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Abstract. Neuroscience experiments have shown that rats separate a
navigation task into blocks of knowledge, which are likely to be recom-
bined and reused to solve these tasks. Being able to replicate this ability
in an artificial system is hypothesised to enable flexibility and robust-
ness to a variety of navigation tasks. This work aims to determine what a
minimal system needs in order to accomplish a given task. Spike Timing
Dependent Plasticity models are constructed that successfully navigate
a series of more complex maze simulations. This identifies the need for
boundary cells and grid cells, including place cells and ultimately time
cells, to construct and reuse blocks of learnt knowledge.

Keywords: Animat, Spike Timing Dependent Plasticity, Autonomous
Navigation

1 Introduction
Recently, in-vivo neuroscience experiments have shown that rats separate a nav-
igation task into blocks of knowledge, which are likely to be recombined and
reused to solve these tasks. The hypothesis is to use Spike Timing Dependent
Plasticity (STDP) models of brain functionality to replicate useful behaviours.
Hence the following research question was adopted: ‘what are the minimum com-
ponents of learning, including the use of building blocks, that would enable an
artificial rat to achieve navigation tasks of varying complexity?’ This model is to
be tested with sequential decision making in simulated mazes, in order to mimic
the in-vivo tests that inspired the design.

2 Background
The study of the neuron systems for navigation in rats has been a rapidly de-
veloping area since the applications of the techniques to record single neuron
activities in freely-moving rats [1]. Place cells in the hippocampus fire at specific
locations [2]. Then head direction cells [3], grid cells [4], boundary cells [5] and
speed cells [6] were found in the entorhinal cortex and other regions. However,
the neuron basis for navigation is a highly complex system, such that the mecha-
nistic details of spatial mapping is still not totally understood ([1] 2017). Hence,
we will not try to simulate the entire rat brain. Instead we will draw analogies
from the areas in a rat brain considered important for navigation.

Analogues of rat neuron systems for navigation, e.g. place cells, grid cells,
have been used in artificial systems to assist spatial cognition [7, 8]. How-
ever, these works were not based on spiking neuron networks or spike tim-
ing–dependent plasticity (STDP) [9], and did not include the design of building
blocks of information.
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Fig. 1. Maze navigation tasks. The arrows show the direction of navigation. (a) W (b)
M (c) The hat (d) The high hat (e) Double T junction (f) X junction mazes.

All the models are spiking neuron networks created in CARLsim 3.1.3. CARL-
sim is a C/C++ spiking neuron network library where Izhikevich spiking neurons
and realistic synaptic dynamics such as STDP are employed [10]. CARLsim has
been used in robotics [11], but has not to test the building-block mechanism.

3 Methods
Different mazes as shown in Figure 1 are developed to train our agent and test its
performance. The first maze (the W maze) is a corridor with left and right turns.
This is to train and test the agent on the response to the boundaries. M maze
and the hat maze are successively applied to test whether the agent can apply
the boundary response (one type of the building blocks in maze solving) learned
from W maze on a mirror (rotated) or a turn order altered version. Then a high
hat maze is tested for the scalability of the boundary building blocks. Mazes with
double T junctions and/or X junctions are used to train the agent on developing
specific response according to locations (another type of building block).

The connections between different neurons are strengthened/weakened by
the STDP mechanism during each training run. Training is set to run 50 times
in our models by applying sensor readings plus a ‘current’ to the rat to supervise
its navigation, i.e. fire motor cells to make appropriate decisions. Then, the agent
is tested on the same and rotated/scaled mazes without the input current, where
the agent must rely on what it has learned, that is, the synaptic weights among
neurons that have been built up during training. All excitatory neurons are
regular spiking neurons (class 1 excitable): a=0.02, b=0.2, c=-65, d=8, while all
inhibitory neurons are Fast spiking neurons (class 2 excitable) : a=0.1, b=0.2,
c=-65, d=2. For the simple model there are 4 motor neurons: one excitatory and
one inhibitory for each direction (left or right), 360 neurons for each degree in
the Boundary cells and 100 cells in each of the one layer Grid, Gaussian receptive
place and Memory Recording Place cells.

Figure 2 shows a simplified view of its structure, which is split into three
regions: dentate gyrus (DG), cornu ammonis 3 (CA3) and cornu ammonis 1
(CA1). This is inspired by the observations in a real rat brain, which possesses
different scales of spatial representations from dorsal to ventral hippocampus
[12]. Furthermore, this structure is replicated in two hemispheres, for a total of
3x3x2 = 18 cell groups. The output layer consists of two groups of motor cells
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to steer the agent right and left respectively, noting this functionality is more
complicated in a real brain.

Fig. 2. Left: the model; red lines excitatory, blue inhibitory connections. Middle: firing
rate of the boundary neurons changes when the rat movez forward and the surrounding
boundary changes. Right: the firing field of one grid cell.

4 Results and Analysis

Fig. 3. A synaptic weight developed between boundary cells and motor neurons. Neu-
ron ID is the number of the boundary cell: 0 front, 180 back. INH inhibitory.

An example of the synaptic weights developed is shown in Figure 3. It illus-
trates that both motor neurons will be excited when there is a wall in front of
the agent, or corners diagonally behind, and the left (right) motor neuron will
be inhibited when there is a wall to the left (right) of the agent. This means the
agent can learn to avoid turning to boundaries, turn left (right) at a left (right)
bend, and apply these rules on a different maze (rotated, mirrored, the order of
turns re-arranged, scaled).

When the model is trained in the W maze, it can navigate successfully in M
maze, the hat maze and the tall hat maze as well. If it is trained in the maze e or
d in Figure 1 with different steering direction in the successive T or X junctions,
it can navigate by itself in the same maze afterwards, and navigate successfully
through a maze without decision points (e.g. T or X junction) such as W maze or
the hat maze. However, its performance is still not ideal as sequences of different
decisions at one location cannot be made.

5 Conclusion

The work successfully achieved its aim of building a Spike Timing Dependent
Plasticity model for agent navigation in a series of complex mazes. Experimental
results demonstrated that for simple corridor mazes, boundary cells are sufficient
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to enable navigation that is invariant to the pose and scale of the maze once
it has been learnt. However, when the agent has to make decisions based on
specific locations, the grid cells and place cells need to be included in the system.
Finally, if a sequence of decisions is needed in a given location, then the grid cell
infrastructure needs to be extended to time cells. Analysis of the learnt agents
show that important building blocks, e.g. location in the west of a maze, are
reused in the navigation tasks to facilitate flexible and robust learning.
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