THE UN]V[RS]TYU}%)}{(

Evolving an artificial brain to solve
multiple problems

Julian F. Miller

Department of Electronic Engineering
University of York
julian.miller@york.ac.uk

THE UN]V[RS]TYU}%)}{(

Moonshot challenge

 Find the program for an
artificial neuron that allows it
to build a neural network that
learns for itself how to solve
multiple problems of many
different types

 i.e. general Al

THE UN]V[‘RS]TYU}%?i(
Overview

Biological Development is responsible for all
learning in brains

0 Brains solve multiple problems without interference

0 In brains, neurons move, change, die or replicate,

dendrites and axons change, branch, shrink and die
0 Learning is not just synaptic but topological
0 Learning happens in the lifetime of the individual
Almost all ANN models do not have development

0 Aim: Find a set of weights for fixed connections that give

good performance ("synaptic dogma")

0 They suffer from catastrophic interference

THE UN]V[RS]TYU}%)}{(

The Neuron model: overview 1

Neuron abstracted as a body (soma) and a number of
connections (dendrites)

The collection of neurons and dendrites is called the *“brain”
There are two evolved programs: soma and dendrite
0 When executed in some initial neurons, a brain grows
The soma program allows neurons to move, die, replicate, or
change
The dendrite program allows the dendrites to change in length,
die, replicate , or change
All neural variables are real-valued in the interval [-1.0, 1.0]
The soma and dendrite programs are encoded and evolved
using Cartesian GP
0 Nodes in the CGP graph are mathematical functions they operate on and

return values between -1 and 1.

THE UMV[RS]TY@%)&

The Neuron model: overview 2

Some neurons provide the outputs corresponding to a
computational problem

Inputs can be shared or unshared and are assigned fixed positions
which are problem dependent

From the "brain" traditional feedforward ANNSs are extracted

THE UMV[RS]TY@%)&

Soma program

Neurons have a bias, health and a position

neuron
health,
bias,position

updated neuron
health, bias
position

average dendrite|f soma program

health, /'
=

weight,
position

performance @

The program adjusts neuron variables (health, bias and
position): if they are positive (negative) they are incremented
(decremented) by user-defined increments: dy,, 9y, O
Non-output neurons have performance input equal to zero.
Output neurons have performance input equal to “fitness’ score
on the problem being solved

THE UMV[RS]TY@%)&

Dendrite program

¢ Dendrites have a health, weight and position
e The dendrite program is run in every dendrite
neuron updated dendrite:

health, bias, health, weight
position position

dendrite health,
weight, :-j
position ~—*

dendrite
program

nearest neuron position P
to dendrite ’

performance (b)

» The program adjusts neuron variables (health, bias and
position): if they are positive (negative) they are incremented
(decremented) by user-defined increments: dgy, , gy, Ogp

» Dendrites on non-output neurons receive a performance score of
zero. Dendrites on output neurons receive the performance
score given to the parent neuron

THE UNIV[RS]TYU}%}i{
Birth, death and change

There are user defined health thresholds for neurons (HN;,
HN,) and dendrites (HD,;, HD,) which determine whether a
neuron or dendrite dies, changes or replicates

O h;<HN;: neuron death h;> HN,, : neuron birth
0 hy<HD;: dendrite death hy; > HD,;: dendrite birth
Neuron health decides dendrite birth
If no birth or death, the neuron or dendrite changes according to
the updated values from the neuron program
00 When birth occurs a new neuron is placed at a distance MN;,,. to

the right of the parent neuron.

0 If neuron collisions occur, neurons are moved by MN;,. until no

C

more collisions occur

Neuron and dendrite numbers are bounded between one and
the maximum allowed (user defined)

THE U[\'IVERSITYU]%?k

1: function FITNESS

. Initialise brain

3 Load “pre” development parameters

4 for NDX . times do € . .

£ Run somafdendrite programs o update brain Development without learnlng
6 end for

7 Load *while” developmental parameters

B
9:

Epoch =10
3 PreviousFitness =0
10: repeat
1: for NDE, ,, times do
12: I Fun somafdendrite programs to update brain Development in learning 100p

May have fitness input

13: end for <
¢ for p = 0 to NumBenchmarkProblems do
Extract ANN
if fncremental Training then
Niner = (epochi+ 1) « NTre(p) [/ Nep
for Niges training cases do
I Accumulate fitness
end for
Fitness = Fiiness Ny,
end if
Accumulate Fitness for benchmarks
il for
Fitness = Fitness (NumBenchmarkProblems
if EpochTraining them
if Fitness <= PreviousFitness then

€ Increase training set

ﬁ= I IHB”-‘-* ¢ If epoch training look for

o [d 3)

e I PreviousFitness = Fitness hlgher fitness at each epOCh

i: end if

kxH end if

13: Increment E poch

: until N, epochs

s Retum Fitness

i6: end function 9

THE U[\'IVERSITYU]%?k

Task problems

Ball throwing
Inputs: Arm angle, angular velocity (2)
Outputs: Torque, Ball Release (2)
Fitness: distance thrown (max 10.202)
Upto 10,000 simulation steps

Double-pole balancing
Inputs: Arm angle, angular velocity of
pole, position and velocity of cart (6)
Outputs: Force applied
Fitness: how long balanced
Upto 100,000 simulation steps

10

Results 1

One problem

Two problems

THE U[\'IVERSITYU}%#(

Statistic
Mean
Median
Maximum
Minimum
No. solved

Ball throw
0.8515
0.9827
0.9948
0.5394

14

Double pole Statistic Exper_irlnent A Fxp;r_imcnt B
NN position used. | NN position unused.
0.8455 Incr. training Incr. training
1 Performance input Performance input
1 No epoch training No epoch training
0.00278 Mean 0.4072 0.3357
12 Median 0.2741 0.2735
Maximum 0.7728 0.7372
Minimum 0.2701 0.2702
Max Prob 1 0.5458 0.6699
Max Prob 2 1.0 (4) 0.9347 (0)

Nearest neighbour (NN) position useful to dendrite

Also found that incremental learning highly beneficial

Solving ball-throw and double-pole simultaneously, is much
harder than solving either

0 Suggests interference is occuring...

11

Statistic Experiment A Experiment E
Shared inputs Unshared inputs
NN position used. | NN position used.
Incr. training Incr. training
Performance input|Performance input
Mo epoch training | No epoch training
Mean 0.4072 0.4149
Median 0.2741 0.4845
Maximum 0.7728 0.7614
Minimum 0.2701 0.2705
Max Prob | 0.5458 0.9980 (11)
Max Prob 2 1.0 (4) 0.5372

THE U[\'IVERSITYU}%#(
Results 2: Shared v. unshared inputs
(not in paper)

Using unshared inputs appear to give better results and is
conceptually more acceptable

12

THE UNIVERSITYWM

Results 3: Solving both classification and
reinforcement learning problems (ball throwing)

(not in paper)

Statistic Cancer Cancer |Ball-throwing
classification|classification
training test
Mean 0.9410 0.8300 0.7891
Median 0.9471 0.9224 0.9378
Maximum 0.9600 0.9598 0.9926
Minimum 0.8886 0.4655 0.5310
Num solved - - 11

It is relatively easy to evolve the neural programs to produce a
brain that can solve both classification and a reinforcement

learning problem

13

THE UNIVERSITYWM

A perfect

solution Pole

balancing

Ball
throwing

Nodes that share, have mixtures
of primary colours:
magenta= shared by both
networks

14

THE wamsnnﬂ»k

Future work

Incremental problem solving
0 Doesn’t seem to help. Why?
Increase the number of problems
0 What are suitable problems?
Favour best learners rather than superb individuals?
Decrease interference

0 Maybe output neurons should have their own parameters

distinct from non-output neurons?

What are appropriate inputs and outputs for a
developmental ANN?

0 We need something universal that applies to all problems
Eventually introduce spiking neurons

15

THE wamsnnﬂ»k

Conclusions

Evolving developmental programs using GP to build
ANN:Ss is exciting but very challenging
O Very few researchers are working on this...
Many are falling into the HyperNEAT attractor
Many decisions have to be made about small details
Biological neurons are extremely complex, artificial
devANNSs are so different it is hard to know what

aspects of biological neurons are essential/useful in
devANNs

Please consider joining this moonshot challenge. We
need you!

16

