Cerebral palsy, gait analysis, robotic rehabilitation

Children with cerebral palsy (CP) have an altered locomotion with abnormal gait patterns such as crouch gait, for which the lower limb joints display too much flexion. An exoskeleton adapted to the needs of the patient could improve their walking abilities. An experimental session of gait analysis was conducted to analyze and compare precisely the gait of two twin sisters, one with CP, with the aim of developing an exoskeleton to treat CP. The healthy child showed no differences with the standard results except for the frontal plane kinematics of the knee and hip. The study of the muscular activity revealed an over-activation of all the muscles of the child with CP. The kinematic results showed too much flexion in the sagittal plane for the hip, knee and ankle, as well as asymmetric deviations in the frontal and transverse planes. The kinematics of the pelvis and lumbar region were also altered. Although the data was scarce due to experimental difficulties, the study of joint moments and powers showed altered profiles compared to the results of the healthy child. These findings will allow to run simulations of an exoskeleton and to develop a control strategy adapted to this particular child. 

Figure: General configuration of the experimental configuration 

Figure: Kinematics of the right hip, knee and ankle in the sagittal plane. The red results stand for the healthy child and the blue results for the CP child