

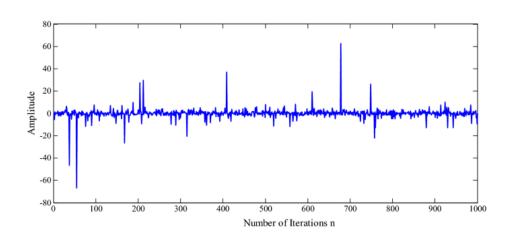
J-LoRaNeS: A Julia based LoRa Network Simulator

Jules COURJAULT, PhD student - jules.courjault@irisa.fr
Supervised by: Olivier BERDER and Baptiste VRIGNEAU
Industrial collaboration with CG-wireless

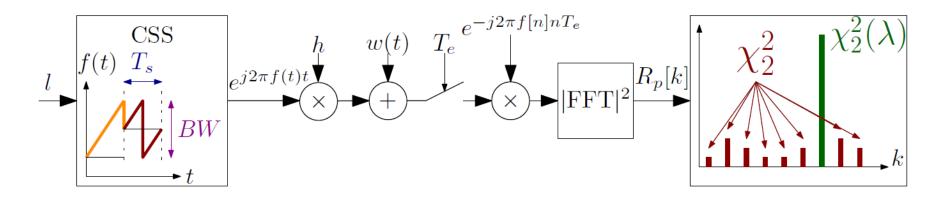
7/07/2022

Context: Industrial environment

- Industry 4.0 => Wireless sensor networks (Indutrial IoT)
- Indoor transmission
- High attenuation and multiple reflections due to metallic structure
- Impulsive noise due to high-power machinery
- → Specific channel model + Non-Gaussian noise => Is LoRa a good candidate for IIoT?



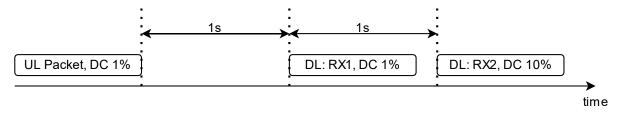
II. LoRa principle: PHY-layer description



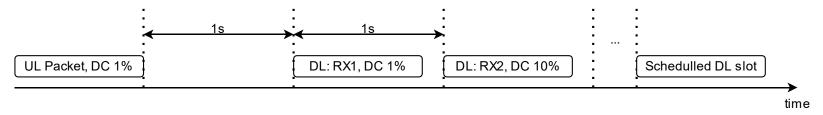
- $BW \in \{125, 250, 500\}$ kHz, $CR \in \{4/5, 4/6, 4/7, 4/8\}$, $SF \in [7, 12]$
- Symbol l is coded using CSS modulation with a frequency offset depending on the value of the symbol
- At reception the symbol is decoded thanks to de-chirping and finding the index with the highest square modulus of the FFT
- Increasing SF increases the communication robustness to impulsive noise [1]
- SF and TP management => ToA and energy consumption => trade-off between QoS and energy consumption

II. LoRa principle: devices classes

Class A: After sending an UL, the ED listen for DL response on RX1 and RX2 windows

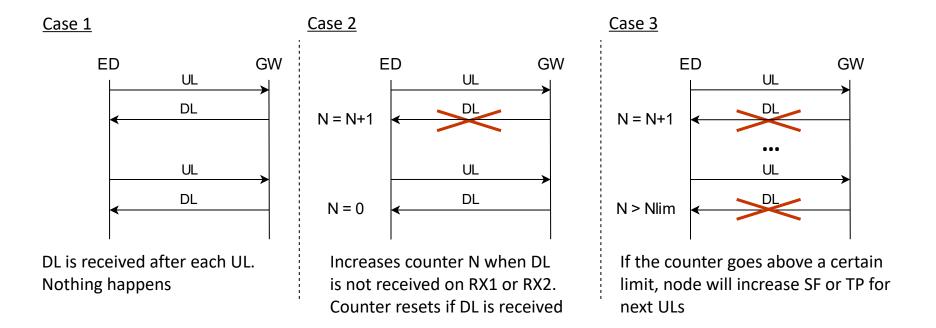


Class B: Class A + Listen for DL on scheduled timeslots



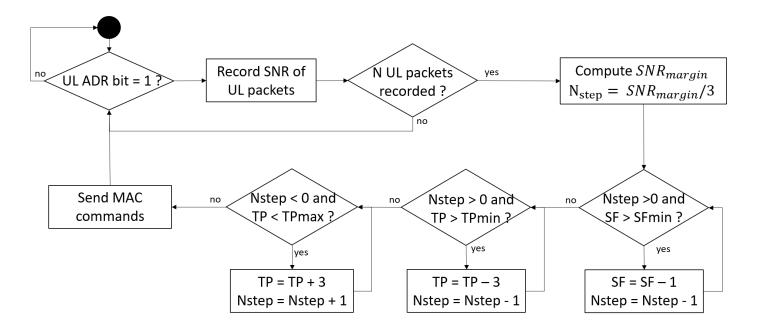
Class C: Always listen for DL packets

II. LoRa principle: LoRaWAN ADR on node side [2]



→ Increase the probability to reach a GW, whatever the energy cost is.

II. LoRa principle: LoRaWAN ADR on server side [2]



→ Increase energy efficiency of the communication.

III. LoRa Network Simulator

Need of a simulator

Simulator objectives:

- Simulation of physical phenomenon as accurate as possible
- Class A device simulation
- Network performance monitoring:
 - Packet Delivery Ratio
 - Power consumption
 - Convergence and stability of the ADR algorithm
- Test new algorithms based on RL to replace the current ADR

I. LoRa Network Simulator

Existing simulators

Simulator	Perf. metrics	Language	Channel model	DC	DT	ISFO	ADR
FLoRa [3]	EC per successful transmission Packet delivery ratio	Omnet++	Log-distance	Yes	Yes	No	LoRaWAN ADR
LoRaWANSim [4]	Network/node EC Packet delivery ratio	Matlab	Okumura- Hata	Yes	Yes	Yes	Pre-computed LoRaWAN ADR
LoRaSim [5]	Network EC Data extrac. Rate	Python	Log-distance	No	No	No	No
LoRa-MAB [6]	Average EC Packet delivery ratio	Python	Log-distance	Yes	Yes	Yes	MAB-based

DC: Duty cycle, DT: Downlink Traffic, ISFO: Imperfect SF Orthogonality

LoRaWANSim seems suitable but has several defaults:

- ADR is pre-computed and not dynamic during the simulation
- All UL then all DL are processed => Performance overestimation for dynamic ADR

III. LoRa Network Simulator

Who What is Julia? [7]

Julia is a recent language launched in 2012, and the version 1.0 introduced in 2018, with following features:

- Compiled language, performance should be close to C/C++ performance
- Python-like syntax => allows short development time
- Multiple-dispatch => A generic function is dynamically dispatched based on the runtime type of its argument

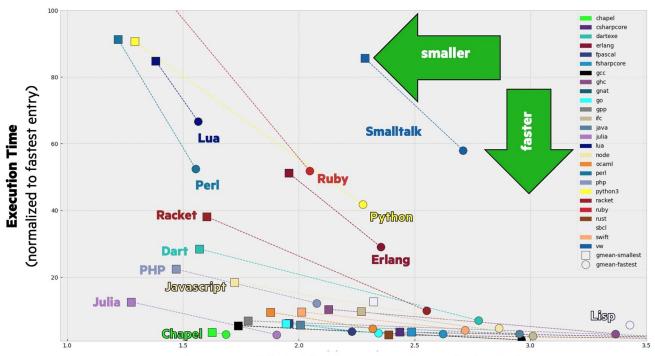
```
julia> f(a::Int64, b::Int64) = a + b
f (generic function with 1 method)

julia> f(a::Int64, b::Float64) = a * b
f (generic function with 2 methods)

julia> f(12,8)
20

julia> f(12,8.0)
96.0
```

III. LoRa Network Simulator: Julia Benchmark



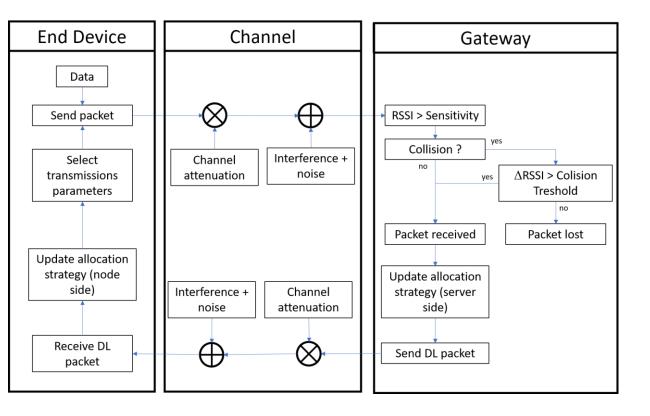
Compressed Code Size (normalized to smallest entry)

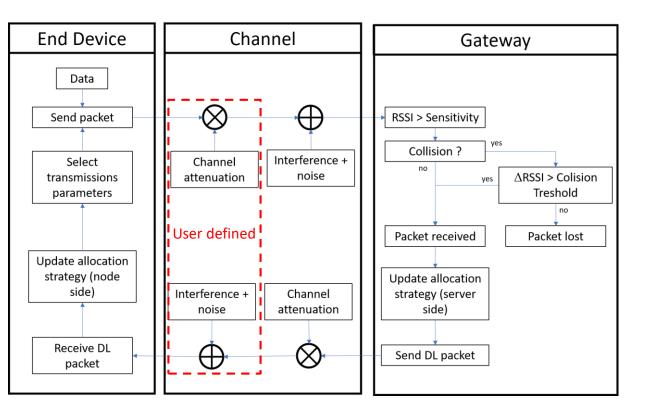
Source from Chapel language: https://salsa.debian.org/benchmarksgame-team/benchmarksgame

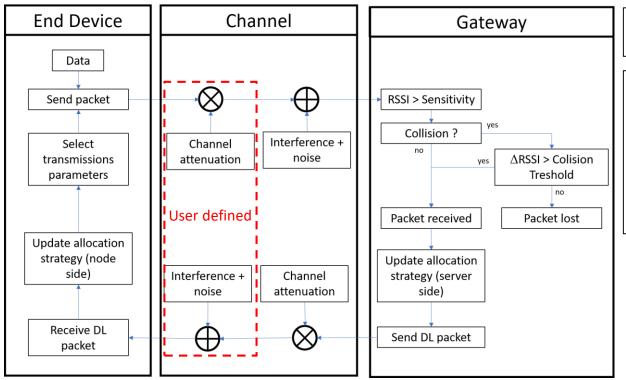
III. LoRa Network Simulator: Input and Output

Input Node/GW config: Network topology: Channel configuration: Number of GWs Attenuation model Receiver sensitivity Number of EDs Capture-effect threshold Shadowing EDs/GWs positions ADR algorithm Application requirement: Power consumption model Payload size Preamble size Packet generation rate Output Packet delivery ratio **Energy consumption** UL PDR per nodes PDR on RW1 and RW2 In average Network response rate Max/min

As is the configuration is made through Julia initialization function. The goals is to read the configuration in a JSON file

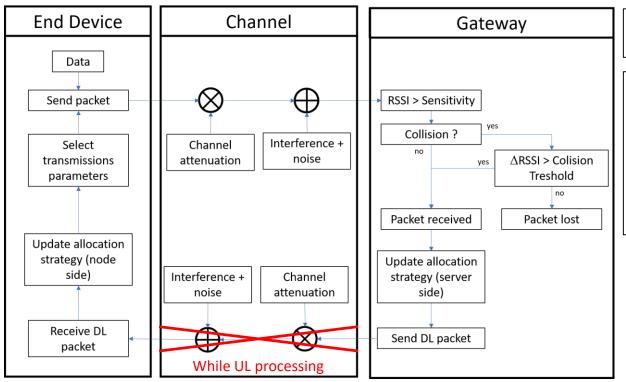






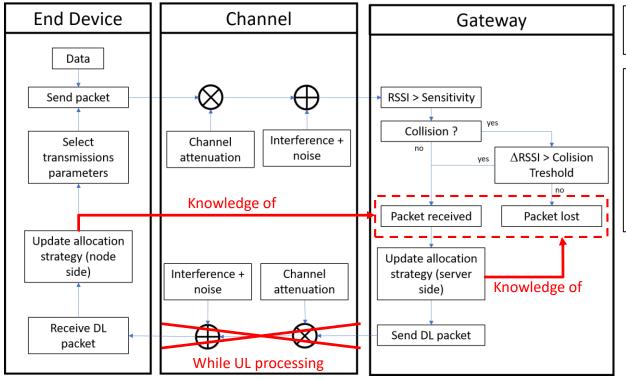
$$RSSI = TP - Att. - shadowing + G_{ant.}$$

 $S = -174 + 10 \log_{10} BW + NF + SNR_{min}$



$$RSSI = TP - Att. - shadowing + G_{ant.}$$

 $S = -174 + 10 \log_{10} BW + NF + SNR_{min}$

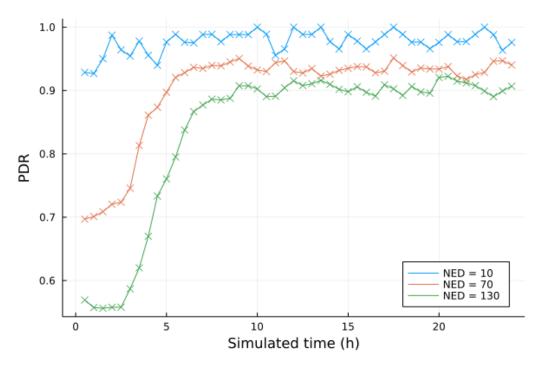


$$RSSI = TP - Att. - shadowing + G_{ant.}$$

 $S = -174 + 10 \log_{10} BW + NF + SNR_{min}$

III. LoRa Network Simulator

First results: PDR vs. time



Simulation setup:

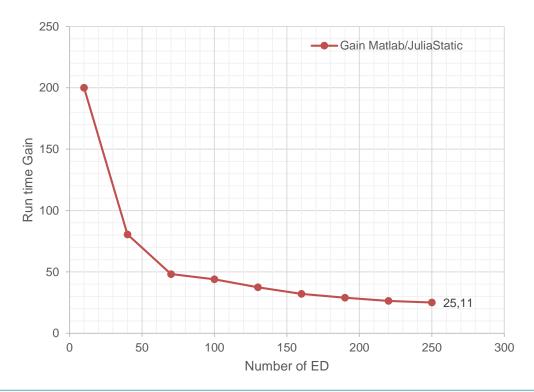
- Number of GW = 1
- Number of ED = 10, 70 or 130
- Simulated time = 24h
- Network radius = 10km
- Packet rate: 1 every 10 min
- Channel: Okumura-Hata with 3dB shadowing
- Payload: 51 B in UL and 20 B in DL

$$PDR = \frac{\# Packet \ received}{\# Packet \ sent}$$

- Convergence time
- DC saturation ?

III. LoRa Network Simulator

Run time comparison with LoRaWANSim



Simulation setup:

- Number of GW = 1
- Number of ED = 1:30:250
- Simulated time = 24h
- Network radius = 10km
- Packet rate: 1 every 10 min
- Channel: Okumura-Hata with 3dB shadowing
- Payload: 51 B in UL and 20 B in DL
- ADR is static and pre-computed in this comparison

$$Gain = \frac{Matlab runtime}{Julia runtime}$$

- For 100 ED :
 - Julia runtime is 5.8 s
 - Matlab runtime is 255 s

IV. Conclusions and future works

1) Conclusion

- J-LoRaNeS is faster than LoRaWANSim
- J-LoRaNeS can manage ISFO, capture effect, duty-cycle and DL traffic.
- J-LoRaNeS is able to emulate a Gaussian noise environment with a customized channel attenuation model
- We can run dynamic ADR → RL methods can be easily implemented
- PDR delivery and ADR convergence can be monitored

2) Future works

- Add power consumption metrics
- Merge UL and DL processing
- Add Impulsive noise in the simulator
- Explore RL algorithms

References

- [1]: J. Courjault & al., How robust is a LoRa communication against impulsive noise?, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2020
- [2]: LoRa Alliance, *LoRaWAN specification v1.1*, 2017 https://lora-alliance.org/resource hub/lorawan-specification-v1-1/
- [3]: M. Slabicki & al., Adaptive Configuration of LoRa Networks for Dense IoT Deployments. IEEE/IFIP Network Operations and Management Symposium (NOMS), 2018.
- [4]: R. Marini & al., LoRaWANSim: A flexible simulator for LoRaWAN Networks. Sensors, 2021
- [5]: M. Bor & al., Do LoRa Low-Power Wide-Area Networks Scale?. ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 2016.
- [6]: D.-T. Ta & al., LoRa-MAB: Toward an Intelligent Resource Allocation Approach for LoRaWAN. IEEE Global Communications Conference (GLOBECOM), 2019
- [7]: https://julialang.org/

Thanks for listening

www.irisa.fr

I. Thesis objectives

2. Adaptive transmission scheme based on Reinforcement Learning

- Learns environment characteristics (noise nature, fading,...)
- Tune communication parameters to achieve required Quality of Service while minimizing power consumption:
 - Existing example: Adaptive Data Rate algorithm for LoRaWAN but converge slowly
 - Theoretical performance knowledge might help for parameters tuning

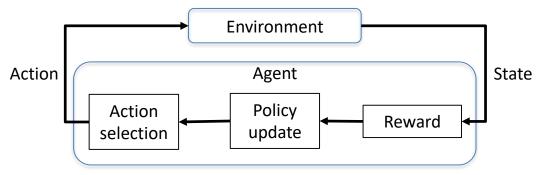


Figure 3: Reinforcement learning principles.

II. LoRa principle: LoRaWAN ADR on node side

