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Abstract. During development, axons follow various cues to determine
their path, forming the structure of the nervous system. The axon growth
cone uses local chemical signals and neural activity to determine its
movement. While the axon guidance process is integral to developmen-
tal cognition, it is not yet fully understood and there are few in-silica
models of this process. In this work, a model of axon guidance using
artificial gene regulatory networks (AGRNs) is presented. An AGRN is
optimized through artificial evolution to control glial cells, which secrete
morphogens in a 3D space, and axon growth cones, which follow these
morphogenetic cues to eventually connect with other neurons.
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1 Introduction
Axon guidance is at the base of neural topology. The structure of the brain,
within the central nervous system and as connections are made to sensory or-
gans and other parts of the body, is the result of axons being guided by a variety
of cues. These mechanisms are beginning to be understood in biology, with ex-
amples such as the visual system providing insight to this complex process [3].

Both genetic factors and morphogenetic cues, such as netrins, are impor-
tant in axon guidance. However, despite the seemingly concrete nature of neural
topology, (eyes must connect to the visual cortex, which must then connect to
other specific sections of the brain, for example), neural activity has also been
shown to play an important role in axon guidance [5].

In this work, we create a model of axon guidance which relies on these three
factors: morphogenetic signals, gene expression, and neural activity. The model is
an abstraction, with a parameterized number of morphogens which don’t repre-
sent any specific axon guidance protein and an evolved artificial gene regulatory
network (AGRN). This abstraction allows for flexibility of applying the model to
different experimental configurations, where the number of axon guidance cues
is known, and to allow artificial evolution to determine the relationship between
an artificial morphogen and its biologic counterpart, if any. In this work, AGRNs
are evolved to replicate the experiment observed in [5] , where neural activity
disrupts the differentiation of axonal projections from the eyes into the visual
cortex.
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2 Artificial Gene Regulatory Network

Artificial GRNs were first proposed using a binary encoding of proteins with
specific start and stop codons, similar to biological genetic encoding [1], and have
since been used in a number of domains. Finding similar use to their biological
inspiration, AGRNs have controlled the design and development of multi-cellular
creatures [2] and of artificial neural networks (ANNs) [6].

An AGRN is composed of multiple artificial proteins, which interact via
evolved properties. Each protein has a concentration, representing the use of this
protein and providing state to the network. For input proteins, the concentration
is given by the environment and is unaffected by other proteins. output protein
concentrations are used to determine actions in the environment; these proteins
do not affect others in the network. The bulk of the computation is performed
by regulatory proteins, an internal protein whose concentration is influenced by
other input and regulatory proteins.

3 Axon guidance model

The model simulates cells and morphogens in a 3D space. Two cell types are
simulated: glial cells and neurons. Glial cells regulate morphogen concentrations
in the environment and neurons project axons, which navigate within the envi-
ronment.

Each morphogen is modeled by a concentration ci at discrete points in the
environment. This morphogen grid is then used to construct a continuous 3D
morphogen space using linear interpolation. The concentration is bound between
[0, 1] and decays exponentially to model natural absorption.

Glial cells diffuse morphogens based on output proteins of their AGRN, di.
The morphogen grid is updated based on the euclidean distance, D of each point
in the grid, [x, y, z] to the glial cell, [xg, yg, zg]:

dci[x, y, z]

dt
=

e−βdiffusionDdi

τdiffusion
(1)

Neurons are modeled in two distinct parts: axon and soma. Somata are fixed
in space and receive dendritic input from other neurons or direct stimulation.
The membrane potential V of each soma is modeled using a leaky integrate and
fire (LIF) model with conductance-based synapses.

A neuron spikes when its membrane potential exceeds Vthresh. This spike
propagates down the axon and is used by the growth cone to decide movement.
Dendrites are not considered in the model for simplicity.

Axon growth cones follow morphogen gradients to move in the space. Based
on their AGRN outputs, at each timestep the axons can rotate towards or away
from a morphogen gradient, move in their current direction, or rest. When in
proximity to a soma in the visual cortex, they can form a synapse. In order to
do this, they must rest at least one timestep near the target soma to approach
it; if they continue to move they will not connect. Once connected, axons cannot
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disconnect. Axon growth cone branching and pruning were not considered in
this model. The connection is considered a permanent synapse, and any firing
from the presynaptic neuron activates the postsynaptic neuron.

The glial cells and neurons share the same AGRN, but the inputs and outputs
are separated for the two different cell types. Certain glial cells are placed directly
on somata, and in this case, the membrane potential of the soma and the neuron
type (visual cortex or eye) are given as an inputs to the glial cell’s AGRN.
Both cells types receive the morphogen concentrations as inputs, and the axon
also receives as input the dot product of its current direction with the different
morphogen gradients. A final input is given to both types to indicate the cell
type; 0 for neurons and 1 for glial cells.

4 Experiments

The point of this experiment is to see if this artificial axon model changes be-
havior based on neural activity, as in [5]. For this reason, four different neural
activity cases are considered. Each eye receives either periodic neural activity,
which comes in waves of strong synaptic input, or non-periodic activity, which
causes spiking following a uniform distribution. The four cases are therefore pe-
riodic activity in both eyes, only in the left or only in the right, and non-periodic
activity in both eyes.

As in biology, the expected outcome is that the axonal projections differen-
tiate in the visual cortex during periodic activity but fail to differentiate under
non-periodic activity. The evolutionary fitness is therefore based on replicat-
ing this effect, in a score composed of four parts: the percentage of connections
formed, differentiation from the right eye, from the left eye, and distance between
the different projection clusters when both eyes have periodic activity.

5 Results and conclusion

The evolved behavior led to a mostly distributed connection scheme, even in the
case of periodic neural activity. While this may be the cause of the evolutionary
fitness function, which evaluated the case of no periodic activity first, neural
activity did have a result on the final activity of the growth cones. Interestingly,
the best evolved individual used neural activity in the axons to decide to rest,
leading the periodic activity to have large-scale connection events, whereas the
non-periodic activity caused connections to be formed sporadically. This lead to
more tightly clustered connections during periodic activity, although not to the
level of differentiation seen in biology.

The demonstration of activity-based topology formation is interesting for the
case of developing artificial neural networks (ANNs) for use in computational
problems. While the structure of ANNs is often static, developmental structures
have been used [4]. A remaining challenge in evolving developmental structures
is the responsiveness of development to neural activity. Previous work has shown
that evolution can easily develop a static structure optimized for the problem
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Fig. 1: Evolved axon connection behavior. Axons from both eyes connect
throughout the visual center based on non-periodic spiking activity in the eyes.

at hand, without relying on neural activity. In future work, this model will
be applied to ANN development for computational problems, as it has shown
capabilities for activity based development.
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