LoRaWAN networks for the air quality monitoring with low-cost sensors

Alexandros SIDIRAS GALANTE INRIA/INSA-Lyon Walid BECHKIT INSA-Lyon/INRIA

LPWAN 2022

Context: Air pollution

Clean air Vs polluted air Shanghai ⁵

- Triggering diabetes in 3.2 million people each year ¹
- 600 000 deaths of children under 5 years per year ²
- 500 000 deaths per year in Europe ³
- 100 Billion € of annual cost in France ⁴

- ¹ source: sciencenews.org, 2018
- ² source: WHO, 2018
- ³ source : European Environment Agency, 2017
- ⁴ source : French Senate, 2015
- ⁵ http://www.shanghai.gov.cn

Context: Low cost wireless sensor networks

Traditional monitoring stations Paris (France) High Accuracy High cost, low granularity

Air quality low-cost sensor Tiny, low cost & High spatial/temporal granularity Low installation & operational cost Less accurate Regular calibration

NO₂ annual concentrations , 2012 Lyon, France (Source **ATMO-AuRA**) High Granularity Low accuracy

Low cost WSN for air quality: Multiple use cases

UrPolSens (IMU,2015-2018) CaptPolAir (PEPS,2016)

Illustration by Malou ALLAGNAT, Grand Lyon ,member of 3M'Air

3M'Air sensor node 3M'Air (IMU,2018-2022)

DRON-MAP (ANR,2021-2025)

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES

Our use case: static low cost sensors

Outline

1. Context

- 2. Big picture
- 3. Sensor node: design and optimization
- 4. Data collection: LoRaWAN
 - 1. Private network (for offshore deployment)
 - 2. Operated network (for onshore deployment)
- 5. Results and feedback

2. Big picture

7

3. Sensor node: design and optimization

- Connect the sensor to the internet (sensor abstraction)
- UART, I2C, SPI, Digital, Analog
- Arduino MKRWAN 1310
- LoRaWAN class A device
- Low consumption on IDLE
- Measure & transmission time customizable
- EEPROM + SD storage

Picture of the node's interior

3. Sensor node: design and optimization

4.1 Data collection: LoRaWAN Private network offshore

- Offshore → operated network
- Open-source
- Self-hosted
- Free
- Reliable
- Customizable
 - ADR

INSTITUT NATIONAL

DES SCIENCES APPLIQUÉES

4.1 Data collection: LoRaWAN Private network offshore

- Onshore server
- Security
- GUI

Software architecture of the private LoRaWAN network

4.1 Data collection: LoRaWAN Private network

Plot of the different node's SF with ADR enabled

INSTITUT NATIONAL

DES SCIENCES APPLIQUÉES

- **1.** Time synchronization issue
- 2. Remote configuration

- All means saved to the SD card
- Internal oscillator drift → Not reliable for time and date
- RX slot timing vary from device to another
- Time gap can be equal to TX or more

08:00 AM

Chronogram of the TX, RX slots and the command with the « blind » time and date sender enabled

Chronogram of the TX, RX slots and the command with the improved time and date sender enabled

- Measuring, averaging & transmission frequency → Flexible
- 1 Packet = X means (typ. 5)
- Time gap between each mean ? (may vary)
- Gap needed for packet decoding
- → Every distant setting change => node acquits sending the snapshot of current settings => Server actualizes the settings

12:08 AM packet data section

5. Results

Plot of various air quality sensors' data (ppb) installed in the three nodes from July 2021 to September 2021

Plot of the temperature sensed by the three nodes from July 2021 to September 2021

5. Results

Retransmission => Applicative needs(1% SF12)

LPWAN 2022

5. Conclusion

- Emergence of solution based low-cost sensors
- Multiple use cases
- LoRaWAN suitable for industrial purposes
- ADR offshore
- Deployment on private & operated

5. Perspectives

- Industrial valorization
 - Success of two deployments
- Genericity → More use cases
- Chronic (fixed) → Punctual (mobile)
 - DRON-MAP
 - Communication & coordination

Merci

Questions ?

