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Developmental Neural Networks Workshop

- First edition at PPSN 2018

- Second edition at ALIFE 2019

- Third edition at ALIFE 20207

- Neuroscience keynote, submitted works, panel discussions

- irit.fr/devonn/
OfA0
[=]
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irit.fr/devonn/

2019: ALIFE

14:00-14:20

14:20-15:30

15:30-16:00

16:00-16:20

16:20-16:40

16:40-17:00

17:00-17:30

Introduction to Developmental Neural Networks
Dennis G. Wilson, Julian F. Miller, and Sylvain Cussat-Blanc

Connectome Development — From Local Neuronal Links to Global Fibre Tract
Brain Networks

Roman Bauer, Marcus Kaiser

Break

Normalisation of Weights and Firing Rates in Spiking Neural Networks with Spike-
Timing-Dependent Plasticity

Kasia Kozdon, Peter Bentley

Evolving an artificial brain to solve multiple problems

Julian Miller

Learning to Talk in a Gesture-Rich World: Application in Cognitive Robotics
Gabriella Pizzuto

Panel discussions
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Why should we study Developmental
Neural Networks?
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Adult songbirds

Spring Winter

Image: [Tramontin and Brenowitz, 2000]
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London taxi drivers
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Image: [Maguire et al,, 2000]
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Adult owl monkeys

<P

1 mm
Cortical organization befere stimulation Cortical organization after stimulation
determined by electrode recordings of digit 2 for 109 days, 1.5 hrs/day
(gray represents the digit tip) (gray represents the digit tip)

Image: [Jenkins et al., 1990]
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Neurogenesis

Adult Latent Reparative
neurogenesis _progenitors _neurogenesis
F + + _
M - ? —
Sc - ? -
Primates g _ F) _
Rodents F + + -
4 - + -
sc - + -
R - ¥ +—
F + ? +
M - —
- Birds s - — -
R — + +
F + ? +
M - ? -
Sc - ? -
R - -
Reptiles
F + ? -
e
o M ? ? _
Sc - ? —
Anurans g " - +
F + ? +
M v +
Sc + ? +
R + + +
F + ? +
Key o ¥ Py M + ? ?
® Constitutive neuronal %) Fish Sc - + +
progenitors =
© Latent neural progenitors + + +

Image: [Alunni and Bally-Cuif, 2016]
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Eye-specific patterning
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Eye-specific patterning depends on neural activity
[Pfeiffenberger et al., 2007]

Image: [Erskine and Herrera, 2007]
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Benefits of development

Development can:

- Enable multi-task and lifelong learning
- Optimize structure based on learning

- Ensure robustness through redundancy
- Allow for network healing and repair

- and more!
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Development in Artificial Neural Networks

Many different methods, which over the years have been
called:

- Developmental

- Plastic

- Constructive

- Self-organizing
Our focus:

Artificial Neural Network models which include structural
change as a part of learning
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Indirect Encoding Neuroevolution
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The difference: learning is an epigenetic factor

Image: [Stanley et al., 2009]
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Why not study Developmental Neural Networks

- Static Deep Neural Networks already work

- Deep Neuroevolution / Neural Architecture Search is
exciting

- It's hard: “The use of developmental strategies for
artificial learning systems has shown to be a very complex
practice.... It remains unclear how to systematically define
developmental stages on the basis of the interaction
between innate structure, embodiment, and (active)
inference” [Parisi et al., 2019]

- You hadn’t yet attended the Developmental Neural
Networks workshop
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Designed Developmental Rules
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Designed Developmental Rules

Developmental Neural Networks which use a heuristic function
to determine when structural changes should be made.

- Cascade-correlation [Fahlman and Lebiere, 1990]
- Upstart [Frean, 1990]

- Self-organizing Neural Networks
[Horzyk and Tadeusiewicz, 2004]

- Constructive Neural Networks workshop at International
Conference on Artificial Neural Networks (ICANN 2008)

- Adaptive Neuron Apoptosis [Siegel et al., 2016]
- AdaNet [Cortes et al., 2017]
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Progressive Neural Networks
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Progressive Neural Networks add a new parallel architecture
for each new task

Image: [Rusu et al,, 2016]
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Structured Pruning
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Structured pruning removes redundant network weights

Image: [Anwar et al., 2017]
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Recurrent GWR network
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Recurrent GWR layers modify their neurons and connections

based on neural activation
Image: [Parisi et al,, 2017]
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Recurrent GWR network

Algorithm 1 Associative Gamma-GWR (AG-GWR)
: Start with a set of two random neurons, A = (w;, w;} with
empty context vectors l:‘k fork=1,...K,i=12.
Initialize an empty set of connections E = #.
[AG-GWR only] Initialize an empty label matrix H(i, ) = @.
Initialize K empty global contexts € = 0.
At each iteration, generate an input sample X(t) with label &.
Select the best and second-best matching neurons (Eq. 8):
b = arg minjea di(t), s = arg minjeap) di(t).
Update context descriptors:
G =By + (1= B)-cil
: Create a connection E = E U {(b, s); if it does not exist and set
its age to 0.
If (exp(—dy(t)) < ar) and (n < fr) then:
a: Add a new neuronr (A = AU {r}):
W, = 0.5 (X(t) + W), & = 0.5 (C(t) + &), n = 1.
b: Update edges between neurons:
E=EU{(r,b),(r,s)yand E = E/{(b,s)}.
¢: [AG-GWR only] Associate the sample label & to the neuron r:
If(€ # @) H(r, &)= 1, H(r.1) = 0, with | € L/{§).
: 1f no new node is added:
a: Update weight and context of the winning neuron and its
neighbors:
Awg = e - (x(6) — W), Ack = &y - (Gy(t) — )
b: [AG-GWR only] Update label values of b according to the
sample label &:
If(€ # ¥): AH(b. §) = 6", AH(b.1) = =5, withl € L/{£).
11: Increment the age of all edges connected to b of 1.
: Reduce the firing counters of the best-matching neuron and its
neighbors:
Ani=rti-k-(1—n)— T
: Remove all edges with ages larger than fi,,, and remove neu-
rons without edges.
: If the stop criterion is not met, repeat from step 5.
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o
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=

Image: [Parisi et al.,, 2017]
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Generated Developmental Rules
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Generated Developmental Rules

Generate the function which determines structural changes,
often using artificial evolution, called evo-devo methods.

- Graph generation system [Kitano, 1990]
- Cellular Encoding [Gruau and others, 1994]
- Binary networks in cells [Dellaert and Beer, 1994]

- CGP-based approaches [Miller and Khan, 2011],
[Miller and Wilson, 2017]

- aGRN evoluion for Spiking Neural Networks [Federici, 2005]

- Probabilistic Program Neurogenesis [Martin and Pilly, 2019]
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Cell division and migration

Evolved rules for cellular automaton system starting from a
single cell

Image: [Cangelosi et al., 1994]
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L-Systems

Brain and body morphology were co-evolved using L-Systems
Image: [Hornby and Pollack, 2001]
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Morphogenesis
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GRNs control morphogenesis and cell actions in a 2D grid

Image: [Astor and Adami, 2000]
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Adaptive Spiking Neural Network Development
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Development allows for adaptation to faulty cells

Image: [Shayani et al,, 2009]
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The future of Developmental Neural
Networks
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Applications of development

a) Developmental & Curriculum Learning b) Multi-Task Transfer Learning

Forward transfer

]

Backward transfer

Task complexity

Plasticity

Time Time

) Curiosity and Intrinsic Motivation d) Crossmodal Leaming

Integration
Agent l External reward

Strategy / action selection

Enhancement

internal reward

t

Intrinsic motivation | Madality A Modality B

Lifelong (continuous, multi-task) learning

Image: [Parisi et al,, 2019]
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Applications of development

Homeostasis Lesion Regeneration
Zebrafish retina
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Network healing and regeneration
Image: [Alunni and Bally-Cuif, 2016]
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Applications of development

For discussion (end of workshop):
Where can development be useful?

- Multi-task, continuous, lifelong learning
- Active Neural Architecture Search

- Regeneration, healing

- Understanding biological development

- Opening up new forms of learning
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Goals and challenges of development

What challenges are there in working on development?

- Complexity, especially in Deep Neural Networks

- Dissonance between cell-based and layer-based models
- Computational cost

- Lack of clarity in biological development

- Evaluation metric, how to measure development
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The future of Developmental Neural Networks

You!
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