
Evolving programs that build neural networks for
multiple problems

Julian F. Miller1, Dennis G. Wilson2, and Sylvain Cussat-Blanc2

University of York, Heslington, York, YO10 5DD, UK julian.miller@york.ac.uk
University of Toulouse, IRIT - CNRS - UMR5505, 21 allee de Brienne, Toulouse, France 31015

{dennis.wilson,sylvain.cussat-blanc}@irit.fr

Abstract. Two neural programs are evolved that allow a neuron to build an arti-
ficial neural network (ANN) that can perform reasonably well on multiple classi-
fication problems simultaneously.

1 Introduction

The original inspiration for ANNs came from knowledge about the brain, however, very
few ANN models use evolution and development, both of which are fundamental to the
construction of the brain [4]. In this paper, we propose a simple neural model in which
two neural programs are required to construct neural networks. One to represent the
neuron soma and the other the dendrite. The soma program decides whether neurons
move, change, die or replicate. The dendrite program decides whether dendrites extend,
change, die, or replicate. Since developmental programs build networks that change
over time it is necessary to define new problem classes that are suitable to evaluate
such approaches. We show that the pair of evolved programs can build a network from
which multiple conventional ANNs can be extracted each of which can solve a differ-
ent classification problem. Our approach is quite general and it could be applied to a
much wider variety of problems. The model reported here was inspired in part by the
developmental method for evolving graphs and circuits proposed in [6] and particularly
by the paper [3].

2 The neuron model

The model is illustrated in in Fig. 1. The neural programs are represented using Carte-
sian Genetic Programming (CGP) [5] using mathematical node operations, operating
and returning real-values between -1 and 1. The programs are actually sets of mathe-
matical equations that read variables associated with neurons and dendrites to output
updates of those variables. Bias refers to an input to the neuron activation function
which is added to the weighted sum of inputs (i.e. it is unweighted).

2.1 Model parameters

The total number of neurons and dendrites possessed by a neuron is bounded between
a user-defined bounds. This ensures that a network can not eliminate itself or grow too



2 Miller et al.

Fig. 1. The model of a developmental neuron. Each neuron has a position, health and bias and a
variable number of dendrites. Each dendrite has a position, health and weight. The behaviour of
a neuron soma is governed by a single evolved program. In addition each dendrite is governed
by another single evolved program. The soma program decides the values of new soma variables
position, health and bias based on previous values, the average over all dendrites belonging to
the neuron of dendrite health, position and weight and an external input called problem type.
The latter is a floating point value that indicates the neuron type. The dendrite program updates
dendrite health, position and weight based on previous values, the parent neuron’s health, position
and bias and problem type. When the evolved programs are executed, neurons can change, die
replicate and grow more dendrites and their dendrites can also change or die. All the neuron and
dendrite parameters (weights, bias, health, position and problem type) are defined by numbers in
the range [−1,−1].

large. The initial number of neurons is defined by Ninit and the initial number of den-
drites per neuron is given by NDinit . If the health of a neuron falls below (exceeds) a
user-defined threshold, the neuron will be deleted (replicated). Likewise, dendrites are
subject to user defined health thresholds which determine whether the dendrite will be
deleted or a new one will be created. When the soma or dendrite programs are run
the outputs are used to decide how to adjust the six neural and dendrite variables. The
amount of the adjustments are decided by the six user-defined parameters (δ ). The num-
ber of developmental steps in the two developmental phases (‘pre’ learning and ‘while’
learning) are defined by the parameters, NDSpre and NDSwhi. The number of learning
epochs is defined by Nep. In some cases, neurons will collide with other neurons and the
neuron has to be moved until no more collisions take place. All neurons are marked as
to whether they provide an external output or not. In the initial network there are Ninit
non-output neurons and No output neurons, where No denotes the number of outputs
required by the computational problem being solved.

2.2 Developing the brain and evaluating the fitness

An overview of the algorithm used for training and developing the ANNs is given in
Overview 1. The brain is always initialised with at least as many neurons as the max-
imum number of outputs over all computational problems. Note, all problem outputs
are represented by a unique neuron dedicated to the particular output. However, the
maximum and initial number of non-output neurons can be chosen by the user. Non-
output neurons can grow change or give birth to new dendrites. Output neurons can
change but not die or replicate as the number of output neurons is fixed by the choice
of computational problems.



Evolving developmental ANNs 3

Overview 1 Overview of fitness algorithm

1: function FITNESS

2: Initialise brain
3: Load ‘pre’ development parameters
4: Update brain NDSpre times by running soma and dendrite programs
5: Load ‘while’ developmental parameters
6: repeat
7: Update brain NDSwhi times by running soma and dendrite programs
8: Extract ANN for each benchmark problem
9: Apply training inputs and calculate accuracy for each problem

10: Fitness is the normalised average accuracy over problems
11: If fitness reduces terminate learning loop and return previous fitness
12: until Nep epochs complete
13: return fitness
14: end function

We extract conventional ANNs from the evolved brain in the following way. First,
since we share inputs across problems we set the number of inputs to be the maximum
number of inputs that occur in the computational problem suite. If any problem has less
inputs the extra inputs are set to zero. The next phase is to go through all dendrites of
the neurons to determine which inputs or neurons they connect to. To generate a valid
neural network we assume that dendrites are automatically connected to the nearest
neuron or input on the left. We refer to this as “snapping”. The dendrites of non-output
neurons are allowed to connect to either inputs or other non-output neurons on their left.
However, output neurons are only allowed to connect to non-output neurons on their
left. It is not desirable for the dendrites of output neurons to be connected directly to
inputs, however, when output neurons are allowed to move, they may only have inputs
on their left. In this case the output neuron dendrite neuron will be connected to the first
external input to the ANN network (by default). Nep > 1 means that one is looking for
a learning algorithm in which the networks improve with iteration.

3 Experiments and Results

We evolve neural programs that build ANNs for solving three classification problems:
cancer, diabetes and glass 1. These were chosen because they are well-studied and also
have similar numbers of inputs and a small number of classes. Twenty evolutionary
runs of 20,000 generations of a 1+5-ES were used. Genotype lengths for programs were
chosen to be 800 nodes. Goldman mutation [2] was used which carries out random point
mutation until an active gene is changed.

Experiments were carried out to investigate the utility of neuron movement: all can
move, only non output neurons can move, only outputs neurons can move and no neu-
rons can move. We also examined three ways of incrementing or decrementing neural

1https://archive.ics.uci.edu/ml/datasets.html



4 Miller et al.

variables. In the first the outputs of evolved programs determines directly the new values
of neural variables (position, health, bias, weight), that is to say there is no incremental
adjustment of neural variables. In the second, the variables are incremented or decre-
mented in user-defined amounts (the delta parameters). In the third, the adjustments to
the neural variables are nonlinear (they are adjusted using a sigmoid function). Also,
experiments were carried out with Nep = 10. Although programs were found that pro-
duced ANNs that improved with each epoch, they gradually worsened for more epochs
(> 10). We found that the statistically significant best results were obtained when only
output neurons were allowed to move. The mean, median, maximum and minimum
are shown average over all problems and for each individual problem (cancer, diabetes
and glass) in Table 1. Also linear incrementation of neural variables was statistically
better than alternatives. These results compared reasonably with huge suite of classi-
fication methods as described in [1]. This is encouraging considering that the evolved
developmental programs build classifiers for three different classification problems si-
multaneously.

Table 1. Training and testing accuracy on combined and individual problems when only output
neurons are allowed to move.

Acc. Average Cancer Diabetes Glass
Train/Test Train (Test) Train (Test) Train (Test)

Mean 0.7456 (0.7206) 0.9397 (0.9534) 0.7094 (0.6622) 0.5879 (0.5462)
Median 0.7481 (0.7329) 0.9471 (0.9598) 0.7031 (0.6510) 0.5888 (0.5849)

Maximum 0.7854 (0.7740) 0.9657 (0.9942) 0.7526 (0.7500) 0.6636 (0.6415)
Minimum 0.7022 (0.6498) 0.8771 (0.8391) 0.6693 (0.6094) 0.4766 (0.3774)

4 Future work

There are many avenues for future work. Likely short-term plans are to allow the neu-
rons to exist in a two dimensional space and to train evolved networks over a greater
variety of computational problems.

References

1. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of clas-
sifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181
(2014)

2. Goldman, B.W., Punch, W.F.: Analysis of cartesian genetic programmings evolutionary mech-
anisms. Evolutionary Computation, IEEE Transactions on 19, 359 – 373 (2015)

3. Khan, G.M., Miller, J.F., Halliday, D.M.: Evolution of Cartesian Genetic Programs for Devel-
opment of Learning Neural Architecture. Evol. Computation 19(3), 469–523 (2011)

4. Miller, J.F., Khan, G.M.: Where is the Brain inside the Brain? Memetic Computing 3(3), 217–
228 (2011)

5. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proc. European Conf. on Ge-
netic Programming. LNCS, vol. 10802, pp. 121–132 (2000)

6. Miller, J.F., Thomson, P.: A Developmental Method for Growing Graphs and Circuits. In:
Proc. Int. Conf. on Evolvable Systems. LNCS, vol. 2606, pp. 93–104 (2003)


