46. Mass nouns and plurals

1. Introduction
2. Issues in the denotation of mass and plural NPs
3. Issues in the denotation of mass and plural DPs
4. Collective and distributive readings
5. References

Abstract

Mass and plural expressions exhibit interesting similarities in distribution and interpretation, including cumulative reference, the ability to appear bare, and a parallel alternation between existential and generic readings. They also exhibit important differences in agreement, determiner choice, and in the types of quantification available. Major approaches to plural denotation make conflicting claims whether plurality involves reference to collective objects such as sets or mereological sums, or instead requires simultaneous saturation of an argument place by multiple individuals. Theories of mass denotation differ as to whether the count/mass distinction is a difference in discrete vs. continuous denotation, reference to objects vs. the material they are composed of, or reference to mereological sums vs. classes of individuals. Bare plurals and mass nouns sometimes denote “kinds”; there is disagreement whether they also have an indefinite reading. Several kinds of plural and mass quantification can be distinguished, depending on determiner choice, predicate modification, and the use of a classifier or measure phrase. Plural quantifiers may interact to give a “cumulative” reading, in which the quantifiers are scopally independent. Sentences containing plurals sometimes exhibit an ambiguity between collective and distributive readings; the number of readings and mechanisms for producing them is in dispute.

1. Introduction

Many—perhaps all—languages draw a distinction between mass nouns, prototypical examples of which denote homogeneous substances such as water or gold, and count nouns, prototypically denoting discrete, bounded objects such as people or chairs. Likewise, many languages distinguish between singular nouns, which refer to single objects, and plural nouns, which refer to multiple objects collectively. (Some languages distinguish additional categories such as dual or paucal.) In this article, we survey a variety of issues related to the count/mass and singular/plural distinctions.

1.1. Parallels between plural and mass expressions

We discuss mass and plural nouns together because they show interesting similarities. Both exhibit cumulative reference (Quine 1960: 91); licensing inferences like those in (1):

(1) a. A is water and B is water; therefore A and B together are water
 b. A are apples and B are apples; therefore A and B together are apples
Singular count nouns do not license the same kind of inference; (2) is invalid:

(2) A is an apple and B is an apple; therefore A and B together are an apple

Singular count nouns instead exhibit divided reference; as Quine puts it, “To learn ‘apple’ it is not sufficient to learn how much of what goes on counts as apple; we must learn how much counts as an apple, and how much as another.”

In addition, mass and plural nouns may appear (in English) with no overt determiner, while a determiner is normally required for singular count nouns:

(3) I see water/horses/*horse

To the extent that *I see horse is acceptable, it involves either a conversion of horse from a count noun into a mass noun, or a special “telegraphic” style of speech in which determiners are omitted generally.

Determinerless (or “bare”) mass and plural noun phrases also show a parallel alternation in interpretation, depending on the predicate with which they combine (cf. article 44 (Dayal) Bare noun phrases). If the predicate is stage-level (Carlson 1977a,b), the noun phrase is understood as existentially quantified; (4a,b) are roughly equivalent to Some water leaked into the floor and Some raccoons were stealing my corn:

(4) a. Water leaked into the floor
 b. Raccoons were stealing my corn

If the predicate is individual-level, the sentence is understood as drawing a generalization about objects of the kind picked out by the mass or plural noun:

(5) a. Water is wet
 b. Raccoons are sneaky

If the predicate is kind-level, the mass or plural noun is understood as referring to a “kind” of object, and the predicate is applied to this kind collectively, as a whole:

(6) a. Water is common
 b. Raccoons are extinct

Parallels such as these have led many semanticists to treat plural and mass expressions together as “non-singular,” or even to identify mass nouns with lexical plurals (Chierchia 1998a,b). But a completely unified analysis would seem to be impossible, because mass nouns also show obvious differences from overtly plural nouns, notably in their inability to combine directly with numerals and their selection by other determiners:

(7) a. two horses/*water
 b. many horses/*water
1.2. Issues in what is meant by mass and plural

The use of the term mass in its technical sense in semantics appears to originate with Jespersen (1913, 1924). Count is considerably more recent than mass; the earliest occurrence I know of is in the anonymous (1952) Structural Notes and Corpus; the term was popularized by Gleason (1955). However, earlier authors did employ comparable terms such as thing-words (Jespersen 1913), bounded nouns (Bloomfield 1933), or individual nouns (Whorf 1941). Jespersen characterized “mass-words” as “words which represent ‘uncountables’, i.e., which do not call up the idea of any definite thing, having a certain shape or precise limits” (1913: 114), in contrast to thing-words, which represent countable objects. He went on to note various syntactic differences between mass-words and thing-words; but reference to countable or uncountable objects seems to have been the defining distinction.

Jespersen was careful to note that the mass-word/thing-word distinction cross-cuts the distinction between “material” and “immaterial” words, and cited this feature of his terminology as providing an advantage over Sweet’s (1892) earlier classification into “class nouns” and “material nouns.” Abstract nouns such as progress, admiration, or safety were categorized as mass-words.

Bloomfield (1933: 205) partially continued Jespersen’s terminology, but distinguished “mass nouns” from “abstract nouns,” placing both under a more general heading of “unbounded nouns,” in opposition to “bounded nouns.” Many authors have continued Bloomfield’s narrower use of the term mass, so that abstract nouns are excluded.

A related issue is whether to include words such as furniture and footwear as mass. These pattern syntactically with ordinary mass nouns, combining with much rather than many, failing to combine directly with numerals, etc.; but they hardly fit Jespersen’s characterization as not calling up the idea of a “definite thing, having a certain shape and precise limits.” An observation due to Roger Schwarzschild is that these nouns admit modification with “stubbornly distributive” predicates of shape and size, unlike prototypical mass nouns:

(8) a. This furniture is small
 b. *This water is small

The use of the term mass was imported from linguistics into philosophy by Quine (1960), and although Quine was careful to stress that the distinction between count and mass terms was not in the “stuff” they denote, but only in whether they show cumulative or divided reference, much of the subsequent philosophical literature has construed mass so narrowly as to include only those words which serve as names for physical substances, and not nouns like furniture or admiration. But many authors use mass in a broader sense and distinguish substance nouns as a special subclass. This variation in what is meant by mass leads some writers to eschew the term entirely, preferring non-count as more clearly including a broader set of examples (Payne & Huddleston 2002, Laycock 2006).
Another point of variation is in whether *mass* should be understood to include some morphologically plural examples. Jespersen argued that a wide range of plural nouns were actually mass, including examples such as *victuals, brains* (as in *blow out somebody’s brains*), *dregs, proceeds, blues, creeps*, and others. These impose plural agreement on the verb, but combine with *much* rather than *many*:

(9) a. In this kind of work, brains are less important than guts
 b. It doesn’t take much brains to figure this out

Here again Bloomfield (1933) introduced a shift in terminology, stipulating that mass nouns “have no plural,” without discussing Jespersen’s examples; the idea that mass nouns are always singular has been part of conventional wisdom ever since. Plural mass nouns have been periodically rediscovered (McCawley 1975, Gillon 1992), and are treated in detail in Ojeda (2005).

Another complication is that a single form may sometimes be used as a mass noun, and sometimes as a count noun. *Beer* is ordinarily mass, but may be used as a count noun to refer to individual servings of beer or kinds of beer; many other mass nouns show a similar alternation. Conversely, a count noun may also be used as a mass noun if one imagines the objects it denotes being put through a “universal grinder” (Pelletier 1975); after putting a steak (count) through the grinder, “there is steak all over the floor” (mass).

There is much less variation in what semanticists mean by *plural* than there is with *mass*, but even here there are some complications. Plurality is associated with a variety of morphosyntactic generalizations, which do not always coincide. A common observation is that in some dialects of English, morphologically singular but semantically collective nouns such as *committee* and *government* may impose plural agreement on verbs and pronouns, as in (10):

(10) The government are failing to achieve their goals

These nouns do not combine with plural quantifiers or appear bare, however:

(11) *Many*/*Five*/*∅ government are failing to achieve their goals

Such nouns should be distinguished from lexical plurals, such as *police or cattle*, which do appear bare and combine with some plural quantifiers:

(12) a. Cattle are slaughtered for their meat
 b. This city has too many police

For many speakers, these nouns resist combining with numerals:

(13) ?Five police came walking down the road

Yet they are clearly plural rather than mass – so an inability to combine with numerals should not be taken as the defining characteristic of mass nouns. The main patterns discussed so far may be summarized in Tab. 46.1.
2. Issues in the denotation of mass and plural NPs

By an “NP” we here mean a phrase consisting of a common noun, possibly with complements or modifiers, but excluding any determiner; e.g. water, horse, books written by Mark Twain, but not that water, a horse, or all books written by Mark Twain. We turn to phrases including the determiner in section 3. For the sake of discussion, we assume for most of this section that NPs are predicates, and hold or fail to hold of groups and/or individuals; we turn to the idea that NPs may sometimes serve as something like the name of a kind in section 3.1.

2.1. Approaches to plural denotation

Most analyses assume that plural predicates (including nouns) hold true of collective objects of some sort, which I will call “groups.” (Readers are cautioned that group has a more specific technical sense in some work, especially that derived from Link 1984, Landman 1989a,b, 2000.) Thus, a plural noun such as horses will hold true of groups of horses just as a singular noun like horse holds true of individual horses.

The issue then arises of what a “group” is. One option is to identify groups with sets. However, some authors object to this identification on the grounds that sets are abstract mathematical objects, while the denotata of plural nouns may be concrete (Burge 1977, Link 1983, 1984). As Link (1984:247) puts it, “If my kids turn the living room into a mess I find it hard to believe that a set has been at work, and my reaction to it is not likely to be that of a singleton set…” However, Black (1971) has argued that regarding the referents of plural terms as sets actually clarifies, rather than distorts, the notion of a set; and in any case not everyone shares the intuition that sets of concrete objects are themselves abstract (Cresswell 1985, Landman 1989a).

If groups are not identified with sets, they are usually taken to be concrete particulars of some sort – often called “plural individuals,” though this is quite a departure from the
meaning of the word *individual* in ordinary, non-technical usage. The group of John and Mary would be identified with a complex, spatially scattered individual with John and Mary as parts; or, as it is usually termed, the *sum* of John and Mary, which we may notate \('j+m' \).

Typically it is assumed that the sum operation is associative, so that \(a+(b+c)=(a+b)+c \). Summing differs in this respect from set-theoretic pairing, since \(\{a, [b, c]\} \neq \{\{a, b\}, c\} \) when \(a, b \) and \(c \) are distinct. This allows us a way of distinguishing the two approaches completely independently from issues of abstractness and concreteness. This difference will play a role in the analysis of distributivity (section 4). Another line of analysis denies that plural predicates hold true of groups at all. Reference to groups is avoided by locating the plurality in the denotation relation itself, rather than in the denoted object. This idea was pioneered by Boolos (1984, 1985a,b) and developed in more detail by Schein (1993) and subsequent literature; a related analysis of mass nouns is given in Nicolas (2008).

To illustrate, consider a revision to the standard notion of *satisfaction*. In the usual semantics for a language with variables, interpretation is relative to a function assigning exactly one value to each variable. In a system with plural variables, rather than assigning each plural variable exactly one group as its value, we relativize interpretation to relations rather than functions, so that an assignment may match a given variable with more than one value. Then a formula containing a plural variable can be satisfied by an assignment which gives multiple values \(a_1, \ldots, a_n, \ldots \) to this variable, without being satisfied by assignments which give the set of all these values \(\{ a_1, \ldots, a_n, \ldots \} \) as the (sole) value for the same variable. The plurality is located in the assignment relation itself, rather than in the assigned value. Predication in general can be treated as satisfaction; adopting this technique in effect allows an argument place to be saturated simultaneously by more than one individual, rather than by the group containing those individuals. The primary advantage of such a technique is that it allows an analysis of phrases like *the sets which do not contain themselves* which does not give rise to Russell’s paradox; see the references above for details.

Whether one analyzes plural NPs as satisfied by sets, or sums, or simultaneously by multiple individuals, certain more purely descriptive, theory-neutral issues must be addressed. In what follows I will continue to phrase these issues in terms of the “groups” denoted by a plural NP, but essentially the same questions arise in any approach; readers who prefer a groups-free approach are invited to rephrase the discussion accordingly.

Prominent among these issues is the question of how the denotation of a plural noun relates to the denotation of the corresponding singular. A natural assumption to make is that the plural noun holds true of all and only the groups of objects of which the corresponding singular noun holds true; so that *horses*, e.g., will hold true of all and only the groups whose members are individual horses. Note that this directly predicts that plural nouns will have cumulative reference, on the plausible assumption that for any groups A and B, there is a group whose members include all and only the members of A and the members of B.

However, if we take seriously the idea that a group must contain more than one member, this idea runs into immediate problems with examples using the determiner *no* (Schwarzschild 1996: 5). A sentence of the form *No A B* is true iff there is nothing of which both A and B are true. E.g. (14) is true only if there is nothing of which *horses* and *in the corral* both hold true.
No horses are in the corral

But suppose there is only one horse. Then there are no groups containing more than one horse, so by our assumption that plural nouns hold only of groups, *horses* does not hold true of anything. This renders (14) automatically true, even if the one horse is in the corral – the wrong result.

This problem is easily solved if we allow plural NPs to hold of individuals and not just groups. In particular, a plural NP should hold of all the same individuals as the corresponding singular, as well as all groups of such individuals. Then if there is only one horse, the plural noun *horses* will hold true of it and (14) is correctly predicted to be false if the horse is in the corral.

Chierchia (1998b) defends the idea that plural nouns hold only of groups by assigning a more complex denotation to *no*: Rather than taking *no*(A,B) as true iff A and B do not overlap, he takes it as true iff \(\pi(A)\) and B do not overlap, where \(\pi(A)\) is the set of all subsets and members of the union of all groups in A (and singletons of members of A). But in the case just described, the plural noun denotation A is empty, so this more complex procedure gains us nothing; incorrect truth conditions are still assigned. See Sauerland, Anderson & Yatsushiro (2005) for additional considerations.

2.2. Approaches to mass denotation

A mass noun like *water* is frequently assumed to hold true of all and only the individual portions of water – with no assumption that an individual “portion” must be physically separated in any way. Thus, *water* will hold of the water in the top half of my glass, as well as the water in the bottom half, the water in the top three quarters and the water occupying the glass as a whole. Nor need portions be physically contiguous; the water in two separate glasses may be considered together as a portion of water, of which the noun *water* holds true. Assuming that for any two portions A and B, there is a portion A+B consisting of them, we may stipulate that mass nouns are cumulative, holding of A+B whenever they hold of A and of B.

Since plurals also show the cumulative reference property, this will not distinguish mass nouns from plurals, or explain the differences between them, such as the ability of plurals but not mass nouns to combine with numerals. We will consider four major strategies for explaining the differences between mass and plural count NPs in semantic terms.

One strategy is to assume that mass nouns, but not plurals, show *distributive reference*, also sometimes known as *divisive reference* (not to be confused with Quine’s *divided reference*) or *Cheng’s condition* (after Cheng 1973): If a mass noun holds of A, and B is a part of A, then the mass noun holds of B as well. Some versions of this approach go further and require that mass nouns be *non-atomic*; i.e., that for each A of which the mass noun holds, there is some B which is a proper part of A, of which the mass noun also holds. This implies that mass noun denotations have no minimal parts; one may divide them without limit. If a noun’s denotation is cumulative, distributive and non-atomic, we may call it *continuous*. Much of the attraction of analyzing mass nouns as denoting continuously is that it offers an explanation why mass nouns do not combine with numerals: One may divide their denotations in any arbitrary fashion into any number of parts, so there is no basis for counting.
Unfortunately, a condition requiring continuous denotation does not achieve even initial plausibility in the case of complex mass NPs like *water covering the floor*, since some water could easily cover the floor without all its parts covering the floor. Yet such complex mass NPs fail to combine with numerals and other count determiners, just as simple mass nouns do.

Moreover, it is quite debatable whether even lexical mass noun denotations are really non-atomic; the individual hydrogen and oxygen atoms constituting an H_2O molecule would not seem to be water. (It should be cautioned that the issue here is not whether they would be water if separated from each other and released as gas, but whether they are water when still part of the H_2O molecule – perhaps a trickier issue.) One may claim that even if mass noun denotations are not actually continuous, the language portrays them as if they were (Bunt 1985); but this would seem to imply that much of our ordinary talk using mass nouns is literally false, a consequence many semanticists would want to avoid.

A different approach to semantically distinguishing count and mass nouns is to regard the mass nouns as holding of portions of material, while count nouns hold of more abstract objects constituted of that material (Link 1983). This way of drawing the distinction allows an easy solution to the “gold ring” paradox: It may be that a ring is gold and the ring is new, but the gold is old. If we distinguish between the ring and the gold which constitutes it, there is nothing to prevent one from being new and the other old.

The philosophical merits of claiming that objects like rings are distinct from the portions of material of which they are constituted may be debated. But in addition, the proposal makes sense only under the very narrowest construal of the term mass noun, in which it refers only to those nouns which function as names of physical substances. Even though *chair* is a count noun and *furniture* is, by most definitions, a mass noun, one hesitates to say that chairs are constituted of furniture in the way that rings are constituted of gold, or that a chair can be new while the furniture it is constituted of may be old.

A third approach to the semantics of the mass-count distinction, advanced especially by Chierchia (1998a, 1998b), is to claim that mass nouns are essentially just lexical plurals, so that the part/whole relation on the denotata of mass nouns coincides with the subgroup relation on the denotata of plurals. Under Chierchia’s approach, a mass noun like *change* is (nearly) identical in denotation to the plural noun *coins*; the mass noun *footwear* is (nearly) identical in denotation to *shoes*, etc.

An analysis which drew no distinction at all between mass nouns and lexical plurals would face several problems: First, there are clear examples of lexical plurals which are not mass, such as *police* and *cattle*. Second, mass nouns and plurals combine with different classes of determiners, and may not give equivalent truth conditions even when they do combine with the same determiner. *Most change is copper* may be understood as claiming that the copper coins exceed the other coins in some measure such as weight or volume, while *Most coins are copper* requires specifically that the total number of copper coins exceeds the number of other coins. Chierchia’s proposal addresses challenges like these by allowing that mass nouns are not completely indistinguishable in denotation from plurals: plural nouns hold only of groups and never of individuals, while mass nouns may hold of both. But as pointed out in section 2.1 above, claiming that plural nouns cannot hold of individuals makes the semantics of determiners like *no* problematic; until
a solution to this problem is offered, this strategy for representing the mass-count distinction must be regarded as questionable.

A fourth approach to the semantics of mass NPs treats them not as predicates at all, but as singular terms denoting sums. *Water* is not treated as a predicate holding true of all individual portions of water, but instead as something like a name, denoting the sum of all such portions. The inability of mass NPs to combine with numerals can then be explained in the same way as the inability of proper names to combine with numerals: it makes no sense to count a single object, as opposed to a set. The analogy to proper names must not be pushed too far, since proper names normally do not do not combine with quantifiers, while mass NPs do, including some quantifiers dedicated just to this purpose. But as stressed by Roeper (1983), Lønning (1987), Higginbotham (1994), this approach can explain a number of otherwise puzzling facts about mass quantification, if we assume that the domain of possible mass NP denotations forms a Boolean algebra; see section 3.2 below.

To summarize, each of these strategies for identifying a semantic difference between mass and count NPs faces significant challenges: There are direct counterexamples to the claim that mass NPs denote continuously. Only a subset of mass NPs denote substances. Treating mass NPs as holding of groups and individuals, but plurals only of groups, seems incompatible with the semantics of *no*. And treating mass NPs as names of sums requires an explanation why mass NPs but not names combine with quantifiers.

3. Issues in the denotation of mass and plural DPs

By a “DP” we mean a phrase consisting of an overt or covert determiner, together with an NP, e.g. *that water, a horse*, or *all books written by Mark Twain*. Phrases of this category may serve directly as arguments to a verb or other predicate. In some analyses, NPs may also sometimes serve directly as arguments to predicates, so we include discussion of the semantics of NPs in such analyses here as well.

We consider in turn bare plurals and mass nouns, plural and mass DPs with overt quantificational determiners, and definite and conjoined DPs.

3.1. Bare plurals and mass nouns

As already mentioned in section 1.1, plural and mass nouns are distinguished from singular count nouns in English by their ability to appear bare, and show a parallel alternation in interpretation among existential, generalizing and kind-level readings, depending on the type of predicate with which they combine (see (4) to (6) above).

The starting point for most modern literature on this pattern is Carlson (1977a,b), which argued that bare plurals and mass nouns are interpreted unambiguously as something like proper names of kinds. In this analysis, the existential interpretation exhibited in examples like *Raccoons were stealing my corn* is not due to the internal semantics of the bare NP, but is built into the meaning of the predicate with which it combines: We relate each kind to the “stages” which realize it via a relation R, then represent steal, e.g., as \(\lambda x \lambda y \exists z [R(y,z) \& \text{steal}(z,x)] \). This predicate can then apply to the kind “raccoons” collectively, to yield truth conditions to the effect that there is at least one realization of this kind that was stealing my corn.
Likewise, individual-level predicates like *are sneaky* are analyzed as containing a hidden generic operator G, allowing them to take kinds as arguments while generalizing about the individuals realizing those kinds. *Raccoons are sneaky* may be represented as $G(\text{sneaky})(r)$, where $G(P)(k)$ means that instantiations of kind k generally have property P. (Carlson 1989 replaces G with a similar operator taking scope over entire sentences.) Kind-level readings like those in *Raccoons are extinct* result from direct application of the predicate to its argument, with no hidden quantification.

A major argument for this approach is that it correctly predicts that the existential quantifier associated with bare plurals and mass nouns always takes the narrowest possible scope. Thus (15a) has only the reading which allows everyone to have read different books about caterpillars, while (15b) is ambiguous, and admits a reading which requires everyone to have read the same book about caterpillars – an unexpected difference if the bare plural *caterpillars* expressed existential quantification as part of its internal semantics:

(15) a. Everyone read books about caterpillars
b. Everyone read a book about caterpillars

A second argument comes from the fact that kind-level, individual-level and stage-level predicates can be conjoined to take a single bare plural or mass argument:

(16) Raccoons are widespread, sneaky and have been stealing my corn

If bare plurals were ambiguous between existential, generalizing and collective readings, examples like this would seem to impose conflicting requirements on how to interpret the bare plural subject; but if bare plurals are unambiguously kind-denoting, such examples are expected. The coordinate VP is straightforwardly analyzed as in (17):

(17) $\lambda x [\text{widespread}(x) \& G(\text{sneaky})(x) \& \exists y [\text{R}(x, y) \& \text{stealing-my-corn}(y)]]$

A popular alternative analysis, developed in Wilkinson (1991), Krifka & Gerstner-Link (1993) and Diesing (1992), claims that bare plurals and mass nouns are interpreted as plural indefinites when they combine with stage- or individual-level predicates. Indefinites are interpreted as contributing free variables to the semantic representation, with no quantificational force as part of their internal semantics, as in Discourse Representation Theory (Kamp 1981) or File Change Semantics (Heim 1982). The variable contributed by an indefinite may be bound by a quantifier in the surrounding context, such as the adverb *usually* in (18a), to yield truth conditions represented as in (18b):

(18) a. Bears usually have blue eyes
b. *usually* $x (\text{bear}(x), x \text{ has blue eyes})$

Or, the variable may be bound by a general operation of existential closure, as in *Raccoons were stealing my corn*. To obtain a generic reading in examples like *Raccoons are sneaky*, it is assumed that the variable is bound by a “generic operator” analogous to an adverb of quantification:
In Diesing’s version of this proposal, it is claimed that existential closure takes place at the level of VP; bare plural or mass subjects of stage-level predicates are VP-internal, hence existentially bound. Subjects of individual-level predicates are VP-external, hence available for binding by the generic operator or other quantifiers. On the assumption that quantificational determiners must scope higher than the existential closure operation on VP, this correctly predicts that the existential quantification associated with bare plurals in examples like (15a) always takes narrow scope.

This approach has an advantage over Carlson’s in that it predicts that bare plurals are available for binding by adverbs of quantification, as in (18); such sentences require extra stipulation if bare plurals are unambiguously kind-denoting. But Carlson’s analysis has an advantage in predicting the conjoinability of kind-level with stage-level and individual-level predicates, as in (16); if bare plurals combining with stage- and individual-level predicates are indefinite rather than kind-denoting, extra stipulation must be given for these examples.

A syntactic issue regarding bare plurals and mass nouns is whether they are DPs with an implicit determiner, or simply NPs serving directly as arguments to the verb, with no determiner at all, implicit or explicit. If the latter, it may be necessary to allow that NPs may serve as something like names of kinds. This would force a revision to much of our discussion in section 2, where it was assumed that NPs were predicates.

Chierchia (1998a,b) suggests that this is a point of parametric variation among languages: In languages like Chinese or Japanese, NPs are unambiguously kind-denoting, so that all NPs may appear bare. To combine such NPs with a determiner requires application of a predicate-forming operation, whose output, Chierchia suggests, is mass; this predicts that in such languages, NPs cannot be combined directly with numerals, but require classifiers. In contrast, NPs in languages like French are unambiguously predicates and never function as names of kinds; the prediction is that French NPs may not appear without a determiner. Languages like English allow NPs to function both as predicates and as names of kinds, according to whether they are count or mass. Mass nouns may thus appear bare, while (singular) count nouns may not. Plural marking on a count noun serves to form the name of a kind from a predicate, allowing plurals to appear bare as well. See articles 96 (Doetjes) Count/mass distinctions, 44 (Dayal) Bare noun phrases, and 47 (Carlson) Genericity for more discussion.

3.2. Quantificed plurals and mass nouns

Plural DPs with quantificational determiners such as many, few, most, etc. differ from singular DPs in allowing quantification over groups. But there appear to be several different kinds of quantification over groups involved, and trying to give a unified account of all of them is a challenge.

First, many plural quantifiers allow a reading which involves existential quantification over groups of a size given by the determiner. With certain quantifiers, this reading is most natural when the determiner heads a partitive construction as in (20a).

\[
\begin{align*}
(20) & \quad \text{a. Most/Many/All of the students gathered in the hallway} \\
& \quad \text{b. ?Most/?Many/?All students gathered in the hallway}
\end{align*}
\]
(20a) may be paraphrased as “A group consisting of most/many/all of the students gathered in the hallway.” Similar readings are available for non-partitive constructions, but at least with some determiners, many speakers find these slightly degraded in comparison to partitives as in (20b). Other determiners allow this reading naturally even in non-partitives:

(21) Fifty/The students gathered in the hallway

Existential quantification over groups of the size given by the determiner gives the wrong results for determiners like few, exactly fifty and other non-monotone-increasing quantifiers. Sentence (22a) does not mean that at least one group consisting of few students gathered in the hallway, but rather that the total number of students who gathered in the hallway is few; (22b) does not mean that at least one group of exactly fifty students gathered in the hallway, but rather that the total number of students that gathered in the hallway was exactly fifty:

(22) a. Few of the students gathered in the hallway
 b. Exactly fifty students gathered in the hallway

To obtain correct results in examples like these, the determiner should be analyzed as placing a cardinality restriction on the maximal group satisfying both the NP and the predicate, so that exactly fifty, e.g., denotes $\lambda X \lambda Y [\big| \bigcup (X \cap Y) \big| = 50]$, where X and Y range over sets of groups.

An interesting observation due to Dowty (1986), made originally with respect to all but equally applicable to many other plural determiners, is that they do not combine naturally with predicates expressing pure cardinality:

(23) ??Most/??Many/??All of the students are numerous

Dowty suggests that although predicates like gather hold only of groups and not individuals, they have “distributive subentailments” concerning the individual members of those groups. If a group gathers in the hall, individual members of the group must come into the hall and remain there long enough that they are all present at a common time. In contrast, a predicate like be numerous carries no non-trivial entailments about the individual members of the groups of which it holds. The determiners in examples like (20a) serve to indicate that the subentailments of the predicate hold of some quantity or proportion of individual members of the group; thus All of the students gathered in the hallway requires that each individual student come into the hallway. Because be numerous does not carry any distributive subentailments for the determiner to operate on, the sentences in (23) are anomalous.

A different kind of quantification over groups is noted by Link (1987). (24) seems to involve universal quantification over groups of competing companies:

(24) All competing companies have common interests

In this sort of example, the correct results may be obtained straightforwardly by assigning the determiner its usual semantics in Generalized Quantifier Theory and letting plural
Mass nouns and plurals

NPs and VPs denote sets containing groups. We let a group be in the denotation of competing companies iff its members are companies in competition with each other, and a group be in the denotation of have common interests iff its members have common interests with each other; the determiner every indicates that the former set is a subset of the latter.

However, it should be noted that this kind of reading is generally only available when the NP contains a modifier such as competing which forces the NP to hold only of groups. Indeed, if neither the NP nor the VP forces a collective reading, most quantifiers, even if morphologically plural, are most naturally interpreted as quantifying simply over individuals:

(25) Most/Few students wrote a good paper

The sentences in (25) mean that a majority/minority of individual students wrote a good paper.

The definite determiner allows a collective reading even without such modification, as do numerals:

(26) The/Three students wrote a good paper

One natural interpretation of the sentences in (26) is that the students collaborated in writing a good paper.

As noted by Scha (1981), if more than one plural quantifier is present in a clause, a reading is available involving “cumulative quantification” (not to be confused with the “cumulative reference” property discussed in section 1, above). (27) has a reading which claims that the total number of Dutch firms that have an American computer is 600 and the total number of American computers owned by a Dutch firm is 5000:

(27) 600 Dutch firms have 5000 American computers

Roberts (1987: 148ff), following unpublished work by Partee, suggests that the cumulative reading is just a special case of an ordinary collective reading in which the predicate takes two groups as arguments, so that (27) means simply a group consisting of 600 Dutch firms stands in the “have” relation to a group of 5000 American computers. But as van der Does (1993: 545) and Schein (1993: 167) point out, this approach does not extend easily to sentences containing monotone decreasing determiners. The correct truth conditions for (28) are not obtained if we interpret the quantifiers according to their standard semantics and assign them scope in the usual way:

(28) Fewer than 600 firms own fewer than 5000 computers

Scha’s analysis of this sort of example requires an unusual syntactic analysis in which the two determiners combine to form a “compound numerical”: in (27), 600 and 5000 combine to form an expression denoting $\lambda R[|\text{proj}_1(R)|=600 \land |\text{proj}_2(R)|=5000]$, where proj_n maps a relation onto the projection of its nth argument place. The two NPs also combine to form a “compound noun,” denoting the Cartesian product of the denotations of the NPs which combine: $DF \times AC$. The compound numerical combines with the compound noun
to form a complex DP or “noun phrase sequence” denoting \(\lambda R[|\text{proj}_1(\{<x,y>\in DF \times AC | R(x,y)\})|=600 \ \& \ |\text{proj}_2(\{<x,y>\in DF \times AC | R(x,y)\})|=5000] \). This may then combine with the 2-place predicate own to give the desired truth conditions. Many semanti-
cists have viewed this proposal as non-compositional, and a variety of subsequent pro-
posals have been made to interpret such sentences while retaining a more intuitive
constituency.

One family of analysis uses special mechanisms to pass information up the tree
which would be lost in ordinary semantic composition: Van der Does (1992) employs
product types to allow access to NP denotations above the level of the DP. Landman
(2000) proposes a complex system in which multiple semantic representations are
derived in parallel, then combined to form the asserted content of the sentence as a
whole; a related analysis is developed in Krifka (1999a). A different family of solutions
to a neo-Davidsonian theory of thematic relations: each argument of the verb corre-
sponds to a separate clause in logical form, over which the corresponding quantifi er may
take scope; the subject and object quantifi ers thus remain scopally independent of one
another. The choice among these analyses is a major unresolved issue in the semantics of
plurality.

Quantifi ed mass DPs generally fall into two patterns: In the fi rst, a bare mass DP
combines with a measure phrase or classifier to form a complex count NP, which may
then combine with an ordinary count determiner, as in two liters of water, every loaf of
bread, etc. In the second, the mass NP combines directly with a determiner without a
measure phrase or classifier, in which case a mass determiner is required: much water,
all bread.

Measure expressions such as liter or loaf are most often analyzed in terms of measure
functions, i.e., functions from individuals to real numbers. As stressed by Lønning (1987),
Krifka (1989), Schwarzschild (2002), this kind of quantifi cation requires additive mea-
sure functions, so that whenever x and y do not overlap, \(f(x+y) = f(x)+f(y) \). (Hence *fifty
degrees Celsius of water.)

Where liter is the function mapping portions of material onto their volume in liters
and R relates kinds to their realizations as in section 3.1 above, we may analyze the
measure word liter as denoting \(\lambda k\lambda n\lambda x[R(k,x) \& \text{liter}(x) = n] \). Two liters of water will
therefore denote \(\lambda x[R(\text{water},x) \& \text{liter}(x) = 2] \), the set of individuals realizing the kind
“water” and measuring two liters. Note that the numeral two is not analyzed as a quanti-
ficational determiner, but as something more like a proper name denoting the number 2,
and serving as an argument of liter.

Alternatively, we might treat liter as denoting \(\lambda k\lambda x[R(k,x) \& \text{liter}(x) = 1] \), so that
liters of water simply denotes the set of 1-liter volumes of water. (This option must
probably be available anyway, for examples like every liter of water.) We might then
allow this to combine with the ordinary determiner two; but since every 2-liter volume
of water contains many more than two 1-liter volumes of water, this will not give the
right results unless we adopt a non-overlap condition, perhaps as part of the pragmatic
background.

This use of measure functions is extended to noun classifiers of the kind exemplifi ed
in Chinese, Japanese and other East Asian languages in Krifka (1995). Sometimes it is
claimed that in these languages, all nouns are mass, since they all must combine with
classifiers before they may combine with numerals (Chierchia 1998a,b; Krifka 1999b).
However, even in classifier languages, some sort of mass/count distinction is often detectable (Hundius & Kölver 1983, Cheng & Sybesma 1999).

Direct quantification of a mass NP, with no measure phrase or classifier, is possible in English using quantifiers such as much, little, most, etc. As noted by Roeper (1983), Lønning (1987), Higginbotham (1994) and others, we do not obtain correct results by treating mass NPs as predicates holding of individual portions of “stuff” as in section 2.2 above, and treating these quantifiers as binding variables ranging over these portions. (29) does not mean that for every x, if x is a portion of phosphorus, then either x is red or x is black, since (29) may be true in the case where some portions are only partly red and partly black.

(29) All phosphorus is either red or black

A related observation, first made by Bunt (1979), is that direct mass quantification normally requires not only the NP, but also the scope of the DP to show cumulative and distributive reference:

(30) Most water is wet/*heavy

Exceptions to this generalization have been noted and discussed by Higginbotham (1994), but these may be regarded as special cases.

Assuming such a restriction, we define a sum operation on the extensions of cumulative, distributive predicates: let $\sigma x P(x)$ denote the sum of all those objects x of which P holds true, providing P refers cumulatively and distributively; undefined otherwise. We apply this sum operation to both the NP and the verbal predicate before combining them with the mass determiner; this treats the determiner as a relation between sums.

Assuming a Boolean part-whole structure on portions, we may now reconstruct the theory of quantification in this Boolean algebra, rather than the power set algebra of the universe of discourse (Roeper 1983, Lønning 1987, Higginbotham 1994). E.g. all may be analyzed as holding between two portions x and y iff x is a material part of y, so that All water is wet is true iff the sum of all water is a part of the sum of all wet material; most may be treated as holding between x and y iff $\mu(x \land y) > 1/2 \mu(x)$, where μ is some pragmatically salient measure function and \land is the Boolean meet operation.

3.3. Plural and mass definites and conjunction

A related use of sum operations may be made in the analysis of plural and mass definite DPs and in the analysis of conjoined DPs. An obvious limitation of Russell’s (1905) theory of definite descriptions in terms of unique existential quantification is that it does not apply to plural or mass definites: The horses are in the corral does not mean that there is exactly one horse; The coffee is in the room does not mean that there is exactly one portion of coffee. Yet the fact that the same word the is used both with singular count NPs and with mass and plural NPs seems no accident; one would hope for a unified semantics.

An idea suggested by Sharvy (1980) and popularized in the linguistics literature by Link (1983), is to replace the Russelian representation of ‘The A is/are B’ in (31a) with the representation in (31b), where ‘\leq’ indicates the part-whole relation:
(31) a. $\exists x[A(x) \& \forall y[A(y) \rightarrow x=y] \& B(x)]$

b. $\exists x[A(x) \& \forall y[A(y) \rightarrow x \leq y] \& B(x)]$

Now *The coffee is in the room* will be true iff there is a maximal portion of coffee, of which all other portions are part, which is in the room. Assuming that the maximal group of horses has its smaller subgroups and members as parts, *The horses are in the corral* will require this maximal group of horses to be in the corral. But on the assumption that no king of France contains another as part, *The king of France is bald* will require the existence of a unique king of France: the Russelian truth conditions fall out as a special case.

The maximality condition imposed in this analysis has the effect that the definite description picks out the sum of the extension of the NP, on the assumption that the NP refers cumulatively. (The sum operation here should not require that the NP have distributive reference, unlike that used at the end of section 3.2.) If one prefers a presuppositional analysis, the definite determiner may be treated as directly expressing the sum operation, so that ‗The A is/are B‘ is represented as in (32):

(32) $B(\sigma x(A(x)))$

Then *the A* will be undefined when A is not cumulative, e.g. if it is a singular count noun with more than one element in its extension; the formula is therefore not assigned a truth value, which we consider to be presupposition failure. See article 41 (Heim) *Definiteness and indefiniteness* for more discussion.

A related idea is frequently invoked in analysis of conjoined DPs, as in (33):

(33) John and Mary are a happy couple

The conjunction in this sort of example cannot be reduced in any obvious way to sentential conjunction; (33) does not mean “John is a happy couple and Mary is a happy couple.” Instead, most analyses treat the coordinate subject *John and Mary* as referring to the group of John and Mary, and let the predicate *are a happy couple* apply to this group collectively.

Perhaps the simplest way to obtain this result is to treat *and* as ambiguous, between the ordinary truth-functional *and* (or some generalization it across a type hierarchy) and a “group-forming” *and* which maps any two individuals to the group consisting of them. This idea dates to ancient times and is represented in the modern literature by Partee & Rooth (1983) and many others; see Lasersohn (1995) for a historical overview.

A number of complications arise in such an analysis. First, group-forming readings of conjunction are not limited to proper names and other individual-denoting DPs, but also occur with indefinites and other quantificational DPs:

(34) a. A man and a woman own this house
b. Every student and every professor met to discuss their plans

Hoeksema (1983, 1988) discusses ways to adapt a group-forming conjunction operation into Generalized Quantifier Theory and Discourse Representation Theory to deal with such examples.
Another complication is that group-forming *and* must sometimes be done “in the argument places” of NPs or other predicates, as in (35):

(35) This man and woman are in love

This can be accomplished by a suitable type-theoretical generalization of the group-forming conjunction operation (Lasersohn 1995, Heycock & Zamparelli 2005).

But perhaps the most unsatisfying feature of an analysis which claims that conjunction is ambiguous between truth-functional and group-forming *and* is the claim that *and* is ambiguous at all. The putative ambiguity is too systematic and too common cross-linguistically to be accidental; an analysis should at least make clear what these readings have in common which leads them naturally to be expressed by the same lexical item, and ideally should unify their semantics completely.

Lasersohn (1992, 1995) argues that examples like (36) require that the conjunction be analyzed in terms of a group-forming operation on events, hence that verbal and sentential conjunction in general can be assimilated to group-forming conjunction:

(36) This refrigerator runs alternately too hot and too cold

Winter (2001) argues for an assimilation in the opposite direction, noting that if one treats proper names as generalized quantifiers in type $\langle<e,t>,t\rangle$ and allows them to conjoin using the cross-categorial generalization of ordinary truth-functional conjunction in the style of Partee & Rooth (1983), then *John and Mary* denotes the set of sets containing John as a member and Mary as a member; the group of John and Mary is recoverable from this set through a simple type-shifting operation. Conjunction itself is therefore treated as unambiguous; the collective reading is obtained by applying this type-shifting operation to the ordinary conjunction of *John* and *Mary*.

4. Collective and distributive readings

An important observation about sentences containing plural or conjoined DPs is that they may be understood either collectively, as in (37a) and (38a), or distributively, as in (37b) and (38b):

(37) a. Our problems are numerous
 b. The children are asleep
(38) a. John and Mary are a happy couple
 b. John and Mary are asleep

Sentence (37a) means that our problems, taken together as a group, are numerous – no individual problem is numerous – and (38a) means that John and Mary together form a happy couple, not that they each do. In contrast, (37b) entails that the individual children are asleep, not that the group is somehow asleep independently of its members being asleep, and (38b) is interpreted in the same way. The availability of these collective and distributive interpretations depends in large part on the predicate. Certain predicates, such as *be asleep*, cannot hold of a group without holding of its individual members; others, such as *be numerous*, cannot sensibly apply to an individual.
A third class of predicates may apply both to groups (without necessarily applying to their members) and to individuals: *draw a picture*. Sentences containing this third class of predicates may be understood either collectively or distributively; (39) can mean either that each child drew a picture, or that the children collaborated in drawing a picture together:

(39) The children drew a picture

In examples with conjoined plural subjects, a distributive interpretation is possible even with predicates which do not sensibly apply to individuals:

(40) The students and the professors met to discuss the issue

(40) may be understood as meaning either that the students met to discuss the issue, and so did the professors; or that the students met with the professors to discuss the issue.

Examples like (40) suggest that distributive interpretations do not necessarily involve application of a predicate to individuals as opposed to groups; but rather, application to the members of the group denoted by the DP, whether these members are themselves groups or individuals. Returning to an issue raised in section 2.1 above, this supports the idea that group-formation is not associative, since an associative operation does not permit the representation of higher-order groups: Where a and b are the students and c and d are the professors,

\[(a+b)+(c+d) = (a+b+c+d)\]

if + is associative.

The idea that group-formation is associative has been defended in the face of such examples by Schwarzschild (1992, 1996), who argues that the denotations of plural DPs may be analyzed as always having a “flat” structure if interpretation is relativized to a pragmatically established cover of the group denoted by the DP, following Gillon (1987). (A cover of a set S is a set of subsets of S whose union equals S.) In this analysis, a predicate applies to each cell in a pragmatically salient cover of the group denoted by its plural argument. Shoes conventionally come in pairs, so we interpret (41) relative to a cover which divides the set of shoes into matching pairs, yielding a reading that each pair of shoes costs $50, rather than each individual shoe or the group of shoes as a whole:

(41) The shoes cost $50

Describing the group whose members are the individual students and the individual professors using a coordinate DP like *the students and the professors* makes salient a cover of this group which divides it into the group of the students and the group of the professors, so that (40) may be interpreted as meaning that the students met and so did the professors.

It should be noticed that even though a covers-based analysis allows the use of an associative group-formation operation for the denotations of plural DPs, covers themselves have a non-associative structure: \([\{a\}, \{b,c\}]\) and \([\{a, b\}, \{c\}]\) are both covers of \([a, b, c]\), but must be distinguished from one another. The need for some technique for representing non-associative groupings seems beyond dispute.

A covers-based analysis generates non-existent readings in some cases (Lasersohn 1989). If John, Mary and Bill are the teaching assistants and earned exactly $7000 each last year, (37) is false, even though each cell in the cover \([\{John, Mary\}, \{John, Bill\}]\) earned exactly $14,000:
(42) The teaching assistants earned exactly $14,000 last year

Whether distributive interpretations make reference to covers, or simply involve applying a predicate to each member of the group denoted by its plural argument, the issue arises whether the collective/distributive alternation represents authentic ambiguity, or rather a single reading which is general enough to cover both possibilities. Lasersohn (1995) argues for an ambiguity, based on examples like (43):

(43) a. John and Mary earned exactly $10,000
 b. John and Mary earned exactly $5000

Suppose John and Mary each earned exactly $5000; then both (43a) and (43b) are true. This is easy to explain if there is an ambiguity, since then (43a) might be true relative to one reading, while (43b) is true relative to the other. But if there is no ambiguity, we face the paradox that there are two distinct amounts, both of which are the exact amount which John and Mary earned.

As Roberts (1987) points out, an ambiguity is also helpful in explaining patterns of anaphora. Sentence (44a) may be true in any of three types of situation: ones in which John and Mary collectively lifted a piano, ones in which they each lifted the same piano, and ones in which they each lifted a potentially different piano. But only the first two cases may the sentence be continued as in (44b), where it is anaphoric to a piano:

(44) a. John and Mary lifted a piano
 b. It was heavy

If the three types of situation in which the sentence is true correspond to formally distinct meanings of the sentence, one can attribute the difference in anaphoric potential to differences in meaning. But if the sentence is assigned just one very general reading, true in any of these three situation types, it is difficult to see how rules governing the distribution of discourse anaphors could be coherently stated. Gillon (1987) provides additional arguments for an ambiguity.

Given that an authentic ambiguity exists, the issue arises where in the sentence it is located. Early analyses often took for granted that DPs were ambiguous between collective and distributive readings, but many analyses now attribute the ambiguity to the predicate. A standard argument for this approach (e.g. Dowty 1986) comes from examples like (45):

(45) John and Mary met in a bar and had a beer

The natural interpretation is that John and Mary met collectively in the bar, but each had a separate beer; if we locate the collective/distributive alternation in the subject DP, this example would seem to impose conflicting requirements on the interpretation of John and Mary. But the correct interpretation may be obtained by locating it in the predicates: under its distributive reading, had a beer holds of a group iff each of its members had a beer; this predicate may be sensibly conjoined with met in a bar to yield a complex predicate applying to the group of John and Mary.
Frequently, distributive readings are attributed to a hidden operator attached to the predicate, following Link (1991) and Roberts (1987); predicates may be ambiguous because this operator may be present or absent. Notated ‘D’, this operator may be defined as in (41), where ‘yΠx’ means that y is a member of group x:

\[(46) \text{DP} = \lambda x \forall y[yΠx \rightarrow P(y)]\]

See Schwarzschild (1996) for an analogous operator making reference to covers. Lasersohn (1998a) generalizes a similar operator type-theoretically to account for distributivity in non-subject argument places.

A collective reading may be forced by modifying a predicate with an adverbial expression such as together or as a group. As pointed out by Lasersohn (1990, 1995, 1998b), this presents a problem for analyses in which the extensions of distributive predicates are not distinguishable in principle from the extensions of collective predicates. If John and Mary lifted the piano distributively but not collectively, (47) is false; if they each lifted the piano individually and also lifted it collectively, (47) is true. But in either case, the extension of lifted the piano would seem to be the set containing John, Mary and the group of John and Mary – and if the extensions are identical, there is no way for together to operate on them differently to provide distinct truth values in the two cases:

\[(47) \text{John and Mary lifted the piano together}\]

Lasersohn suggests that collective and distributive readings may be extensionally distinguished using a hidden event argument, as in Davidson (1967). An event of John and Mary lifting the piano distributively will be composed of smaller events of John lifting the piano and Mary lifting the piano; an event of John and Mary collectively lifting the piano will not. This allows a definition of together as \(\lambda P, g, \lambda e[P(g)(e) \& \neg \exists e' \exists x[e' \leq e \& x \neq g \& P(x)(e')]]\). For alternative analyses, see Schwarzschild (1994), Moltmann (1997, 2004).

5. References

Boolos, George 1984. To be is to be the value of a variable (or to be some values of some variables). Journal of Philosophy 81, 430–449.

Peter Lasersohn, Urbana, IL (United States)

47. Genericity

1. Preliminaries
2. Sentential genericity
3. Generic reference
4. Rationale for generic reference
5. What types of English DP’s can have generic interpretations?
6. Generic quantification
7. What types of DP’s can express generic reference across languages?
8. Indefinite singulars
9. If there are genera, what are they?
10. References

Abstract

Generic and habitual sentences are how natural language expresses regularities, laws, generalizations, habits, dispositions, etc. One example would be “Bears eat honey.” They are opposed in concept to episodic sentences, whose truth conditions concern whether or not an event of a given type occurs or fails to occur in a world of evaluation, whether as singular events or quantified over. An example would be “Some bears are eating some honey”. Generic sentences often include as a part a generic noun phrase such as “bears” whose denotation is argued to be a kind of thing, rather than being some quantification