Context Presentation

Fog computing has emerged as a strong distributed computation paradigm to support applications with stringent latency requirements. It offers almost ubiquitous computation capacities over a large geographical area. However, Fog systems are highly heterogeneous and dynamic which makes IoT services placement decision quite challenging considering nodes mobility that may decrease the placement decision quality over time.

IoT-Fog Services placement problem needs to be thoroughly investigated to ensure the efficiency of such environments. In this thesis, we consider various parameters such as nodes mobility, energy efficiency and applications Quality of Service (QoS) requirements to propose efficient strategies for IoT services placement in the Fog.

image - tanissia DJEMAI


Internet of Things, Optimization, Mobility, Fog Computing, QoS, Energy.

Scientific goals

•    Propose efficient approaches for IoT applications (services) placement in the Fog,

•    Analyze their impact on the energy consumption of Fog infrastructures and the Quality of Service (QoS) of  applications.