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Moonshot challenge

• Find the program for an 
artificial neuron that allows it 
to build a neural network that 
learns for itself how to solve 
multiple problems of many 
different types

• i.e. general AI
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Overview

• Biological Development is responsible for all 
learning in brains

□ Brains solve multiple problems without interference

□ In brains, neurons move, change, die or replicate, 

dendrites and axons change, branch, shrink and die

□ Learning is not just synaptic but topological

□ Learning happens in the lifetime of the individual

• Almost all ANN models do not have development

□ Aim: Find a set of weights for fixed connections that give 

good performance ("synaptic dogma") 

□ They suffer from catastrophic interference
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The Neuron model: overview 1

• Neuron abstracted as a body (soma) and a number of 
connections (dendrites)

• The collection of neurons and dendrites is called the ``brain”

• There are two evolved programs: soma and dendrite

□ When executed in some initial neurons, a brain grows

– The soma program allows neurons to move, die, replicate, or 

change

– The dendrite program allows the dendrites to change in length,  

die, replicate , or change

• All neural variables are real-valued in the interval [-1.0, 1.0]

• The soma and dendrite programs are encoded and evolved 
using Cartesian GP

□ Nodes in the CGP graph are mathematical functions they operate on and 

return values between -1 and 1.
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The Neuron model: overview 2
Some neurons provide the outputs corresponding to a 
computational problem

□ These output neurons are not allowed to replicate or die

□ Num output neurons = the sum of the number of outputs for all problems

□ Each problem has its own output neurons

Inputs can be shared or unshared and are assigned fixed positions 
which are problem dependent

□ Shared

– The number of output positions = max number of inputs in any problem

– If problem has less inputs the remaining inputs are assumed to be zero 

□ Unshared

– Only the inputs corresponding to each problem are presented

From the "brain" traditional feedforward ANNs are extracted

□ To do this dendrites are assumed to connect to the nearest input or neuron 

on their left (referred to as snapping)

□ Output neurons are not allowed to connect to each other or to inputs

Soma program

• Neurons have a bias, health and a position

• The program adjusts neuron variables (health, bias and 
position): if they are positive (negative) they are incremented 
(decremented) by user-defined increments: δsh , δsb , δsp 

• Non-output neurons have performance  input equal to zero. 
Output neurons have performance input equal to `fitness’ score 
on the problem being solved
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Dendrite program

• Dendrites have a health, weight and position

• The dendrite program is run in every dendrite

• The program adjusts neuron variables (health, bias and 
position): if they are positive (negative) they are incremented 
(decremented) by user-defined increments: δdh , δdw , δdp 

• Dendrites on non-output neurons receive a performance score of 
zero. Dendrites on output neurons  receive the performance 
score  given to the parent neuron

Birth, death and change

• There are user defined health thresholds for neurons (HNl , 
HNu) and dendrites (HDl , HDu) which determine whether a 
neuron or dendrite dies, changes or replicates

□ hi < HNl : neuron death          hi > HNu : neuron birth

□ hij < HDl : dendrite death       hij > HDu : dendrite birth 

– Neuron health decides dendrite birth

• If no birth or death, the neuron or dendrite changes according to 
the updated values from the neuron program

□ When birth occurs a new neuron is placed at a distance MNinc to 

the right of the parent neuron. 

□ If neuron collisions occur, neurons are moved by MNinc until no 

more collisions occur

• Neuron and dendrite numbers are bounded between one and 
the maximum allowed (user defined)
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Development without learning

Development in learning loop
May have fitness input

Increase training set

If epoch training look for 
higher fitness at each epoch

Task problems

Ball throwing
• Inputs: Arm angle, angular velocity (2)

• Outputs:  Torque, Ball Release (2)

• Fitness:  distance thrown (max 10.202)

• Upto 10,000 simulation steps
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Double-pole balancing
• Inputs: Arm angle, angular velocity of 

pole, position and velocity of cart (6)

• Outputs:  Force applied

• Fitness:  how long balanced

• Upto 100,000 simulation steps
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Results 1
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• Nearest neighbour (NN) position useful to dendrite

• Also found that incremental learning highly beneficial

• Solving ball-throw and double-pole simultaneously, is much 
harder than solving either

□ Suggests interference is occuring…

One problem Two problems

Results 2: Shared v. unshared inputs
(not in paper)
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• Using unshared inputs appear to give better results and is 
conceptually more acceptable
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Results 3: Solving both classification and 
reinforcement learning problems (ball throwing)
(not in paper)
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• It is relatively easy to evolve the neural programs to produce a 
brain that can solve both classification and a reinforcement 
learning problem
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Ball 
throwing

Nodes that share, have mixtures 
of primary colours: 
magenta= shared by both 
networks

Pole 
balancing

A perfect 
solution
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Future work

• Incremental problem solving

□ Doesn’t seem to help. Why?

• Increase the number of problems

□ What are suitable problems?

• Favour best learners rather than superb individuals?

• Decrease interference

□ Maybe output neurons should have their own parameters 

distinct from non-output neurons?

• What are appropriate inputs and outputs for a 
developmental ANN?

□ We need something universal that applies to all problems

• Eventually introduce spiking neurons
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Conclusions

• Evolving developmental programs using GP to  build 
ANNs is exciting but very challenging

□ Very few researchers are working on this…

– Many are falling into the HyperNEAT attractor

• Many decisions have to be made about small details

• Biological neurons are extremely complex, artificial 
devANNs are so different it is hard to know what 
aspects of biological neurons are essential/useful in 
devANNs

• Please consider joining this moonshot challenge. We 
need you!
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