Réalisations

Gestion dynamique de systèmes auto-adaptatifs couplés - Application aux systèmes socio-techniques ambiants

Le nombre d'objets connectés ne cesse de croître dans notre environnement personnel et professionnel. Certains d’entre eux colonisent de manière exponentielle le monde industriel et les citées urbaines sous l’égide de la transformation numérique que l’on nomme maintenant Industrie 4.0 et villes intelligentes. L’objectif de cette fourmilière d’objets connectés est de faciliter notre immersion dans un milieu muni de capteurs et d'actionneurs de façon à rendre notre vie quotidienne plus agréable tout en respectant une certaine éthique d'éco-citoyenneté. Définir une approche d'adaptation locale, en temps réel, pour des systèmes permettant la convergence collective, revient à immerger dans un environnement dynamique des systèmes ayant des capacités d'apprentissage en temps réel pour s'adapter aux évolutions de l'environnement non connues à leurs conceptions. Les systèmes sociotechniques ambiants sont particulièrement pertinents car ils possèdent de très nombreux dispositifs immergés dans l’environnement humain afin de faciliter leurs activités tout en réduisant sa charge cognitive. De plus ils contribuent à faire émerger le bien être ressentie par l’être humain en fonction de leur état d’équilibre.

S2P2S2P2bis

Figure 1 : « des systèmes sociotechniques ambiants définissant les conforts »

Objectifs scientifiques

Les objectifs de cette thèse sont :

 Montrer la participation des systèmes sociotechniques ambiants au sein les conforts

 Définir une approche d'adaptation locale, en temps réel, pour des systèmes permettant la convergence collective

 Multi-apprentissage dans un environnement à forte dynamique

 

Contacts

fabrice.crasnier@irit.fr, marie-pierre.gleize@irit.fr, jean-pierre.george@irit.fr 

 

Conception de systèmes complexes à base de systèmes hétérogènes interopérables

Quand un système complexe nécessite l’emploi de différents composants spécifiés par différents concepteurs travaillant sur des domaines différents, ceci augmente fortement le nombre de prototypes virtuels. Ces différents composants ont malheureusement tendance à demeurer trop indépendants les uns des autres empêchant ainsi à la fois les différents concepteurs de collaborer et leurs systèmes d’être interconnectés en vue de remplir une ou plusieurs tâches qui ne pourraient pas être accomplies par l’un de ces éléments seulement.

Une co-simulation est le couplage de plusieurs outils de simulation où chacun gère une partie d'un problème modulaire qui permet à chaque concepteur d'interagir avec le système complexe afin de conserver son expertise métier et de continuer à utiliser ses propres outils numériques. Pour que cette co-simulation fonctionne, la capacité d'échanger des données entre les outils de manière significative, appelée interopérabilité, est requise.

On participe à la conception d’un système de co-simulation qui intègre différents outils de simulation-métiers basés sur la modélisation du comportement de dispositifs comme la simulation énergétique et la simulation d’usure de matériaux de construction au sein de la même plateforme.

S2P1

Figure 1 : « Architecture de co-simulation utilisant une médiation dynamique de données»

Objectifs scientifiques

Les objectifs de la thèse sont :

 Prendre en compte les notions d’architecture, de communication (entre les simulateurs ou avec les utilisateurs) et de visualisation pour définir les modèles d’architecture.

 Analyse de l’architecture gérant l’interopérabilité

 Validation de cette architecture Le développement d’un outil de vérification de certaines propriétés de l’architecture, comme la cohérence la sémantique

Contacts

yassine.motie@irit.fr, alex@laas.fr, philippe.truillet@irit.fr

 

Multi-capteurs de gaz communicant pour le bâtiment intelligent

La mesure de la qualité de l'air intérieur est importante pour la protection de la santé contre les polluants chimiques, gazeux ... En effet, l'air intérieur peut contenir plusieurs polluants tels que les CO, CO2, COVs. Ces polluants existent dans plusieurs matériaux et produits utilisables dans les logements (les meubles, nettoyants...), mais peuvent aussi être issus des activités humaines. Dans ce cas, la détection, la mesure et la surveillance de ces polluants sont nécessaires. Au vue de ses performances  élevées et son faible coût, le multi-capteur de gaz innovant pour l'analyse et le contrôle de la qualité d'air intérieur est une bonne alternative aux capteurs  électrochimiques et infrarouges. Ce projet est en cours de réalisation au sein du LAAS en collaboration avec le LCC et Laplace dans le cadre d’une thèse financée par neOCampus et la région Occitanie. Cette thèse porte essentiellement sur la caractérisation des multi-capteurs de gaz à base MOX et d’intégrer ces multi-capteurs dans son environnement électronique pour réaliser un objet connecté afin de contrôler la qualité de l'air intérieur dans les bureaux et les salles d'enseignements de l’université Paul Sabatier.

S1P8

Figure 1 : « Multi-capteurs du gaz à base des oxydes métalliques»

 

Objectifs scientifiques

Le multi-capteur de gaz est un microsystème composé, de quatre capteurs sur une micro puce, destiné à détecter des gaz cibles. L'objectif scientifique de cette thèse est de caractériser des nouveaux nanomatériaux (SnO2, CuO, ZnO) conçus par le LCC en utilisant un banc de caractérisation afin de définir un protocole de fonctionnement  et d'analyse des données en choisissant un profil optimal de détection des gaz cibles en utilisant différentes modes de fonctionnement.

 

Contacts

aymen.sendi@laas.fr, menini@laas.fr, pierre.fau@lcc-toulouse.fr, katia.fajerwerg@univ-tlse3.fr

myrtil.kahn@lcc-toulouse.fr, vincent.bley@laplace.univ-tlse.fr

 

Optimisation distribuée en temps réel de la gestion de l’énergie dans les smart grids

RennesGrid est un projet de transition énergétique sur la zone d’activité de Ker Lann sur la commune de Bruz. En particulier, ce projet se concentre sur l’autoconsommation en intégrant des panneaux photovoltaïques, des dispositifs de stockage et la collecte de données énergétiques. Intégrée à ce projet, cette thèse a pour objectif l’implémentation d’un système multi-agent gérant la consommation des charges flexibles, en particulier de véhicules électriques, et la production des sources flexibles (photovoltaïques). 

Le concept de smart grid entraîne une explosion du nombre d’unités contrôlables (charges flexibles, producteurs décentralisés, unités de stockage …). Par ailleurs, les problématiques liées à la gestion de l’énergie dans le smart grid, qu’elles soient locales (contrôle de la tension au niveau des bus, contrôle de la congestion) ou globales comme la gestion de l’équilibre entre la consommation et la production rend le problème fortement couplé.

 La flexibilité des systèmes multi-agents adaptatifs est pertinente pour cette problématique. En effet, elle permet de gérer un environnement dynamique (consommation, production, réseau…). Elle est de plus ouverte et robuste : ce qui lui permet de s’adapter à la demande en énergie toujours croissante et à la nécessité de maintenir le réseau en service notamment en cas d’incident.

S1P7

Figure 1 : Concept des smart grids

Objectifs scientifiques

Les objectifs de la thèse sont :

 Réalisation d’un simulateur de micro grid et d’un générateur de scenarii

 Conception et évaluation d’un système multi-agent adaptatif permettant la gestion d’un micro grid

Contacts

Jean-Baptiste.Blanc-Rouchosse@irit.fr, Guy.Camilleri@irit.fr, Marie-Pierre.Gleizes@irit.fr, anne.blavette@ens-rennes.fr, benahmed@ens-rennes.fr

 

 

Modélisation des Informations pour le développement de la construction durable (MINDOC)

Le secteur du bâtiment consomme en France près de 43% de l’énergie produite chaque année[1]. La production de cette énergie contribue progressivement au réchauffement climatique du fait de l’émission d’une forte quantité de gaz à effet de serre. Il est également le premier en consommation de matières premières non renouvelables et en production de déchets. Améliorer les méthodes utilisées dans le secteur du bâtiment contribuerait donc significativement à réduire sa facture énergétique et donc son empreinte écologique en préservant ainsi notre environnement. La maquette numérique du bâtiment ainsi que les informations qui y sont attachées – le BIM , constituent aujourd’hui un des outils innovants pouvant contribuer au suivi de l’infrastructure tout au long de son cycle de vie. De même, plusieurs bases de données environnementales existent afin de faciliter le choix des matériaux de construction pour une conception durable des bâtiments. L’IA  en général et les ontologies en particulier sont des pistes envisageables pour propulser la construction durable des bâtiments. Le manque d’interopérabilité entre les outils du bâtiment, la diversité d’unités fonctionnelles dans les bases environnementales sont autant d’obstacles aux désirs de durabilité. Pour satisfaire ces derniers, MINDOC propose une méthodologie et la mise en œuvre d’un outil d’aide à la décision durable basé sur le BIM.

S1P6

Figure 1 : Contexte et Objectifs de MINDOC

Objectifs scientifiques

 Proposer une méthodologie d’échange basée sur les ontologies afin de parfaire l’échange entre les outils BIM tout au long du cycle de vie du bâtiment.

 Mettre en œuvre un outil d’aide à la décision durable basé sur le BIM & promouvoir l’utilisation de matériaux à faible impact environnemental.

Contacts

justine-flore.tchouanguem-djuedja@enit.fr, camille.magniont@insa-toulouse.fr, fabanda@brookes.ac.uk, mohamed-hedi.karray@enit.fr, Bernard.Kamsu-Foguem@enit.fr

 

Habitat intelligent : réseaux de capteurs au service de l’efficacité énergétique

L’habitat du futur est une préoccupation actuelle qui a plusieurs objectifs dont celui du suivi et du contrôle intelligents de la consommation énergétique. En effet, il est possible aujourd’hui d’équiper la maison de capteurs connectés en réseau, pour acquérir une meilleure connaissance de la consommation énergétique des équipements mais également pour donner à l’utilisateur la possibilité de piloter son habitat via des commandes envoyées aux actionneurs à travers une tablette ou un téléphone. Cette connaissance permet aussi d’identifier des profils de comportements permettant d’optimiser la consommation d’énergie.

L’étape suivante consiste à rendre le système intelligent pour que ce soit lui qui décide des ordres à passer au système afin d’optimiser le confort, la sécurité, la sûreté et les économies d’énergies.

S1P4

Figure 1 : systèmes de gestion de l'énergie dans la maison intelligente 

 

Objectifs scientifiques

Les objectifs du stage sont :

 Déploiement d’un réseau de capteurs hétérogènes pour le suivi de la consommation d’énergie dans un habitat.

 Conception  d’un prototype pour le pilotage de l’autoconsommation.

Contacts

Abdelhadi.bentayeb@irit.fr, kacimi@irit.fr, berangere.lartigue@univ-tlse3.fr, philippe.rerat@habitat-energies.com

 

Planification de services cloud pour des centres de calculs alimentés avec des sources d'énergie renouvelables

Aujourd’hui, les nouvelles technologies représentent une part importante de la consommation électrique mondiale. Avec l’émergence et le développement du cloud computing et des grandes plateformes en ligne, le nombre et la taille des centres de données est en augmentation constante. Pour réduire les coûts économiques et écologiques engendrés par leur importante consommation électrique, une possibilité émergente consiste à installer des sources d’énergies renouvelables à proximité de ces centres. Cependant, le caractère intermittent des sources solaires et éoliennes, dont la production dépend des conditions météorologiques, fait émerger de nouveaux défis. Le projet ANR  DATAZERO s’intéresse à l’alimentation de centres de données de taille moyenne (jusqu’à 1MW) par un ensemble de sources renouvelables et de dispositifs de stockages traditionnels (batteries) et innovants (piles à combustible et électrolyseurs). Afin de trouver un compromis entre besoins électriques pour assurer le fonctionnement du centre de données et qualité de l’énergie utilisée, un mécanisme de négociation est proposé.

 

S1P3

Figure 1 : Représentation d’un centre de données disposant de sources renouvelables. Le module de négociation communique avec les modules de décision électrique et informatique.

Objectifs scientifiques

Les objectifs de la thèse sont :

 Évaluer l’intérêt de la planification de l’utilisation de l’énergie dans un tel centre

 Proposer des mécanismes de négociation nécessitant peu d’informations

 Évaluer l’impact de la limitation des informations disponibles pour l’optimisation

Contacts

Léo Grange (leo.grange@irit.fr)

Encadrants : Patricia Stolf (patricia.stolf@irit.fr), Georges Da Costa (dacosta@irit.fr)

 

Conception d’un réseau LVDC à base de sources d’énergie durable et de plusieurs types d’éléments de stockage électrochimiques

Dans le contexte de l’intégration de sources d’énergie renouvelables dans les réseaux électriques, les « Solar fuels » ont été identifiés comme une potentielle solution technologique, notamment pour le Japon. Le LAAS (Toulouse) et le RCAST (Tokyo) se sont associés dans le cadre d’un laboratoire international commun NextPV afin de répondre aux challenges technologiques de la transformation d’énergie solaire en hydrogène. Dans le but d’optimiser le rendement de production d’hydrogène 24h/24, la structure présentée en Figure 1 est proposée. L’énergie solaire est captée par des cellules photovoltaïques à haut rendement dites « multi-jonction ». Un étage de conversion DC/DC comprenant un micro-convertisseur Boost par cellule photovoltaïque, appelé architecture distribuée, permet d’alimenter un bus DC basse tension tout en maximisant la puissance fournie par les cellules. Ce bus alimente à son tour des électrolyseurs à travers un deuxième étage de conversion DC/DC distribué comprenant des convertisseurs Buck. Les électrolyseurs fonctionnent ainsi à leur tension d’alimentation optimale et produisent de l’hydrogène à rendement maximal. Des batteries Lithium sont ajoutées comme solution de stockage électrochimique afin d’assurer le fonctionnement des électrolyseurs face aux intermittences typiques de l’ensoleillement (ombrages, nuages, cycles jour/nuit).

Objectifs scientifiques

Les objectifs du système sont :

 Maximiser la production solaire photovoltaïque.

 Maximiser le rendement de production d’hydrogène 24h/24

 Minimiser les pertes de conversion d’énergie

S1P1

Figure 1 : « Système optimisé de conversion d’énergie Solaire en Hydrogène »

Contacts

kneuhaus@laas.fr, alonsoc@laas.fr

 

autocampus : Terrain d’expérimentations pour véhicules autonomes, connectés sur le campus de l’Université Toulouse III Paul Sabatier

En 2013, l’université Toulouse III Paul Sabatier a lancé l’opération scientifique neOCampus qui vise à renforcer la collaboration entre les laboratoires de l’université en croisant les domaines d’applications.

Aujourd’hui l’université souhaite devenir un territoire d’expérimentations pour les systèmes de transport autonomes et connectés, lequel bénéficiera des instrumentations déployées sur le campus et de l’écosystème d’innovations de neOCampus.

Objectifs

- Equiper le campus de l’Université Paul Sabatier pour en faire un lieu unique et original pour expérimenter et valider les véhicules connectés et autonomes In Vivo c’est-à-dire dans un environnement correspondant à un milieu urbain facilement maîtrisable

- Faire émerger et de développer des projets alliant des partenaires académiques et industriels sur cette infrastructure dédiée aux systèmes de transport autonomes et connectés

En savoir plus : Plaquette_autOCampus_janvier_2018.01

Contact

autocampus.contact@univ-tlse3.fr

Towards a better LoRaWAN connectivity for all end-devices

gateway-LoRaWAN-Ecolab_oct19lorawan_oct19

In an ever growing demand for connected objects (e.g SmartGardens, connected flowers, connected hives etc), neOCampus has extended its LoRaWAN infrastructure with the addition of a new industrial-grade LoRaWAN gateway. Bought by the Ecolab laboratory, it will get soon installed on its rooftop. This new gateway will address the downlink issue end-devices are facing. Actually, while the LoRa radio technology enables a 15km line-of-sight (LOS) range for data upload, an end-device will hardly get its downlink data from such a range! Hence, this additional gateway will greatly increases the downlink capability for most of our end-devices allowing a broader range of use-cases :) What a federated LoRaWAN infrastructure is useful for ? It means that neOCampus will be able to delegate end-devices management on a per-project basis to some local/remote managers. Through the https://lorawan.univ-tlse3.fr, these managers will be able to declare end-devices that will get recognized by all of our gateways. Moreover, it will also gives them the opportunity to finely tune their data flow through a broad range of data end-points like MQTT, HTTP sink etc

Contacts

neOCampus technical staff : neocampus-tech_at _irit.fr

 

Back to Top