
Evolving an artificial brain to solve multiple problems

Julian Francis Miller
University of York, Heslington, York, YO10 5DD, UK

julian.miller@york.ac.uk

Abstract

A developmental method for growing a “brain” like neural
network is described. Two programs representing the soma
and dendrites of a neuron are represented and evolved using
Cartesian Genetic Programming. The programs allow neu-
rons to build a neural network from which multiple conven-
tional artificial neural networks (ANNs) can be extracted. We
show that the approach can perform reasonably well on mul-
tiple simultaneous reinforcement learning problems.

Introduction
ANNs were originally inspired by the brain, however, very
few models use evolution and development, both of which
are fundamental to the construction of the brain (Miller and
Khan, 2011). We describe a simple neural model in which
two neural programs construct neural networks. One pro-
gram represents the neuron soma and the other the dendrite.
The soma program decides whether neurons move, change,
die or replicate. The dendrite program decides whether den-
drites extend, change, die, or replicate. Since developmental
programs build networks that change over time it is neces-
sary to define new problem classes that are suitable to eval-
uate such approaches. We show that the pair of evolved pro-
grams can build a network from which multiple conventional
ANNs can be extracted each of which can solve a different
computational problem. Our approach is quite general and
it could be applied to a much wider variety of problems.
The model reported here was inspired in part by the devel-
opmental method for evolving graphs and circuits proposed
in (Miller and Thomson, 2003) and particularly by the pa-
per (Khan et al., 2011).

The neuron model
The model is illustrated in in Fig. 1. The neural pro-
grams are represented using Cartesian Genetic Program-
ming (CGP) (Miller and Thomson, 2000; Miller, 2011) in
which the nodes represent mathematical operations, operat-
ing and returning real-values between -1 and 1. The pro-
grams read variables associated with neurons and dendrites

and produce outputs which are used to update those vari-
ables. The dendrite program updates dendrite health, posi-
tion and weight based on previous values, the parent neu-
ron’s health, position and bias and optionally both the posi-
tion of the nearest neighbouring neuron and a performance
score for the whole brain. It should be noted that the perfor-
mance input is set to zero for non-output neurons. For out-
put neurons, it is set to the performance score correspond-
ing to the problem the output neuron belongs to. When the
evolved programs are executed, neurons can move, change,
die replicate, grow more dendrites and their dendrites can
also change or die. All the neuron and dendrite parameters,
weight, bias, health, position are defined by numbers in the
range [−1,−1].

The total number of neurons and dendrites possessed by a
neuron is bounded between user-defined bounds. This en-
sures that a network can not eliminate itself or grow too
large. The initial number of neurons is defined by Ninit and
the initial number of dendrites per neuron is given by NDinit .
If the health of a neuron falls below (exceeds) a user-defined
threshold, the neuron will be deleted (replicated). Likewise,
dendrites are subject to user defined health thresholds which
determine whether the dendrite will be deleted or a new one
will be created. When the soma or dendrite programs are run
the outputs are used to decide how to adjust the neural and
dendrite variables. The amount of the adjustments are de-
cided by the six user-defined parameters (δ ). If the program
output is greater or equal to zero the corresponding neural
variable is incremented by the corresponding δ , otherwise it
is decremented by the same amount.

The number of developmental steps in the two develop-
mental phases (‘pre’ learning and ‘while’ learning) are de-
fined by the parameters, NDSpre and NDSwhi. The number of
learning epochs is defined by Nep. Learning epochs allow us
to demand that evolution produces a pair of programs that
cause the developing ANN to learn. A variable called in-
cremental training can be set to choose whether the epochs
evaluate a performance score during training (using subsets
of the input data) or as a fitness computed over the entire
training input. If during training, then the training set grad-



Figure 1: The model of a developmental neuron. Each neu-
ron has a two-dimensional position, health, bias and a vari-
able number of dendrites. Bias refers to an input to the neu-
ron activation function which is added to the weighted sum
of inputs (i.e. it is unweighted). Each dendrite has a two di-
mensional position (the growing tip), a health and a weight.
The soma program decides the values of new soma variables
position, health and bias based on previous values, and the
averages over all dendrites belonging to the neuron of their
health, position and weight. Optionally, the dendrite can also
use the training performance score for the whole brain (see
later).

soma program

updated neuron 
health, bias
position

(a)

dendrite
program

dendrite health, 
weight,
position

neuron 
health, bias,
position

(b)

nearest neuron position 
to dendrite

neuron 
health, 
bias,position

average dendrite
health, 
weight, 
position

updated dendrite 
health, weight
position

performance

performance

ually increases until at the last epoch it encompasses the en-
tire training inputs. The training score input is the score ob-
tained by the brain for each problem at the previous epoch
(starting with zero). In this scenario, the performance score,
since it is an input to the soma and dendrites can influence
development during training. Another Boolean user-defined
variable called epoch training can, if set, require the perfor-
mance scores to increase at each epoch. In this case, if the
performance of the developing network decreases, the epoch
learning loop ends and the last improved performance is re-
turned.

Since neurons can move, they can collide with other neu-
rons. If so, the neuron has to be moved until no more col-
lisions take place (collision avoidance). All neurons are
marked as to whether they provide an external output or not.
In the initial network there are Ninit non-output neurons and
No output neurons, where No denotes the number of outputs
required by the computational problem being solved. Data
arrives at the ANN through inputs at fixed randomly chosen
positions between -1 and a user-defined limit. Inputs can be
shared or unshared. In the former, the maximum number of
inputs required by any of the benchmark problems is deter-
mined. If a problem requires less than this then the superflu-

ous inputs provide a zero value. If inputs are unshared then
only those inputs relevant to the problem being assessed are
presented to the developed ANN.

In our previous work we examined a one-dimensional de-
velopmental model and this was applied to multiple classi-
fication problems (Miller et al., 2019a). In that work we
found that better results were obtained when only output
neurons are allowed to move. We also found better results
were obtained when neural variables are updated in fixed
user-defined increments rather than directly by the evolved
programs.

Developing the brain and evaluating the fitness
An overview of the algorithm used for training and develop-
ing the ANNs is given in Alg. 1.

Algorithm 1 Overview of fitness algorithm

1: function FITNESS
2: Initialise brain
3: Load ‘pre’ development parameters
4: for NDSpre times do
5: Run soma/dendrite programs to update brain
6: end for
7: Load ‘while’ developmental parameters
8: E poch = 0
9: PreviousFitness = 0

10: repeat
11: for NDSwhi times do
12: Run soma/dendrite programs to update brain
13: end for
14: for p = 0 to NumBenchmarkProblems do
15: Extract ANN
16: if IncrementalTraining then
17: Nincr = (epoch+1)∗NTtr(p)/Nep
18: for Nincr training cases do
19: Accumulate fitness
20: end for
21: Fitness = Fitness/Nincr
22: end if
23: Accumulate Fitness for benchmarks
24: end for
25: Fitness = Fitness/NumBenchmarkProblems
26: if E pochTraining then
27: if Fitness < PreviousFitness then
28: Break
29: else
30: PreviousFitness = Fitness
31: end if
32: end if
33: Increment E poch
34: until Nep epochs
35: Return Fitness
36: end function



The brain is always initialised with at least as many neu-
rons as the maximum number of outputs over all computa-
tional problems. Note, all problem outputs are represented
by a unique neuron dedicated to the particular output. How-
ever, the maximum and initial number of non-output neurons
can be chosen by the user. Output neurons can change but
not die or replicate as the number of output neurons is fixed
by the choice of computational problems.

Table 1: Experimental results

Statistic Experiment A Experiment B Experiment C Experiment D
NN position used. NN position unused. NN position used. NN position used.

Incr. training Incr. training No incr. training No incr. training
Performance input Performance input Performance input No performance input
No epoch training No epoch training Epoch training Epoch training

Mean 0.4072 0.3357 0.3282 0.3432
Median 0.2741 0.2735 0.2732 0.2725

Maximum 0.7728 0.7372 0.7703 0.7702
Minimum 0.2701 0.2702 0.2709 0.2703

Max Prob 1 0.5458 0.6699 0.5459 0.5453
Max Prob 2 1.0 (4) 0.9347 (0) 1.0 (1) 1.0 (2)

We extract conventional ANNs from the developed brain
in the following way (line 15 in Alg. 1). First, we assign
positions to the applied inputs. The next phase is to go
through all dendrites of the neurons to determine which in-
puts or neurons they connect to. To generate a valid neu-
ral network we assume that dendrites are automatically con-
nected to the nearest neuron or input on the left. We refer
to this as “snapping”. The dendrites of non-output neurons
are allowed to connect to either inputs or other non-output
neurons on their left. However, output neurons are only al-
lowed to connect to non-output neurons on their left. It is
not desirable for the dendrites of output neurons to be con-
nected directly to inputs, however, when output neurons are
allowed to move, they may only have inputs on their left.
In this case the output neuron dendrite neuron will be con-
nected to the first external input to the ANN network (by
default). NTtr(problem) is the number of training cases
for each computational problem. If the Boolean variable,
IncrementalTraining is set (line 16), then the training cases
increase with each epoch, until at the last epoch, the full
benchmark training set is evaluated. Thus, development
happens during training. If it is not set, then performance
is calculated over the the full training set at each epoch.

Experiments and Results
The two reinforcement learning problems we attempt to
solve simultaneously are: ball throwing (Koutnı́k et al.,
2010; Turner, 2017) and double pole balancing (Turner,
2017). These were chosen because they are established
and non-trivial reinforcement learning problems. The ball

throwing task is to design a controller which throws a ball
as far as possible. The control system has two inputs, the
arm angle from vertical and the angular velocity of the arm.
It has two outputs, the applied torque to the arm and an
output which decides when to release the ball. The system
is simulated for a maximum of 10,000 time steps. The
maximum distance the ball can be thrown is can be deter-
mined through simulation and has a value of approximately,
10.202m (Koutnı́k et al., 2010; Turner, 2017).

It is considered solved when the thrown distance greater
than or equal to 9.5m (fitness = 0.9312). In double pole bal-
ancing, the task is to balance one or more poles on a move-
able cart by applying a horizontal force. The inputs to the
controller are the position and velocity of the cart and the
angle and angular velocity of the pole(s). So there are six
inputs. The single output is the force applied to the cart.
The system is simulated for a maximum of 100,000 time
steps. It is solved if both poles are balanced for this num-
ber of steps. The fitness for the double pole problem is the
fractional number of simulation steps that the poles remain
balanced so it is discrete while the fitness for the ball throw-
ing problem is a floating point value. In order to achieve
equality between the two objectives the ball throwing fitness
was only calculated to two decimal places (this gave better
results). In the experiments reported here we allow input
sharing, thus for both problems the number of inputs pro-
vided to the brain is six, but since the ball throwing problem
has only two inputs the remaining values are set to zero.

Twenty evolutionary runs of 20,000 generations of a 1+5-
ES were used. The genotype lengths for programs were
chosen to be 600 nodes. Goldman mutation (Goldman and
Punch, 2015) was used which carries out random point mu-
tation until an active gene is changed. In the experiments
reported here we used Nep = 10. Clearly this is a small
value and investigations are needed to investigate the per-
formance with larger numbers of epochs. Results for four
experimental scenarios are presented in Table 1. We inves-
tigated whether allowing the dendrite programs to use the
position of the nearest neuron was beneficial or not. Ex-
periments A and B differed only in that the position of the



nearest neuron was either supplied (A) to the dendrite pro-
gram or not (B). In the second pair of experiments (C and
D) we disallowed incremental training (so performance was
evaluated on the full training set) and used epoch training
so that evolution is trying to find programs for the soma and
dendrite that mean the performance of the brain improves at
each epoch and leads to high fitness.

Experiments A and B support allowing the dendrite pro-
gram to read the position of its nearest neuron. Further-
more, the superiority of results for experiment A to all other
experiments suggests that using incremental training is su-
perior to not using it. Experiments C and D differ only in
whether a performance input is given to the neural programs
or not. Results suggest that providing performance input or
not while using epoch training does not lead to statistically
significant differences in results. One evolutionary run in ex-
periment C provided a program that improved performance
with each epoch. Further analysis is needed to see if this im-
provement would continue beyond the maximum epoch (9).
The best result has a fitness of 0.7728 (experiment A). In this
case, The fitness on the ball throwing task was 0.5456 and
the ball was thrown on step 50 (of a possible 10,000 steps)
and on the double pole balancing the fitness was 1.0, mean-
ing that for 100,000 time steps the poles were balanced. In
other experiments we have occasionally obtained a solution
which achieves a perfect score on both problems. When sin-
gle problems were attempted we found the following results
shown in Table 2. Perfect solutions are indicated in paren-
theses.

Table 2: Results for single problems where the dendrite uses
the nearest neuron’s positions.

Statistic Ball throw Double pole
Mean 0.8515 0.8455

Median 0.9827 1
Maximum 0.9948 1
Minimum 0.5394 0.00278
No. solved 14 12

Single problem results use the same parameters as exper-
iments A of Table 1. They are markedly better than the re-
sults for two problems. Of course, solving two problems
simultaneously is much harder. However, it appears that of-
ten evolution gets stuck on the approximately half-distance
solution in ball throwing in which the arm does not swing
backwards (which is necessary to achieve long throws).

Conclusion
The developmental model for building neural networks can
simultaneously solve two reinforcement learning problems
reasonably well, however there still appears to be interfer-
ence between the networks. The next phase will be to try
to understand and eliminate this. Allowing neurons to have
a type variable which can be read by the neural programs

should help. However, it was investigated in the previous
one-dimensional model and shown not to be clearly signif-
icant for problem solving (Miller et al., 2019b). Its utility
should be investigated further. Also output neurons could be
allowed to replicate while still retaining dedicated problem
solving output neurons. This might allow more independent
behaviour to arise between different problem solving sub-
networks.

References
Goldman, B. W. and Punch, W. F. (2015). Analysis of

cartesian genetic programmings evolutionary mecha-
nisms. Evolutionary Computation, IEEE Transactions
on, 19:359 – 373.

Khan, G. M., Miller, J. F., and Halliday, D. M. (2011). Evo-
lution of Cartesian Genetic Programs for Development
of Learning Neural Architecture. Evol. Computation,
19(3):469–523.

Koutnı́k, J., Gomez, F., and Schmidhüber, J. (2010). Evolv-
ing neural networks in compressed weight space. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 619–626.

Miller, J. F., editor (2011). Cartesian Genetic Programming.
Springer.

Miller, J. F. and Khan, G. M. (2011). Where is the Brain
inside the Brain? Memetic Computing, 3(3):217–228.

Miller, J. F. and Thomson, P. (2000). Cartesian genetic pro-
gramming. In Proc. European Conf. on Genetic Pro-
gramming, volume 10802 of LNCS, pages 121–132.

Miller, J. F. and Thomson, P. (2003). A Developmental
Method for Growing Graphs and Circuits. In Proc. Int.
Conf. on Evolvable Systems, volume 2606 of LNCS,
pages 93–104.

Miller, J. F., Wilson, D. G., and Cussat-Blanc, S. (2019a).
Evolving developmental programs that build neural
networks for solving multiple problems. In Banzhaf,
W., Spector, L., and Sheneman, L., editors, Genetic
Programming Theory and Practice XVI, chapter 8,
pages 137–176. Springer.

Miller, J. F., Wilson, D. G., and Cussat-Blanc, S. (2019b).
Evolving programs to build artificial neural networks.
In Adamatzky, A. and Kendon, V., editors, From As-
trophysics to Unconventional Computation, chapter 2,
pages 23–71. Springer.

Turner, A. J. (2017). Evolving Artificial Neural Net-
works using Cartesian Genetic Programming. PhD
thesis, Department of Electronic Engineering, Uni-
versity of York. Available at http://etheses.
whiterose.ac.uk/12035/.


