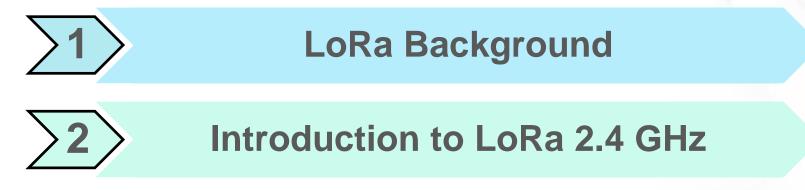
LoRa 2.4 GHz: a methodology to study coexistence in the 2.4 GHz ISM band

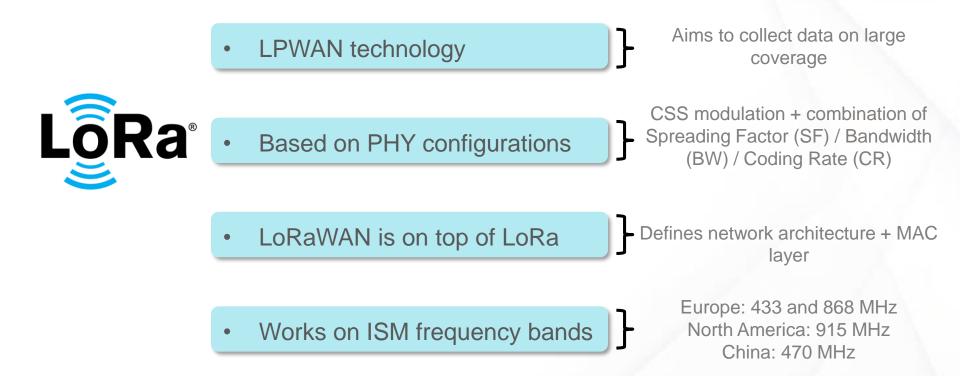
Journées LPWAN, Toulouse, July 2022

Gwendoline HOCHET DEREVIANCKINE | gwendoline.hochet-derevianckine@inria.fr With Alexandre Guitton (UCA) | Oana Iova (INSA Lyon) | Baozhu Ning (Semtech) | Fabrice Valois (INSA Lyon)


LÔRa

Agenda

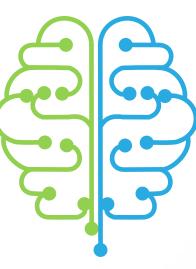
> 3 > A methodology for coexistence study


Conclusions and perspectives

semtech.com/LoRa

LoRa Background

LoRa 2.4 GHz: Advantages


LoRa sub-GHz limitations

Frequency bands are country-dependent \rightarrow one hardware per region

Duty cycle between 0.1 and 10% depending on the frequency used

Low data rate (up to 12.5 kb/s) due to frequency band

Localization accuracy from 20 to 200 meters

LoRa 2.4 GHz solutions

All regional regulations for the 2.4 GHz ISM band have large intersections \rightarrow design of a single hardware

No duty cycle constraints

Allow higher data rate (up to 253.91 kb/s) → reduces latency and offers real-time applications opportunities

Improved localization accuracy (about 2 meters)

PHY Layer configurations in 2.4 GHz: what is new?

	LoRa sub-GHz	LoRa 2.4 GHz	
Spreading Factor	7-12	5 , 6-12	
Bandwidth (in kHz)	125 , 250, 500	203 , 406, 812, 1625	
Coding Rate	4/5 , 4/6, 4/7, 4/8		
Data Rate (in kb/s)	0.98 to 12.5 (uplink) 0.98 to 21.9 (downlink)	0.595 to 253.91	
MAC Standardization	LoRaWAN	1	

Channel characterization: the 2.4 GHz ISM band

The 2.4 GHz ISM band is widely used by wireless technologies

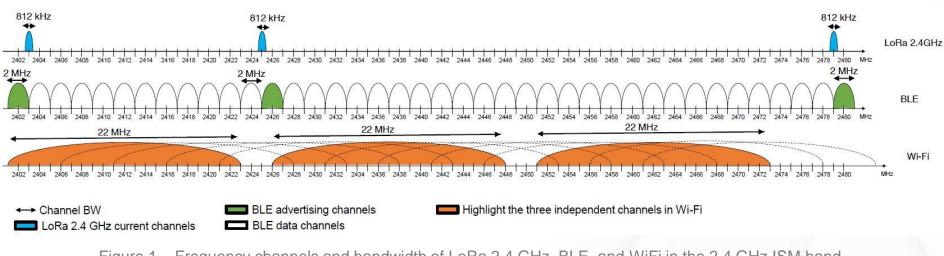


Figure 1 – Frequency channels and bandwidth of LoRa 2.4 GHz, BLE, and WiFi in the 2.4 GHz ISM band

SEMT

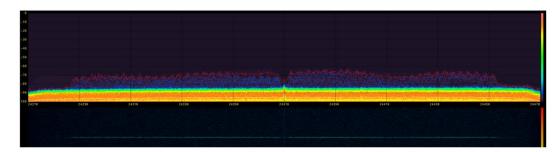
semtech.com/LoRa

Channel characterization: motivations

3 main categories in the state of the art:

- Spectrum occupancy [1]
- Coexistence:
 - Without concurrent communications of others wireless technologies [2]
 - Interference mitigation/detection [3]
- Cross-technology communication [4] [5]

Objective: being able to characterize the environment in order to perform experiments in a known environment and observe the impact of a given technology on the performance of another technology and vice versa



Channel characterization : steps

- 1) Spectrum occupancy at a given time \Leftrightarrow screenshot of the channel
- 2) Technology identification (this talk)
- 3) Percentage of channel occupancy per technology

Channel characterization: setup

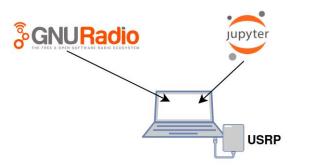
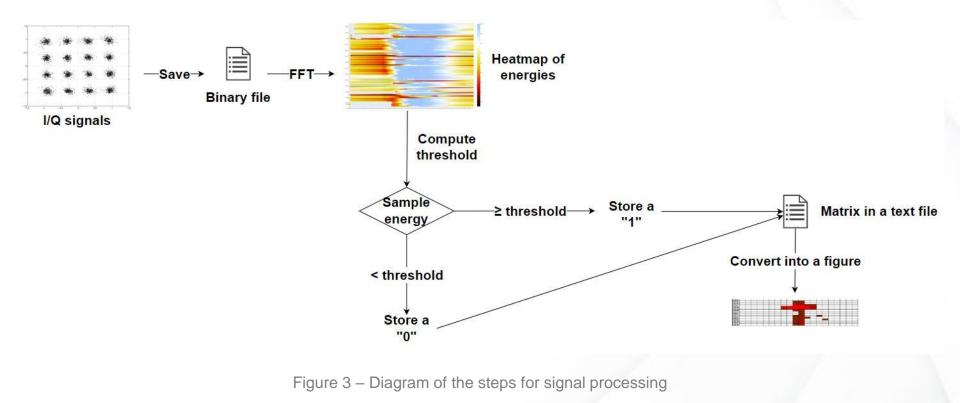
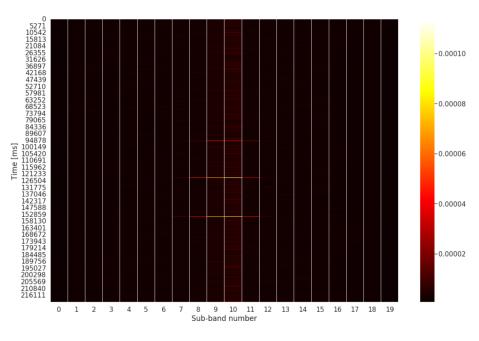



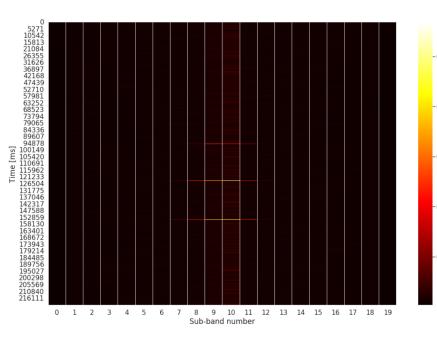
Figure 2 – Setup for capturing and processing signals in the 2.4 GHz ISM band

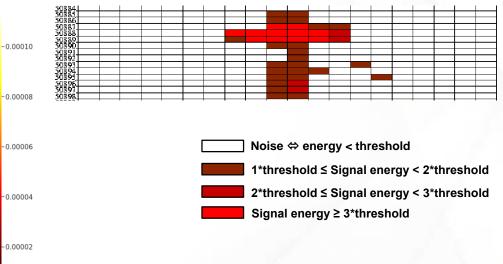
- Capturing signals in the 2.4 GHz ISM band:
 - 1 USRP connected to a laptop for sensing the environment
 - GnuRadio software for signal visualization and recorded
- Post-processing data:
 - Binary files containing complex float data
 - Python programming
 - JupyterLab software for signal processing
- Parameters:
 - Capture duration approximately 1
 minute per file
 - BW = 4 MHz
 - Split the record BW into 20 sub channels → 1 sub channel = 200 kHz



Channel characterization: is it noise or signal?

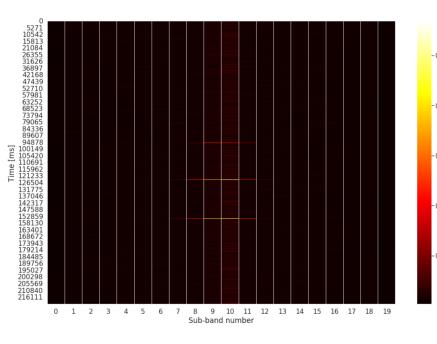
SEMTECH 10

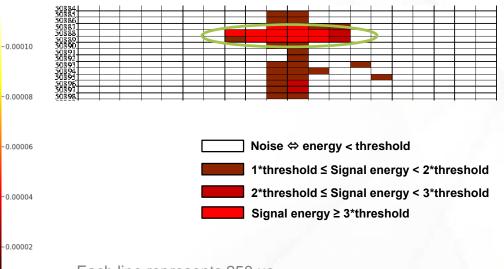

Channel characterization: identification of a BLE advertisement



semtech.com/LoRa

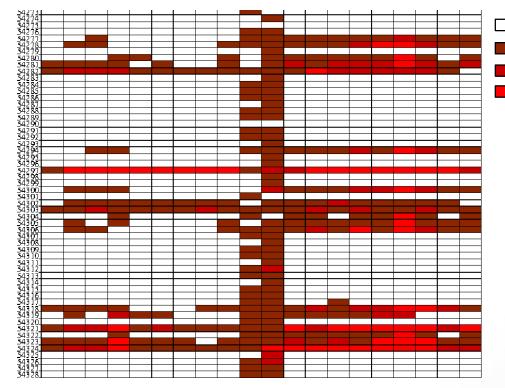
Channel characterization: identification of a BLE advertisement





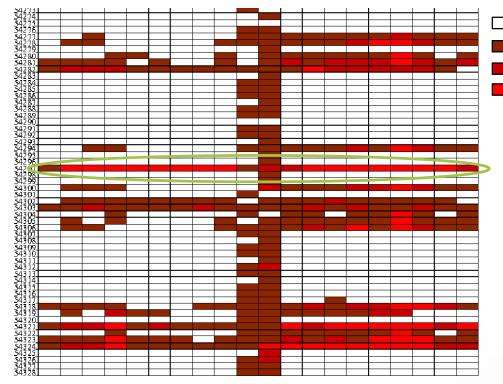
- Each line represents 250 µs
- Each rectangle represents 200 kHz
- 6 rectangles are detected to be a signal → 6*200kHz = 1200 kHz
- BT is 1 MHz bandwidth → we can associate this signal to BT

Channel characterization: identification of a BLE advertisement



- Each line represents 250 µs
- Each rectangle represents 200 kHz
- 6 rectangles are detected to be a signal → 6*200kHz = 1200 kHz
- BT is 1 MHz bandwidth → we can associate this signal to BT

Channel characterization: identification of a Wi-Fi signal



Noise ⇔ energy < threshold 1*threshold ≤ Signal energy < 2*threshold 2*threshold ≤ Signal energy < 3*threshold Signal energy ≥ 3*threshold

- Each line represents 250 µs
- Each rectangle represents 200 kHz
- Spectral occupancy of common wireless technologies:
 - LoRa 2.4 GHz = usually 812 kHz
 - BT = 1 MHz
 - BLE = 2 MHz
 - Wi-Fi = usually 22 MHz
- All the 4 MHz of bandwidth is detected as signal
 - ➔ we can associate the signal to Wi-Fi

Channel characterization: identification of a Wi-Fi signal

Noise ⇔ energy < threshold 1*threshold ≤ Signal energy < 2*threshold 2*threshold ≤ Signal energy < 3*threshold Signal energy ≥ 3*threshold

- Each line represents 250 µs
- Each rectangle represents 200 kHz
- Spectral occupancy of common wireless technologies:
 - LoRa 2.4 GHz = usually 812 kHz
 - BT = 1 MHz
 - BLE = 2 MHz
 - Wi-Fi = usually 22 MHz
- All the 4 MHz of bandwidth is detected as signal
 - ➔ we can associate the signal to Wi-Fi

Channel characterization for coexistence study

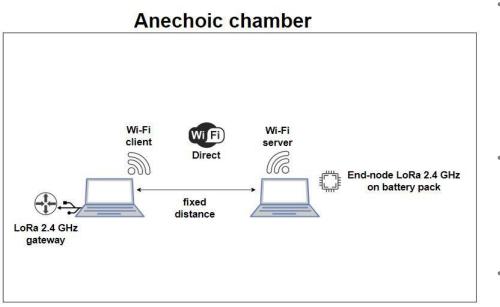


Figure 4 – Setup for coexistence study between LoRa 2.4 GHz and Wi-Fi in anechoic chamber

- LoRa 2.4 GHz side:
 - SX1280 provided by Semtech
 - 2 fixed configurations (highest data rate and highest reliability)
 - Varying P_{Tx} between 0 dBm and 13 dBm with a 3 dBm step
 - Evaluate the three current channels for LoRa 2.4 GHz (2403, 2425 and 2479 MHz)
- Wi-Fi side:
 - 2 Linux computer connected in Wi-Fi Direct
 - Generate UDP traffic with iperf or mgen
 - + Varying P_{Tx} starting at 20 dBm and decreasing
 - Varying channels depending of LoRa channel evaluated
- General parameters:
 - Distance between devices is fixed
 - For each packet (LoRa and Wi-Fi), we collect RSSI, SNR and PDR
 - Experiments performed in anechoic chamber in order to avoid external interference

Concluding remarks

 LoRa 2.4 GHz will take place in a very crowded frequency band → coexistence, and more specifically interference mitigation/detection is one big challenge to investigate

• We propose a methodology to characterize the 2.4 GHz ISM band environment and associate a signal to a known wireless technology

• We propose an experimental scenario to study the impact of LoRa on Wi-Fi performance, and vice versa, in a controlled environment

Perspectives: What's next?

- Improve the technology identification method
 - Improve the definition of the different power levels → make a gradient figure depending of the strength of the recorded signal
 - Automatize the technology identification

- Future works:
 - Run experiments on Wi-Fi and LoRa interference:
 - (1) In a controlled environment \Leftrightarrow anechoic chamber
 - (2) In an uncontrolled environment \rightarrow using the channel characterization in a work building
 - Improve coexistence base on previous results
 - Repeat experiments for other 2.4 GHz wireless technologies such as BT and BLE

Thank You

Questions?

Gwendoline HOCHET DEREVIANCKINE | gwendoline.hochet-derevianckine@inria.fr

References

- [1] M. Höyhtyä, J. Lehtomäki, J. Kokkoniemi, M. Matinmikko and A. Mämmelä, "Measurements and analysis of spectrum occupancy with several bandwidths," in *2013 IEEE ICC*, Jun. 2013.
- [2] G. Chen, W. Dong and J. Lv, "Lofi: Enabling 2.4 GHz LoRa and WiFi coexistence by detecting extremely weak signals," in *2021 IEEE INFOCOM*, May. 2021.
- [3] C. Orfanidis, LM. Feeney, M. Jacobsson and P. Gunningberg, "Investigating interference between LoRa and IEEE 802.15. 4g networks," in *2017 13th IEEE WiMob*, Oct. 2017.
- [4] Z. Li and Y. Chen, "BLE2LoRa: Cross-Technology Communication from Bluetooth to LoRa via Chirp Emulation," in *2020 17th IEEE SECON*, Jun. 2020.
- [5] P. Gawlowicz, A. Zubow, and F. Dressler, "Wi-Lo: Emulating LoRa using COTS WiFi," *arXiv:2105.04998 [cs]*,
 May 2021, arXiv: 2105.04998. [Online]. Available: <u>http://arxiv.org/abs/2105.04998</u>

When the SF decreases, the sensitivity decreases too.

SF	SNR limit (in dB)	
12	-20	
11	-17,5	
10	-15	
9	-12,5	
8	-10	
7	-7,5	
6	-5	
5	-2,5	

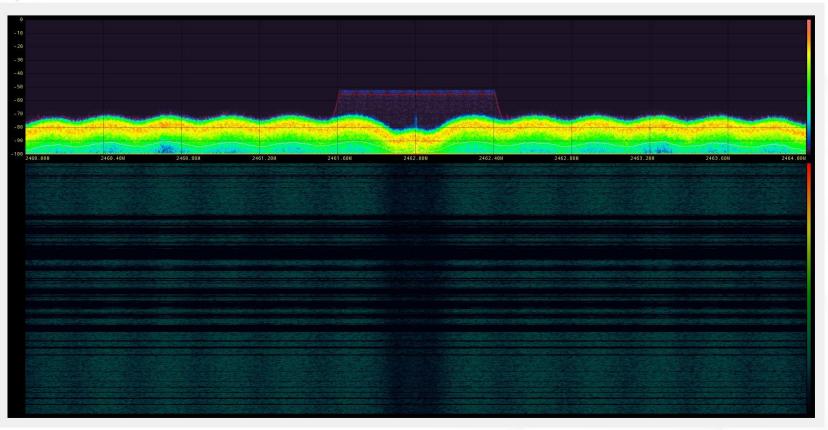
	SF-BW	Signal RSSI (in dBm)	Channel RSSI (in dBm)
LoRa sub-GHz	7-500	-116	-111
	12-125	-137	-117
	8-125	-127	-117
LoRa 2.4 GHz	5-1625	-99	-106
	12-203	-130	-115
	7-812	-112	-109
	11-812	-123	-109

Steps of the signal processing:

- FFT on binary file containing data
- Apply the Perceval theorem to compute energy ($\sum abs(z^2)$ with z = I + Q) of each sample
- Convert the 2D Matrix, containing energies, into a 1D vector and sort the resulting vector
- Compute a threshold
 - If energy ≥ threshold → signal
 - If energy < threshold → noise
- Convert the energy vector into a figure according to the compute threshold
- Associate a signal to a known wireless technology of the 2.4 GHz ISM band


```
3
```

```
[10]: # START FFT loop
   # Define the sub-band size by splitting into various part the total bandwith
   Fs = sample rate
   Fs sub = Fs/n subchannel
   # What BW represent one bin ?
   freq bin = Fs/fft len
   # give the scale of FFT results <=> from -Fs/2 to Fs/2
   f= Fs*(np.arange(0, fft len, 1) - fft len/2)/fft len
   # How many bins are necessary to represent the sub band (Fs_sub) ?
   nb bin= int(Fs sub/freq bin)
   nrg tot time vec = np.zeros((math.floor(duration/granularity),1))
   for k in range (0,math.floor(duration/granularity)):
       x tmp = x[k*fft len:(k+1)*fft len-1]
       y tmp = fft(x tmp,fft len)/np.sqrt(fft len) # make FFT on fft len samples of x
       y = np.fft.fftshift(y tmp) # shift the zero-frequency component to the center of the spectrum
       # Parceval theory (energy time domain = energy frequency domain)
       nrg tot time = np.sum(np.abs(x tmp)**2)
       nrg tot freq= np.sum(np.abs(y)**2)
       nrg tot time vec [k] = nrg tot time
       nrg acc = 0
       nrg vec=[] # create an empty vector to put in it each value of nrg calculate in the loop
       for m in range (0, n subchannel):
           bin vec = np.arange(m*nb bin,(m+1)*nb bin-1, 1)
           nrg = sum(abs(y[bin vec])**2)
           nrg acc = nrg acc + nrg
           nrg vec.append(nrg)
       Matrix total[k][0:n subchannel]= nrg vec
```



semtech.com/LoRa

#END FFT loop

🚺 Top Block

- 0 X

semtech.com/LoRa