Posts tagged "environnement"

Projet VILAGIL

Le projet VILAGIL porté par Toulouse Métropole, Tisséo, le SICOVAL et le PETR Portes de Gascogne a été retenu par l’Etat dans le cadre de l’appel à projets « Territoires d’Innovation » comme annoncé par le Premier Ministre ce vendredi 13 septembre. Il entend améliorer les conditions de déplacements à Toulouse.

Le dossier de presse est disponible ici

Un article de presse en parle ici

Impact of spatial strategies of bees on colony performance

Context Presentation

Foraging for food to substantiate one’s needs is of great importance for every species. In the case of bees, who are a social species, only a small selection of individuals has the task to bring the food for the whole colony, and thus has to take into account the needs of the entire population in terms of nutrients. As central place foragers, bees will explore and exploit flowers around their nest, where different species provide bees with different amounts and qualities of nectar. Bees are as a result faced with a complex problem: finding flowers that are not already exploited by other bees, which provide the nutrients in the right amount (either by foraging on a single species of flowers with a balanced diet, or on multiple species with unbalanced but complementary diets), and create a stabilized exploitation route between them. Following each individual bee in its foraging trip has been a technological challenge. However, today, as different tracking technologies (radars, camera tracking) are being developed, assisted with colony monitoring systems (connected hives), we can finally get some insights on these complex behaviors. As data are still scarce and only available in limited, simplified situations, building theoretical models that successfully replicate the spatial strategies of bees will allow us to make predictions on more complex and ecologically relevant scenarios.

Scientific Goals

- Conduct experimental tests for the fundamental hypotheses of the behavior.

- Build a new model based on experimental tests of simple situations and theoretical knowledge of bee foraging behavior.

- Test the model’s predictions in complex environmental situations.

Keywords

Spatial strategy, foraging behavior, nutritional geometry, connected hive

Contacts

thibault.dubois@univ-tlse3.frmathieu.lihoreau@univ-tlse3.fr

Life Cycle Assessment (LCA) of Lighting Systems: Environmental, Economics and Human Impacts Analysis

Context Presentation

When it comes to identifying and measuring the quantifiable effects of products or services on the environment, Life Cycle Assessment (LCA) is probably the most powerful and recognized tool. Thanks to a multicriterion and a cradle-to-grave approach, LCA identifies and quantifies, throughout the life of products, the physical flows of matter and energy associated with human activities (extraction of raw materials required for the manufacture of the product, distribution, use, collection and disposal to end-of-life systems and all phases of transport). For each of its flows, there are impact indicators that establish the overall potential impact of the system on our environment.

During past years, smart lighting technologies allowed significant improvements regarding lamp efficiency during use phase (from 19% to 15% of global electricity consumption), nevertheless, there are direct or indirect impacts on our environment, health, well-being or productivity not taken into account into Life Cycle Assessment (LCA) studies, and we can’t no longer neglected them.

image035

Figure 1: Impacts assessment of lighting systems

Scientific Goals

- How to extend LCA methodology in order to determine which lighting system is most performant regarding environmental, economic and social aspect?

- How using phase could impact on lamp overall performance (Light Loss Factor, Mean Time Before Failure and Maintenance Factor)?

- Which criteria should be used to reflect lighting impact on human health or ecosystems during use phase?

Keywords

Lighting systems, Life Cycle Assessment, Circadian effect, Life cycle Cost, Multicriterion analysis.

Contacts

kevbertin@gmail.com – bertin@laplace.univ-tlse.frEncadrants : georges.zissis@laplace.univ-tlse.fr , marc2.mequignon@free.fr

Animal Minds (OpenFeeder)

Context Presentation

- Study the behavior and cognition of titmouse in their natural environment using an electronic feeder, called an Openfeeder.

- Developed by SETE (Station of Theoretical and Experimental Ecology) and SelectDesign.

- System successfully deployed as an island (4 to 8 feeders) on 2 high altitude sites and 3 low altitude sites around SETE (fall 2018).

- A feeder = PIR sensor (detect the presence of a bird), RFID reader (identification), a door controlled by a servomotor. The bird is banded (a transponder), a software with several programmed cognitive task scenarios.

- Principle of operative conditioning (learning a stimulus/reward combination).

- Data collection by USB stick, OF by OF!

image033image034

Figure 1 : an 8 OpenFeeder station

Scientific Goals

- Synchronize the clocks of the OpenFeeder on each station

- Collect data (logs): centralization on an OF

- Transmit all collected data to the Laboratory (SETE), with RF module and GSM module

- Transmit errors and anomalies in real time by SMS via the GSM module

- Transmit config. (cognitive task scenarios,.ini files)

Keywords

Birdwatch, OpenFeeder, GSM, ALPHA_TRX 433s,

Contacts

kacimi@irit.fr | thiebolt@irit.fr | mcauchoixxx@gmail.comanzilane.mmadi@irit.fr | anzilane.mmadi@univ-tlse3.fr

Smart Clean Garden-Toulouse

Context Presentation

A Smart Clean Garden (SCG), is a planted filter recognised as nature based solution for water treatment of domestic water. Inspired from water quality regulation of natural rivers, a SCG shelters an enhanced biodiversity for encreased capacity of sewage in limited area of green cities. The addition of IoT as environmental sensors (moisture, NO3, Ph, conductivity,…) allows to survey and to better understand the complex system functioning inside the filter. Collected data will feed regular deterministic modeling and IA to describe the pollutant reduction process.

image024image025

Figure 1 : Planted filters with 2 granulometric levels that already exist on USTH campus at Hanoi, made by Epurteck as the first SCG pilote for demonstration and logo of the project

Scientific Goals

- To demonstrate that it is possible to treat a part of domestic water of UT3 campus and producing recycled water for gardening and watering the green area of the campus

- To test the capacity building of the water purification in the planted filter by using IoT survey and environmental data modelling ?

- To identify what are the main drivers that lead to the pollutant removial in this complex system made with sediment, water , biodiversity as a micro-organisms, macro-invertebrates and plants communities, nutrients, natural organic mater and antropic molecules (fertilisers, persistant organic pollutant, medical residus, etc…

Keywords

neOCampus, smart clean, garden, water, intelligent reuse, innovation,

Contacts

Magali Gerino (magali.gerino@univ-tlse3.fr) ; Léo Garcia (leo.garcia@iut-tlse3.fr) ; Dan Tan Costa ( EPURTECK, dan@epurtek.fr)

Back to Top