Car num="c2” mark="peugeot”/>
</Owns>
</Person>
<Person id="p2” name="Durand”>
<Owns>
<Parking place="pkl” state="rented”
tenant="pl”/>
</Owns>
</Person>
</doc>

e From the root of the document, the descendant::Car path
specifies the set of cars present in the document,
e This set can be restricted to cars of a given mark: a predicate
specifies a particular value for the mark attribute :
descendant ::Car[@mark=""renault”],
From a car, we can select all declared cars of the same mark:
/doc::descendant::Car[@mark=current()/@mark] ,
From a car, we can follow the links and get the name of the parking
renter :
id(@parking)/ascendant::Person/@name

Overview of model transformation and XSL 243

e or from a parking we can identify the car parked :
e id(@tenant)/descendant::Car[@parking=
e current()/@place] .

XSLT

The goal of XSLT is to offer capabilities to specify transformations.
An XSLT transformation is specified by a couple containing a pattern for
the selection of XML nodes and a term defining the replacement for each
selected node. Applying transformations builds a document that can be in
XML format from an XML document.

The particularity of XSLT is defined both by the XML nature of this
language and by the implied recursive process used to reach any node of
the source XML document.

XSLT and XML

First of all, XSLT instructions are XML expressions. For example, the
detail of any transformation is part of the main <xsl:stylesheet>
element, root of the transformation document terminated by its respective
closing tag </xsl:stylesheet>. Another example is given by the
current use of the <xsl:apply-templates/> instruction to process
descendants of the context node using the empty XML element form.
Intensive use of attributes is also made in XSLT to define the kind of
XML information searched. For example, the definition context of
transformation rules can be defined with the use of the match attribute of
the xsl:template used to filter a particular XML element or the
select attribute of the xsl:value-of element used to extract the
value of the pointed attribute.

<xsl:stylesheet>
<xsl:template match="Person”>
<xsl:value-of select="@name”/>
<xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

In the same manner XSLT defines all the features of a classic language
like conditional, iterative structure and some evolved capabilities like
numbering or sorting instructions.

244 Appendix D

XSLT processing

The processing of XSLT stylesheets performs tree rewriting. That
means that any tree represented by an XML document can be transformed
into another tree. The XSL transformation applies on a current node, root
of its sub-tree, and processes the node list including the current node and
its descendants. From the input tree, XSLT processing may filter, reorder
or add new nodes to the result tree through the definition of template
rules.

M\

”

XSLT Process

Transformations depend on implied mechanisms and explicit definition
of template rules.

Designing transformation

Designing a transformation of a source XML document to any
destination format requires to deal with inherent process of XSL and to
define concrete rules in charge of the extraction/reorganisation of the
information.

XLST implied mechanisms

The first thing an XSLT writer must consider is that in all XSLT
processes some rules are implied. The first of these rules examines all the
elements of an XML document from the root to all the leaves, and the
second rule outputs any text information contained in a node.

What must be very well understood, referring to the first mechanism, is
that the descending traversal is processed, by default, until a node is
matched by a template rule. The template rule is supposed to process the
sub-tree having this node as root. In other terms, by default, the

Overview of model transformation and XSL 245

descendant traversal is stopped at the highest level of the tree for which a
template rule exists. For example, the following set of rules will not
process the Parking sub-tree because this information is intended to be
processed in the context of the “Person” node, which appears first in the
top-down traversal of the XML document:

<xsl:template match="Person”>

<xsl:value-of select="@name”/>
</xsl:template>

<xsl:template match='Parking' priority = '5'>
<xsl:value-of select="@place"/>
</xsl:template>

However, it is possible to continue the descendant traversal from a
pointed context node. This ability is given by specifying that some/all
written templates must be applied over descendants of the context node,
allowing their transformation. This recursive call is launched by the
<xsl:apply-templates/> instruction:

<xsl:template match="Person”>

<xsl:value-of select="@name”/>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match='Parking' priority = '5'>
<xsl:value-of select="@place"/>
</xsl:template>

In this case, all the descendants of Person will be considered and
Parking information will be output, namely the value of the attribute
place.

Whereas the default top-down traversal rule is necessary, the implied
text output rule can be awkward, because the goal of a transformation is
not necessarily to output text for each node: we can imagine XML
transformations for versioning support, production of HTML pages or
documents of any format. In most cases, the goal of a transformation is to
extract piece of information from the source document and to produce a
new document with a different structure, so that automatic text production
rules cannot be applied. To meet this requirement, the default rule must
be occulted using an XML empty element specifying no action when a
text node is encountered. The following declaration overrides the default
rule and allows satisfying this goal:

246 Appendix D

<xsl:template match="text()”/>.

In this case, only text extracted in the context of the matched element
using <xsl:value-of select="..”/> instruction will be part of
the result document.

Defining transformation rules

All XSL transformation processes are based on the definition of rules
written in order to specify how the XML source information is
transformed. Two kinds of rules exist: matching rules apply to nodes
matching the given template while named rules are explicitly launched by
a caller rule.

e Matching transformation rules
Defining a transformation rule is generally made with a match
clause A transformation rule generally contains a match clause which
identifies a set of nodes. Using this capability offers the possibility to
consider that all the nodes corresponding to the specified description
are processed in the same way. It means that defined transformations
is based on meta-data identification.

The following example performs the identity transformation for all
the nodes of the input document except for the Person node for which
the transformation is to include an additional attribute called Country
whose value is fixed to France :

<xsl:template match='Person'>
<xsl:copy>
<xsl:apply-templates select='@*"'/>
<xsl:attribute name="Country"
namespace="">
France</xsl:attribute>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>
<xsl:template match='@*|node () '>
<xsl:copy>
<xsl:apply-templates select='Q@*|node()"'/>
</xsl:copy>
</xsl:template>

Overview of model transformation and XSL 247

This example shows how to define a transformation applying to all
persons. It is also possible to write more precise filters using a
combination of meta-data and data values to address specific
elements:

<xsl:template match='Person/[@name='Joe’]"'>
<xsl:copy>
<xsl:apply-templates select='@*"'/>
<xsl:attribute name="Country"
namespace=""> USA
</xsl:attribute>
<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

The two rules applying to non-disjoint sets of nodes, ambiguities
may occur. In fact, a conflict resolution principle is defined so that the
more specific rules are privileged. An explicit priority can also be
assigned to a rule.

Named transformation rules

As every programming language, the writing of XSLT rules can
give only a single file with a unique block of instructions or can be
organised with the definition of libraries or functions.

All transformations are made in the context of the identified
elements. However, the number of lines in a rule is not limited and for
a possibly long rule several information must be extracted in the
context of a particular container element. XSLT specification allows
defining named rules without using a match clause to split the whole
transformation into more readable pieces. The different named rules
shall be called from the rule that defines the context node. Using such
method does not change the context node, which remains the node in
which the call has been done.

For example the extraction of the name of a “Person” can be made
calling a specific named rule like :

<xsl:template match="Person”>
<xsl:call-template name="PersonName”/>
</xsl:template>

248 Appendix D

<xsl:template name="PersonName”>
<xsl:value-of select="@name”/>
</xsl:template>

e Using Namespaces

Namespaces allow XSL stylesheets to intersperse different XML
languages in order to address different needs. For example the same
stylesheet can both contain XSLT statements to address tree
transformations, XSL-FO or/and SVG instructions to define the
structure and presentation of a document. Obviously it is not spring of
a pure XSLT processor to treat HTML, FO or SVG features included
in the stylesheet. In such cases three different processors are necessary
to produce the whole transformation. Namespace allow processors
involved in a transformation to identify statements they are concerned
about.

Namespaces are identified by an URI to which a label is associated.
Because label is user defined processors are intended to know the
correct URI of the language. Namespaces of a stylesheet embedding
XSLT and FO statements is given for example by the following
expression :

<xsl:stylesheetversion="1.0"
xmlns:xsl=
"http://www.w3.0rg/1999/XSL/Transform"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format">

and can be used to defined a structure of a page like:

<xsl:template match="/">
<fo:root>
<fo:layout-master-set>

<!-- layout for the first page -->

<fo:simple-page-master
master-name="first"
page-height="29.7cm"
page-width="21lcm"
margin-top="1lcm"
margin-bottom="1.5cm"
margin-left="2.5cm"
margin-right="2.5cm">

Overview of model transformation and XSL 249

</fo:simple-page-master>
</fo:layout-master—-set>
<!-- end: defines page layout -->
</fo:root>
</xsl:template>

This example defines an XSLT transformation that processes an
XML document from its root and produces the structure of the page
presentation using FO capabilities.

Avoiding rules conflicts

Designing transformations implies the writing of many rules, each rule
applying to a category or a specific source element. However,
transformations may be context dependent. For example a name may be
treated differently if it belongs to a car description or a name description.
Here we study the different principles helping to write rules applying to
specific contexts.

Using depth level of information

If a specific transformation applies when a node is has a particular
father, a relative path to the node can be mentioned, as illustrated by the
following example:

<xsl:template match="doc/Parent”>

The corresponding transformation applies to Parent nodes having a
doc node as father. Furthermore, it has a greater priority than the rule
matching Parent, so that it is possible to declare a general transformation
together with a specification transformation for such Parent nodes.

Distinguish a particular instance

A specific transformation can also be attached to unique instances or to
instances having specific valued attributes through the use of a predicate
testing the value of some attributes:

’

<xsl:template match=" Parent[@name=’Joe’]"”>

However, this rule can enter in conflict with a general rule matching
Parent. Actually, the presence of a predicate does not confer to the rule a

250 Appendix D

higher priority. The XSLT processor signals the ambiguity, which can be
solved using explicit priority declarations.

Using priority

Ambiguity can be left by using a priority clause in the template rule
expression. This priority forces the execution of the affected rule if the
priority is greater than 0.5, which is the default priority for a rule, or
greater than the priority of another conflict rule. The XSLT norm gives
the “modus operendi” to calculate the priority of a rule - refer to the
XSLT norm for detailed information.

<xsl:template match=" Parent[@name='Joe’]”
priority='2'>

This example solves the conflict in the previous situation.

Using mode attribute in template rules

Specific transformations can be identified by a mode. For this purpose,
a mode attribute can be attached to a template rule. Rules with a given
mode are taken into consideration during the recursive traversal of the
sub-tree of a node, if the specific mode is specified in the apply-templates
call. For example, a mode can be used to separate rules extracting all
information concerning a person and rules extracting only the name of the
person:

<xsl:template match = “Person”
mode = “PersonIdentification”>

<xsl:value-of select="@name”/>
</xsl:template>

This template rule can be called using:

<xsl:apply-templates
mode="PersonIdentification”/>

Complete example of UML Model Transformation

The following example presents an UML model made of a class
diagram and the result of two transformations: the first one generates Java

Overview of model transformation and XSL 251

code and the second one a PDF document containing the same Java code
with visual improvements. The source code of the XSL transformation
used to produce the PDF document is given.

UML Model

XSL transformations apply to the following UML model which covers
several features of UML class diagrams: classes with public or private
properties, inheritance links, and qualified associations.

Pack::Bank
laccountNumber

* | +customer

Pack::Person
“+manager +managedCompany

-isMarried : boolean N
-isUnemployed : boolean Pack::Company

-birthDate : Date

-name : string

-age : Integer -numberOfEmployees : integer
-firstName : strin,
i 2 +employee +emplo; T stockPrice()
-lastName : string *
: * -0
+income()
+hudsband +wife
Pack::Man Pack::Woman

0.1 0.1

Java code generation

An XSL transformation applying on the XMI representation of the
model can be used to produce the following Java code. XSL rules are not
given as they are in fact similar to the ones used to generate the PDF
document, except the statements related to the XSL-FO generation. Java
code generation is in fact straightforward and follows the following
principles:

252 Appendix D

e Inheritance links are translated without transformation, which
means that multiple inheritance must be forbidden.

e Attributes and operations are found within the class declaration in
the XMI file and are output when they are traversed.

e Associations are described outside classes. Thus association ends
referencing the current class must be searched for, so that the
name of the opposite role can be added to the class attributes.
Multiplicities greater than 1 are expressed using arrays.

¢ Qualified associations are encoded by operations taking the
qualifier as parameter.

It has to be noted that improving code generation with the addition of
get and set methods for attributes, the management of association classes,
etc. would be easy.

Package Pack;

public class Bank
{
// Associations
public Person customer (
Integer accountNumber) ;

}

public class Company
{
// Attributes
private String name ;
private Integer numberOfEmployees ;

// Operations

public stockPrice();

public Company () ;

public employ(Person p, Person q);
public demising(Person p);

// Associations
public Person manager;
public Person employeel[];

}

public class Person

Overview of model transformation and XSL 253

// Attributes

private Boolean isMarried ;
private Boolean isUnemployed ;
private java.util.Date birthDate ;
private Integer age ;

private String firstName ;

private String lastName ;

// Operations
public income () ;

// Associations
public Company managedCompanyl];
public Company employer|[];

}

public class Woman extends Person
{

// Associations

public Man husband;
}

public class Man extends Person
{

// Associations

public Woman wife;

}
Documentation generation using FO rendering

This paragraph presents the complete source code of the XSL
transformation producing a Java source code with FO rendering from an
XMI document. The Java code is the same as the one presented before,
but each kind of information (package, class, attributes, operations) is
output with a specific rendering. In fact, the PDF document is obtained
after a two passes process:

e First, the XSL processor is run on the XMI model. The output
document is an XML document with XSL-FO tags.
e Second, the fop tool is run and outputs the PDF document.

Document generation is thus highly dependent on the use of XML
namespaces which identify XSL instructions used by the first path and FO

254 Appendix D

instructions generated by the first path and used by the second path.
Hence, the XSL stylesheet contains both kind of instructions.

XSL Stylesheet

The main characteristic of this stylesheet is that it uses three families of
XML tags identified by xsl,fo and UML namespaces. The xsl
namespace identifies instructions used to produce the fo document from
the UML document. Thus, UML tags are used in match instructions, while
fo tags are output.

<?xml version="1.0" encoding="utf-8"?2>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:UML="http://org.omg/UML/1.3"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format">
<xsl:output method="xml" encoding="utf-8"
indent="yes"/>

<xsl:template match="/">
<fo:root>
<fo:layout-master-set>
<!-- layout for the first page -->
<fo:simple-page-master master-name="first"
page-height="29.7cm"
page-width="21lcm" margin-top="1cm"
margin-bottom="1.5cm"
margin-left="2.5cm"
margin-right="2.5cm">
<fo:region-body margin-top="1.2cm"
margin-bottom="1.5cm"/>
<fo:region-before extent="lcm"/>
<fo:region-after extent="lcm"/>
</fo:simple-page-master>
</fo:layout-master-set>
<!-- end: defines page layout -->
<xsl:apply-templates/>
</fo:root>
</xsl:template>

<xsl:template name="TableEditor"
match="UML:Package">
<fo:page-sequence master-reference="first">
<fo:flow flow-name="xsl-region-body">

Overview of model transformation and XSL 255

<fo:block line-height="30pt"
font-size="25pt"
text-align="center"
background-color="grey">

Package: <xsl:value-of select="@name"/>

</fo:block>

<xsl:apply-templates/>

</fo:flow>

</fo:page-sequence>
</xsl:template>

<xsl:template match="UML:Class">
<fo:block line-height="20pt" font-size="18pt"
text-align="1left" background-color="yellow"
color="blue">
<xsl:value-of select="@visibility"/>
class
<xsl:value-of select="@name"/>
<xsl:for-each select="id(Q@generalization) ">
<xsl:if test="position()=1"> extends
</xsl:if>
<xsl:value-of
select="id (@parent) /@name" />
<xsl:if test="not (position()=last())">,
</xsl:if>
</xsl:for-each>
<xsl:text>{
	</xsl:text>
</fo:block>
<xsl:apply-templates/>
<fo:block line-height="18pt" font-size="1l6pt"
text-align="1left" color="green">
// Associations
</fo:block>
<fo:block line-height="18pt" font-size="14pt"
text-align="1eft" color="green">
<xsl:for-each
select="/descendant: :UML:AssociationEnd
[@participant=current () /@xmi.id]">
<xsl:if test="preceding-sibling::
UML:AssociationEnd !='"">
<xsl:apply-templates
select="preceding-sibling::
UML:AssociationEnd" mode="context"/>
</xsl:if>
<xsl:if test="following-sibling::

256 Appendix D

UML:AssociationEnd !=''"">
<xsl:apply-templates
select="following-sibling::
UML:AssociationEnd" mode="context"/>

</xsl:if>
</xsl:for-each>
<xsl:text>}

</xsl:text>

</fo:block>

</xsl:template>

<xsl:template name="MultiplicityRange">
<xsl:if test="descendant::
UML:MultiplicityRange/Qupper != '1'">
<xsl:text>[]</xsl:text>
</xsl:if>
</xsl:template>

<xsl:template match="UML:AssociationEnd"
mode="context">
<fo:block line-height="16pt" font-size="14pt"
text-align="1left" color="green"
start-indent="30pt">
<xsl:if test="@isNavigable != 'false' and
@name!=""">
<xsl:value-of select="@visibility"/>
<xsl:text> </xsl:text>
<xsl:value-of
select="1id (Rparticipant) /@name" />
<xsl:text> </xsl:text>
<xsl:value-of select="@name"/>
<xsl:call-template
name="MultiplicityRange"/>
<xsl:call-template name="AssociationKey"/>;
</xsl:if>
</fo:block>
</xsl:template>

<xsl:template match="UML:Class/UML:

Classifier.feature">

<fo:block line-height="18pt" font-size="1l6pt"

text-align="1left" color="blue">

// Attributes

</fo:block>

<xsl:apply-templates select="UML:Attribute"
mode="attribute"/>

Overview of model transformation and XSL 257

<fo:block line-height="18pt" font-size="1lo6pt"
text-align="1eft" color="orange">

// Operations

</fo:block>

<xsl:apply-templates select="UML:Operation"
mode="operation"/>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="UML:Attribute"
mode="attribute">
<fo:block line-height="16pt" font-size="14pt"
text-align="1left" color="blue"
start-indent="30pt">
<xsl:value-of select="@visibility"/>
<xsl:text> </xsl:text>
<xsl:value-of select="id(@type) /@name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="@name"/>
</fo:block>
<xsl:apply-templates/>
</xsl:template>

’

<xsl:template name="AssociationKey">
<xsl:1f test="descendant::UML:Attribute
!:l l">
<xsl:text>(</xsl:text>
<xsl:for-each select="descendant::
UML:Attribute">
<xsl:value-of select="id(QRtype)/@name" />
<xsl:text> </xsl:text>
<xsl:value-of select="@name"/>
<xsl:if test="not (position ()=last())">,
</xsl:if>
</xsl:for-each>
<xsl:text>)</xsl:text>
</xsl:if>
</xsl:template>

<xsl:template match="UML:Operation"
mode="operation">
<fo:block line-height="16pt" font-size="14pt"
text-align="1left" color="orange" start-
indent="30pt">
<xsl:if test="@name

258 Appendix D

!= current()/../../@name">
<xsl:value-of select="Q@visibility"/>
<xsl:text> </xsl:text>
<xsl:apply-templates select="descendant::

UML:Parameter [@kind='return']"/>
<xsl:text> </xsl:text>
<xsl:value-of select="Q@name"/>(

<xsl:apply-templates

select="descendant::
UML:Parameter [@kind="in"'] |
descendant::
UML:Parameter [@kind="inout']"
mode="parameter"/>) ;

</xsl:if>

<xsl:if

test="@name = current()/../../@name">
<xsl:value-of select="@visibility"/>
<xsl:text> </xsl:text>
<xsl:value-of select="Q@name"/>(
<xsl:apply-templates select="descendant::

UML:Parameter [@kind="in'] |
descendant: :UML:Parameter
[@kind="'inout']" mode="parameter"/>);
</xsl:if>
</fo:block>
</xsl:template>

<xsl:template match="UML:Parameter [@kind="in"']
| UML:Parameter [@kind="inout']"
mode="parameter">
<xsl:value-of select="id(Qtype)/@name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="@name"/>
<xsl:if test="not (position()=last())">,
</xsl:if>
</xsl:template>

<xsl:template
match="UML: Parameter[Q@kind="return']"
mode="parameter">
<xsl:value-of select="id (@type) /@name"/>
</xsl:template>

<xsl:template match="text ()"/>
</xsl:stylesheet>

Overview of model transformation and XSL 259

The PDF document after FO to PDF translation

public class Bank{
/I Associations
public Person customer(Integer accountNumber);

}
public class Company{
/1 Attributes
private String name ;
private Integer numberOfEmployees ;
// Operations
public stockPrice();
public Company();
public emploie(Person p, Person q)
public demissionne(Person p);
// Associations
public Person manager;
public Person employeel];

}

public class Person{

/I Attributes
private Boolean isMarried ;
private Boolean isUnemployed ;
private java.util.Date birthDate ;
private Integer age ;
private String firstName ;
private String lastName ;

// Operations
public income();

/I Associations
public Company managedCompanyl];
public Company employer[];

}
public class Femme extends Person{
/I Associations

public Homme husband;

}
public class Homme extends Person{
// Associations

public Femme wife;

AUTHORS

Javier Ballesteros Rodriguez

Javier Ballesteros Rodriguez is a Telecommunication Engineer. He
graduated from the Escola Teécnica Superior d’Enginyeria de
Telecomunicaci6é de Barcelona (Universitat Politécnica de Catalunya). He
started his professional career as a software developer, within the
area of management software, before joining GTD in January 2001. At
GTD, he worked on several projects in the area of Information
Systems, Defence, Space and Secure Communication Systems.

Pierre Bazex

Pierre Bazex is professor at the Paul Sabatier University. Pierre Bazex
manages research team on data base modelling and programming
methods for software development. Pierre Bazex and his research team
are working in collaboration = with Toulouse societies
(Aérospatiale/EADS, MATRA/EADS, CNES/ESA, and software
maintenance societies like CS-SI and Telelogic).

Jean-Paul Bodeveix

Jean-Paul Bodeveix is assistant professor of computer science at
University Paul Sabatier - Toulouse. His main research interests are
linked to formal specification languages, formal development methods
and verification techniques. His teaching domains cover these aspects as
well as object oriented design and languages.

Agusti Canals

Agusti Canals is a software engineer (Université Paul SABATIER,
Toulouse) and has been working at CS since 1981. Now project manager
and senior software engineering consultant, he has already presented
papers on HOOD, Ada, UML and object business patterns. He also
currently teaches software engineering in different training structures, like
Ecole Centrale Paris or Université Paul Sabatier (Toulouse).

Juan Carlos Cruellas

Juan Carlos Cruellas received his Ph.D. from Universitat Politecnica de
Catalunya in 1990. He is professor at this University in the Computer
Engineering and Electronic Engineering Schools, where he teaches
software engineering. His main research topics are computers, networks
security and process modelling.

Louis Féraud

Louis Féraud is professor of computer science at University Paul
Sabatier - Toulouse since 1991. For nine years, he has been in charge of
the master degree of computer science of that university. His domains of
interests are covering formal semantics, compilation and object oriented
programming as well. Louis Féraud is currently embedded in several
European and national research projects aiming at applying compilation
theories and methods to object oriented modelling problems.

Christophe Le Camus

Christophe Le Camus is a Conservatoire National Arts & Meétiers
(CNAM) computer engineer. He has worked in software editor industry
like software trainer for administrative client in France (council up to
10000 citizen and Centre de Gestion) during seven years. He participates
in analysis and programming of an accounting software based on
administrative rules distributed to 2000 clients. Activities on Neptune
project concerned about OMG activities (modeling with UML, MOF and
XMI) and W3C (XML, XSL).

Josep Maria Llovet Pérez

Josep Maria Llovet Pérez has a Degree in Mathematics. He is a
Mathematics High School Senior Professor (Catedratic). He has also been
a senior consultant in Information Systems for more than twenty years.

Thierry Millan

Thierry Millan received his Ph.D. from the Paul Sabatier University of
Toulouse in 1995. Thierry Millan is a teacher of UML at the Paul Sabatier
University and a researcher at the IRIT institute. His main research topics
are design methodology, persistence and object-oriented languages (Java,
C++, and Ada 95.

Chritian Percebois

Christian Percebois is Professor of computer science at the University
of Toulouse III, France since 1992. He worked on Lisp and Prolog
interpreters, garbage collecting for symbolic computations, asynchronous
backtrackable communications in distributed logic languages, abstract
machine construction through operational semantics refinements and
typing in object-oriented programming. Since 1996, he is mainlly
interested by multiset rewriting techniques in order to coordinate
concurrent objects.

Laurent Pomiés

Laurent Pomiés is a software engineer. He graduated from the Ecole
Nationale Supérieure de Physique de Marseille (1997). He spent three
years in automotive industry (VDO CC, Siemens automotive), as an
embedded software developer and architect before joining CS in august
2001.

REFERENCES

[ref1]
UN/CEFACT Techniques and Methodologies Group (TMG):
"UN/CEFACT Modelling Methodology". November 2001.

[ref2]

Eriksson, Hans-Erik and Penker, Magnus: "Business

Modeling with UML, Business Patterns at Work".

USA, Wiley Computer Publishing, John Wiley & Sons, Inc, 2000

[ref3]

Darnton, Geoffrey and Moksha Darnton: "Business Process Analysis".
Cambridge, U.K.: Thomson

Business Press, 1997

[refd]
Emerson, E. A. Temporal and modal logic. In: J. van Leeuwen (Ed.),
"Handbook of Theor. Comput. Sci.", Elsevier Sci. Publishers, 1990.

[ref5]

Jos Warmer

Document -- ad/02-05-09 (UML 2.0 OCL RFP revised submission)
http://www.omg.org/cgi-bin/doc?ad/02-05-09

[ref6]
“Guide Business Rules Project: Final Report” Hay, D., Allan Kolber and
Keri Anderson Healy, 1995

[ref7]

Complete UML 1.4 specification
http://www.omg.org/cgi-bin/doc?formal/01-09-67

Document -- formal/01-09-67 (Unified Modeling Language, v1.4)
Contact: Ms. Linda Heaton

[ref8]

http://www.omg.org/cgi-bin/doc?formal/00-11-02

Document -- formal/00-11-02 (XML Metadata Interchange (XMI) version
1.1)

Contact: Ms. Linda Heaton

[ref9]
"Design schemes in space application”
A.Canals (Cisi), Ja.Veron et Jc.Lloret (CNES); GL’98, Paris

[ref10]

« Use of UML/CS SI development process »

A.Canals (CS Sl) ; DASIA'99 Lisbon, ICSEA'99 Paris and JOOP
(April'2001)

[ref11]

« How you could use NEPTUNE technology in the modelling process »
Agusti Canals, Yannick Cassaing, Antoine Jammes, Laurent Pomies,
Etienne Roblet ; DASIA’02 Dublin, JOT january2003

[ref12]

« The UML Activity Diagrams: Using examples through the method used
by CS » by Agusti Canals, Yannick Cassaing, Antoine Jammes ICSSEAO01
Paris

[ref13]
« UML and Architectures: Using the MERCURE and NEPTUNE results »
Agusti Canals and Yannick Cassaing ICSSEAOQ2 Paris

[ref14]
Business Component-Based Software Engineering, chapter 12
Edited by F Barbier (KLUWER), 2003

[ref15]
HOOD, An industrial approach for software design, JP Rosen Edited by
HOOD User’s group, 1997

[ref16]
Modélisation objet avec UML
PA Muller and N Gaertner, edited by Eyrolles 2000

[ref17]

Design Patterns

E Gamma, R Helm, R Johnson, J Vlissides, Edited by Thomson
publishing, 1996

[ref18]
The unified software development process
| Jacobson, G Booch, J Rumbaugh, edited by Addison-Wesley, 1999

[ref19]
The unified modeling language
| Jacobson, G Booch, J Rumbaugh, edited by Addison-Wesley, 1998

May 2003

MESSAGES SA — TOULOUSE
111, rue Nicolas-Vauquelin
Tél.: 05614124 14

