Towards Content-Centric Control Plane Supporting Efficient Anomaly Detection Functions

Hoang-Long Mai1,2 Guillaume Doyen2 Wissam Mallouli1
Edgardo Montes-de-Oca1 Olivier Festor3

1Montimage, Paris - France, 2Troyes University of Technology, France, 3Lorraine Research Laboratory in Computer Science and its Applications, France

Journées Cloud 2019, Toulouse, France
To appear in the 15th International Conference on Network and Service Management - CNSM 2019
Outline

1. **Introduction**

2. **Background**

3. **A content-centric Bayesian Inference Algorithm**

4. **Numerical Results**

5. **Conclusion**
Introduction

Context & Problematic
- Large number of low resource IoT devices & complex security functions
- Distributed Anomaly detection in IoT, Fog Computing

Hypothesis
- Each node executes identical security functions
- Metrics do not change frequently, results are repeated gradually over time
- Results are probably already executed in neighbor nodes
⇒ Hypothesis verification: *In a normal condition of Named Data Networking, 87% of computational security operations are repeated.*

Contribution
- Leveraging Named Function Networking (NFN) as an execution environment for anomaly detection (AN)
- Consider Bayesian Network (BN) inference as an AN framework since it stands for a representative function that numerous security components
Background on ICN - NDN - NFN

Information Centric Networking (ICN) - Named Data Networking (NDN)

- Name each content object instead of using IP address
- In-network caches for better delivery performance
- Among all ICN proposals, Named Data Networking (NDN) is the most promising one

Named function networking (NFN)

- Naming a function defined by its name and its parameters, and using \(\lambda \)-expressions as name resolution
- In-network caches results of calculation
Background on Bayesian Networks

Terminology

- A random variable, called X_i, is a set of possible values of a random phenomenon.
- An evidence $E = e$ is a subset $E = (X_{e_1}, \ldots, X_{e_m})$ of random variables standing for the observed phenomenon.
- A factor ϕ is defined as a function from a set of random variables $\text{Val}(X_1, \ldots, X_n)$ to \mathbb{R}.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>$\phi(A, B, C)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.35</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0.07</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.21</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0.09</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0.18</td>
</tr>
</tbody>
</table>
Background on Bayesian Networks

Bayesian Inference

- A Bayesian Network (BN) is a probabilistic graphical model that consists of nodes and directed edges.

- The inference designates an algorithm which consists in calculating the conditional probability of $P(X_q|E=e)$:
 \[
P(X_q) = \frac{1}{Z} \sum_{X_n} \phi_n \cdot (\ldots (\sum_{X_2} \phi_3 \cdot (\sum_{X_1} \phi_2 \cdot \phi_1))) \tag{1}
 \]

 where
 \[
 Z = \sum_{X_1, \ldots, X_n} \prod_{i=1}^{n} \phi_i(X_i, Pa(X_i)) \tag{2}
 \]

Figure: Example of a Bayesian network
Background on Bayesian Networks

Variable Elimination (VE) algorithm

Input: initial factors (Φ) and evidence (E=e)
Output: Conditional probability \(P(X_q|E = e) \)

1. foreach \(\phi_i \in \Phi \) do
2. \(\phi_i \leftarrow \phi_i(E = e) \) // Factor reduction
3. end
4. Select Elimination Order (\(\sigma \));
5. foreach \(x_i \in \sigma \) do
6. \hspace{1em} foreach \(\phi_j \in \Phi \) do
7. \hspace{2em} if \(x_i \in \text{Scope}[\phi_j] \) then
8. \hspace{3em} \(\psi_i \leftarrow \psi_i \ast \phi_j \) // Factor product
9. \hspace{2em} end
10. \end
11. \(\phi_i \leftarrow \sum_{X_i} \psi_i \) // Factor marginalization
12. end
13. foreach \(\phi \in \Phi \) do
14. \(\varphi \leftarrow \varphi \ast \phi \) // Factor product
15. end
16. \(Z \leftarrow \sum_{X_1...X_n} \varphi \)
17. \(P \leftarrow \varphi/Z \) // Factor normalization

Algorithm 1: Variable Elimination algorithm
1 Introduction

2 Background

3 A content-centric Bayesian Inference Algorithm

4 Numerical Results

5 Conclusion
Naming scheme and data structure - Factor

Properties
- The *factor* packet includes three parts: the list of the names of random variables, their dimensions, the list of all values of ϕ.
- Types of factors: the initial factors and the temporary factors.

Naming scheme
- `/data/fac/initial/<name of variables>`
- `/data/fac/temporary/<hash(factor)>`

Data structure

<table>
<thead>
<tr>
<th>Structure</th>
<th>List of variables’ name</th>
<th>List of variables’ dimension</th>
<th>List of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detail</td>
<td>X1 X2 ... Xn dim(X1) dim(X2) ... dim(Xn)</td>
<td>$\phi(X_1 = 1, X_2 = 1, ..., X_n = 1)$ $\phi(X_1 = 1, X_2 = 1, ..., X_n = 2)$... $\phi(X_1 = \text{dim}(X1), X_2 = \text{dim}(X2), ..., X_n = \text{dim}(Xn))$</td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>A B C 3 2 2</td>
<td>0.25 0.35 0.08 0.16 0.05 0.07 0.0 0.15 0.21 0.09 0.18</td>
<td></td>
</tr>
</tbody>
</table>

Figure: Data structure of a *factor*
Properties

- The packet of *evidence* encompasses three parts: the name of variables, their dimensions, and values of the *evidence*.
- An *evidence* is designed to be computed with a *factor* in *factor reduction*.
- The value of the *evidence* for a variable in a packet consists of a chain of 0’s and 1’s.

Naming scheme

- `/data/evi/<name of variables>/<values of evidence>`

Data structure

Figure: Data structure of an *evidence*
Transformation of functions into λ-calculus

Principle functions

- Factor reduction: `/func/reduce/(/data/fac/...,/data/evi/...)`
- Factor product: `/func/product/(/data/fac/...,/data/fac/...)`
- Factor marginalization: `/func/marginalize/(/data/fac/...,variable)`
- Factor normalization: `/func/normalize/(/data/fac/...)`

Figure: Example of function factor reduction

```plaintext
1  Function reduceFactor(fac, evi)
2      return getVarDim(fac,getVarDimEvi(evi)) + SEPARATOR_CHAR
3      serialize(filter(lambda x: x > -1,  
4          map(lambda x,y: -1 if y == 0 else x*y, 
5          deserialized(fac), reduce(lambda x,y:  
6           productEviVal(x,y),getValEvi(evi)))))
```

Figure: Transformation of factor reduction into λ-calculus
Outline

1. Introduction
2. Background
3. A content-centric Bayesian Inference Algorithm
4. Numerical Results
5. Conclusion
Use case: the Content Poisoning Attack

- Alter content by inserting Bad Data into the cache of routers
- CPA has a subtle impact on several of metrics

Figure: Experiment topology
Implementation

Figure: Bayesian Network to detect CPA
Implementation

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFN</td>
<td>The newest version of NFN written in python</td>
<td>https://github.com/cn-uofbasel/PiCN</td>
</tr>
<tr>
<td>NFD</td>
<td>The Networking Forwarding Daemon of NDN</td>
<td>http://named-data.net/doc/NFD/current/</td>
</tr>
<tr>
<td>jNDN</td>
<td>A NDN client library for Java</td>
<td>https://github.com/named-data/jndn</td>
</tr>
<tr>
<td>pgmpy</td>
<td>Standard library for Bayesian Network</td>
<td>https://github.com/pgmpy/pgmpy</td>
</tr>
</tbody>
</table>

Table: List of tools used in the implementation

Verification of proposed algorithm

The results of the proposed algorithm are 100% identical to the results of the standard library for BN - `pgmpy`.
Evaluation

Figure: Snapshot of computational time over time
Evaluation

![Graph: Percentage of cache, local computation and communication]

Figure: Evolution of proportion of requests over time
Evaluation

Figure: Snapshot of computational time before and during attack
Evaluation

Figure: Impact of available CPU resources
Evaluation

Figure: Impact of \#nodes in BN
Evaluation

Figure: Impact of #relations in BN
Evaluation

Impacts on computational time

In term of computational time, the proposed approach is efficient when:

- The cache is fed with results from previous executions or neighbor nodes
- In normal traffic but not abnormal traffic
- The computation capacity is limited
- The BN is complex and needs a significant amount of operations
Outline

1. Introduction
2. Background
3. A content-centric Bayesian Inference Algorithm
4. Numerical Results
5. Conclusion
Conclusion & future work

Conclusion

- The core elements for the design and implementation of an NFN-supported Bayesian Network inference algorithm has been proposed.
- Numerical results demonstrated that an NFN-supported BN performs better not only in the case of limited computational resources but also when the BN is complex.

Future work

- Focus on further developing the content-oriented control plane by extending the current approach to integrate other methods for anomaly detection.
- Other attacks will also be considered to demonstrate the applicability and generality of the proposed approach.