Posts tagged "interaction"

An Extension of a Predictive Model for Mixed Reality

IRIT, ENAC - Toulouse University

Keywords

Predictive Model, Human-Computer Interaction, Mixed Reality

Mixed Reality has taken off again with the arrival of Head-Mounted Displays. Moreover, mixed reality enables long-term user engagement with the IoT. Nevertheless, the design of a usable system requires many iterations between conception, implementation and evaluation. The use of a predictive model allows usability problems to be detected before implementation. In this project, our predictive model can model the completion time for pointing, validation and selection. First, we defined five new operators. Next, we have computed the unit time for each newly introduced operators. Then, we have consolidated our model through three user studies.Our model can predict the time (± 5%) to complete pointing, validation and selection tasks. 

Figure 1 - The five newly introduced operators in our model.

Scientific goals

- Identify operators for mixed reality

- Define unit times for our newly introduced operators

- Evaluate our model in ecological tasks

Contacts

florent.cabric_at_irit.fr, emmanuel.dubois_at_irit.fr, marcos.serrano_at_irit.fr

 
Interaction between patient and exoskeleton for cerebral palsy in children

LAAS-CNRS

Keywords

Cerebral palsy, gait analysis, robotic rehabilitation

Children with cerebral palsy (CP) have an altered locomotion with abnormal gait patterns such as crouch gait, for which the lower limb joints display too much flexion. An exoskeleton adapted to the needs of the patient could improve their walking abilities. An experimental session of gait analysis was conducted to analyze and compare precisely the gait of two twin sisters, one with CP, with the aim of developing an exoskeleton to treat CP. The healthy child showed no differences with the standard results except for the frontal plane kinematics of the knee and hip. The study of the muscular activity revealed an over-activation of all the muscles of the child with CP. The kinematic results showed too much flexion in the sagittal plane for the hip, knee and ankle, as well as asymmetric deviations in the frontal and transverse planes. The kinematics of the pelvis and lumbar region were also altered. Although the data was scarce due to experimental difficulties, the study of joint moments and powers showed altered profiles compared to the results of the healthy child. These findings will allow to run simulations of an exoskeleton and to develop a control strategy adapted to this particular child. 

Figure: General configuration of the experimental configuration 

Figure: Kinematics of the right hip, knee and ankle in the sagittal plane. The red results stand for the healthy child and the blue results for the CP child

Contact

anais.chaumeil_at_etu.emse.fr

Designing and Evaluating « Phygital » Interaction Techniques for Noise Management in the University Library

Context Presentation

The goal of this project is to provide a librarian with easy to use interactive tools to monitor and control the noise made by students in a University Library. Sensors installed in the library detect the level of noise in different places of the library. Based on this information, the librarian can observe where in the library the level is too high and hence go and warn the students.

In addition, this tool allows the librarian to define zones in the library with different levels of authorized noise, to allow different forms of work in the library. For monitoring and control, the approach we explore in this project is based on the use of a physical model representing the whole library as it may constitute a strong support to the librarian to understand to which place in the library the information is related to.

Illustration - Xiaobo Feng

Keywords

Interaction techniques, Phygital Interaction Technique

Scientific goals

•    Design and implement “phygital interaction techniques”, i.e. based on the use of a physical support to visualize and interact with digital data related to a physical location. Combining an immersive visualization and a physical model requires the development of original and relevant techniques.

•    Assess the impact of phygital interaction techniques, on the usability of the interaction technique. Users experiments will be conducted to compare our solutions to monitoring application based on the use of lists of table and zones.

Contact

Jiaming.Feng@irit.fr

Interaction Techniques for Situated Data through a Physical Model

Context Presentation

Over the last decades, the amount of data has increased to 29000 Go produced each second. Understanding the data requires tools to transform these numbers, texts and images into concrete representations. The field of data visualization aims to produce data representation to visualize and analyze abstract data. Building, people or vehicles produce a lot of data collected by many sensors. These specific data are related to a physical location (e.g. number of people in a room is related to the room, humidity in a floor is related to the floor, etc.) Bring and display them close from their physical context allow people to make a better representation of the data (Embedded Data Representations, Willet et al. , 2017).

In this project we aim to design interaction techniques to navigate and manipulate the data close to a physical referent. The main goal is to develop a full interactive physical model of the campus endowed with situated data.

3d flat retouche5 - Cabric Florent(1)

Keywords

Interaction Techniques, Situated Data, Phygital Model, Human Computer Interaction

Scientific goals

Design and evaluation interaction techniques to explore a digital modeldesign and evaluate interaction techniques with situated databuild a physical model of the campus endowed with situated data and interactive capabilities

Contacts

florent.cabric@irit.fr, emmanuel.dubois@irit.fr, marcos.serrano@irit.fr, christophe.hurter@enac.fr

Conception of Timeline Component for Timed Data Analyzis

Context Presentation

SandFox project is a collaborative project between IRIT and Berger-Levrault company. This project is part of neOCampus initiative. The goal is to find best ways to represent and interact with data. These data are dated, we would like to be able to compare them over different periods.

To do that, we were doing research concerning different existing models of interaction with data. We were looking among those that most closely matched expectations of our collaborators. From these models, we were going to the conception step of low and medium fidelity prototypes. For the selected model, we were choosing a circular representation. This representation allows more visibility to compare several periods of time. We were also able to produce a low fidelity prototype (paper prototype) and a medium fidelity prototype in progress (make on adobe Xd).

In conclusion, we were founding a representation that allows a clear view of data but lacks interactives elements to change building data for another building or interaction modalities which have not yet been clearly defined.

sandfox_timeline_clastres - Flych

 

Keywords

Human-Computer Interaction, SandFox, data, interaction, neOCampus, Data Visualization, Data Interaction

Scientific goals

Facilitate the interaction of temporal data from different sources and/or different time periods.

Contacts

flavien.clastres-babou@univ-tlse3.fr, mathieu.raynal@irit.fr, christophe.bortolaso@berger-levrault.com, stephanie.rey@berger-levrault.com 

SandFox: Dashboard for monitoring the energetic consumption

Context Presentation

In a context of energy transition and reduced energy consumption, the SandFox project is a collaborative project between IRIT and Berger-Levrault. This project aims to design a dashboard that displays these energy consumptions and facilitate data analysis and comparison. It also notifies users of detected anomalies on energetic data.

SandFox is a web application based on user-centered design. The dashboard offers an interactive map with the ability to select buildings and display multiple data curves based on selected buildings. This application is developed with Angular, typescript and D3.js.

The research on this project aims to study different visualizations and interactions to facilitate the comparison of buildings and/or periods on the timeline. One proposed solution is a spiral heatmap representation that displays and compares different periods.

image050

Figure 1 : « SandFox dashboard »

Scientific Goals

- The main goal of the project is to study the different ways of visualizing and interacting with the data for :

- Displaying information on energy consumption for different users

- Analyzing and comparing these data

Keywords

neOCampus, Energy Consumption, Dashboard, innovation, Data Visualization, Data Interaction, Human–computer interaction

Contacts

maxime.durand@irit.fr /mathieu.raynal@irit.fr / christophe.bortolaso@berger-levrault.com / marie-pierre.gleizes@irit.fr

Emergent User-Centered Services in Ambient and Smart Environments

Context Presentation

Cyber-physical and ambient systems surround the human user with services at her/his disposal. From these services, complex composites services, tailored to the user preferences and the current situation, can be composed automatically and on the fly. In order to produce the knowledge necessary for automatic composition in the absence of both prior expression of the user's needs and specification of a process or a composition model, we develop a generic solution based on online reinforcement learning. It is decentralized within a multi-agent system in charge of the administration and composition of the services, which learns incrementally from and for the user.

image049

Figure 1: Opportunistic Software Composition

Scientific Goals

- Design a decentralized and distributed system that learns and decides on compositions

- Consider user preferences and context

Keywords

Ambient intelligence; Service discovery, selection and composition; Multi-agent system; Machine learning; Smart city; neOCampus

Contacts

walid.younes@irit.frjean-paul.arcangeli@irit.fr – sylvie.trouilhet@irit.fr – francoise.adreit@irit.frvalerie.camps@irit.fr, celine.lemercier@univ-tlse2.fr

Acceptability Conditions for Human to Cooperate with an Autonomous Driving System

Context Presentation

This internship concerns autonomous vehicles of level 3. A level 3 vehicle is only capable of taking full control and operating given specific conditions. However the vehicle is not fully autonomous and the human driver must remain vigilant even in the autonomous driving phase as he can be asked at any moment to retake control over the vehicle in a short amount of time in the event of a failure (situation too complex for the vehicle to handle for example). It is therefore important to make sure that the human driver is always in a state fit to take back control.

In this context, our goal is to design a system capable of observing the human driver while using the vehicle in various situations and to extract a personal profile from these observations that will then be used to measure the attention of the human driver. In the case of low attention, the system will also need to act by either trying to increase the attention of the human driver, or telling the autonomous vehicle that the human driver is not fit to take back control at a moment's notice.

image048

Figure 1 : « A distracted driver in an autonomous vehicle »

Scientific Goals

- to understand and define the intrinsic and contextual factors defining the driver's attention level

- to design a multi-agent system to estimate at runtime the human driver's attention level and to maintain it based on contextual information

- to define and implement an experimental protocol to evaluate the proposed multi-agent system.

Keywords

Autonomous vehicle, cooperative multi-agent system, dynamic learning, synthetic environment.

Contacts

michael.geraedts-muse@irit.fr,

Interactive data physicalization: “phygitals” Interaction techniques for data exploration

Context Presentation

Over the last decades, the amount of data has increased to 29000 Go produced each second. Understanding the data requires tools to transform these numbers, texts and images into concrete representations. The field of data visualization aims to produce data representation to visualize and analyze abstract data. Building, people or vehicles produce a lot of data collected by many sensors. These specific data are related to a physical location (e.g. number of people in a room is related to the room, humidity in a floor is related to the floor, etc.) Bring and display them close from their physical context allow people to make a better representation of the data (Embedded Data Representations, Willet et al. , 2017)

In this project we aim to design interaction techniques to navigate and manipulate the data close to a physical referent. The main goal is to develop a full interactive physical model of the campus endowed with situated data.

image047

Figure 1 : (left) TouchGlass project (Cabric et al. 2019) and (right) the design space of interaction techniques for physical referents endowed with situated data

Scientific Goals

- Conceptualize the Interaction Techniques With Situated Data and establish a design space

- design and evaluate interaction techniques with situated data

- Which interaction techniques could be designed to support an interactive scaled model of the campus with situated data ?

Keywords

Phygital, model , situated data, design space

Contacts

Florent.cabric@irit.fr ; Emmanuel.dubois@irit.fr ; Marcos.Serrano@irit.fr ; Christophe.hurter@enac.fr

Interaction avec des Données Numériques Intégrées au Monde Physique : Application aux Maquettes d’Architecture

Les données sont aujourd’hui omniprésentes dans notre quotidien. Le projet neOCampus a pour but d’offrir de nouveaux services aux usagers d’un campus en exploitant des données de différentes natures (température, consommation, nombre de personnes, bruit, luminosité, etc.) et captées en continu dans toutes les salles du campus de l’Université. Toutefois une telle quantité de données est, pour l’utilisateur novice, complexe à analyser, comprendre et manipuler. Il est donc nécessaire de concevoir, d’implémenter et d’évaluer de nouvelles méthodes de visualisation et d’interaction avec ces données.

Ce projet explore l’apport potentiel de l’utilisation d’un support physique pour interagir avec ces données en entrée (contrôle et action de de l’utilisateur sur les données) et en sortie (rendu des données sur l’objet physique). En effet les données captées étant relatives à des bâtiments ou des dispositifs dans ces bâtiments, ancrer ces données dans un modèle physique représentant le lieu de collecte de la donnée doit permettre aux utilisateurs de mieux se projeter dans des données et donc de mieux les appréhender. On appelle cela la physicalisation interactive de données et l’on s’intéresse au développement de maquettes physiques interactives supports à l’exploration de données.

S5P5

Figure 1 : Visualisation de données de consommation énergétique sur des maquettes physiques

Objectifs scientifiques

Les objectifs de ce projet sont :

- Concevoir et développer un processus de construction d’une maquette physique interactive.

- Concevoir et étudier des techniques d’interaction sur maquette physique.

- Établir un environnement interactif pour augmenter une maquette physique.

Contacts

Florent.cabric@irit.fr, Marcos.serrano@irit.fr, Emmanuel.dubois@irit.fr

 

 

Back to Top