La plupart des systèmes du monde réel sont des systèmes complexes. Ces systèmes sont caractérisés par des comportements non-linéaires et souvent non-prévisibles. Les systèmes ambiants, les réseaux, les milieux dans lesquels évoluent des robots ou des humains, sont tous des systèmes complexes. Mieux comprendre la dynamique de tels systèmes est donc un enjeu important, et cela peut passer par l’utilisation de simulations numériques. Cependant, la conception d’un modèle réaliste pour la simulation est difficile, dispendieux et sa validation peut prendre beaucoup de temps.
Objectifs scientifiques
Notre approche propose d’exploiter les données issues de l’observation du système complexe pour en générer automatiquement un modèle. Ces grandes masses de données sont les entrées d’un système multi-agent auto-adaptatif qui découvre automatiquement des corrélations simulant la dynamique complexe du système réel. Nous avons nommé ce système AMOEBA, pour Agnostic MOdEl Builder by self-Adaptation. AMOEBA est capable de généraliser, à fin de proposer des corrélations entre les données en entrée même dans des situations inédites. AMOEBA est également capable de s’auto-observer, permettant ainsi de détecter la présence de données inutiles, ou l’absence de données nécessaires à un bon apprentissage.
Contacts
- Julien Nigon (IRIT) : julien.nigon@irit.fr
- Marie-Pierre Gleizes (IRIT) : marie-pierre.gleizes@irit.fr
- Frédéric Migeon frederic.migeon@irit.fr