
Multiple problem solving with evolved developmental neural networks: activity
dependence

Julian Francis Miller
University of York, Heslington, York, YO10 5DD, UK

julian.miller@york.ac.uk

Abstract

We construct artificial neural networks (ANNs) by executing
evolved programs inside two neural components: the body
(soma) and the dendrite. The programs decide whether neu-
rons and their dendrites move, change, die or replicate. When
the programs are executed they build a neural structure from
which multiple conventional ANNs can be extracted each of
which can solve a different computational problem. In bi-
ological brain development electrical activity strongly influ-
ences developmental changes. This is known as activity de-
pendence. In this paper, we describe various ways activity de-
pendence could be implemented and investigated. We show
that allowing the soma bias to be activity dependent improves
performance.

Introduction
Although ANNs were originally inspired by the brain most
papers involving neural networks do not use evolution and
especially not development. Most ANN models obey the
“synaptic dogma” in which learned knowledge is encoded
solely in the form of connection strengths (i.e. weights).
This gives rise to “catastrophic forgetting” where an ANN
loses it ability to solve an earlier problem when it is re-
trained on a new one. Neuroscience suggests that the synap-
tic dogma is questionable, as memory in brains is only
weakly related to synaptic strengths. In brains, synapses are
not fixed structures but are constantly pruned away and re-
placed by new synapses during learning (Smythies, 2002).
In addition, structural aspects of the brains are strongly influ-
enced by the electrical activity within the brain. Imaging of
living brains reveals continuous structural changes through
the forming or breaking of synapses, motile spines, and re-
routing of axonal branches in the developing and adult brain.
The role of some forms of structural changes appear to con-
tribute to the homeostasis of network activity (Butz et al.,
2009).

We present a model of a simplified computational equiv-
alent of the biological neuron. Two programs are evolved
which when executed allow a neural network to grow as
many neurons and connections as it needs, adjust its own
weights and biases and solve multiple problems. One pro-
gram (soma) decides whether neurons move, change, die

or replicate. The other decides whether dendrites extend,
change, die, or replicate. Since developmental programs
build networks that change over time we have to define
new problem classes that are suitable to evaluate such ap-
proaches. We show that the evolved programs can build a
network from which multiple conventional ANNs can be ex-
tracted each of which can solve a different computational
problem.

The particular focus of this paper is on forms of activity
dependence (AD) and whether it improves the performance
of the model. AD can be introduced for all the neural and
dendrite variables so there are many possibilities to inves-
tigate. For instance, dendrite weights can be adjusted in a
Hebbian-like manner in which the weight of connections be-
tween neurons are increased when both the dendrite signal
incident to a neuron and the neuron’s output are both high.
The weight is decreased if one signal is high and the other
low. We investigated AD bias in this paper.

Neuron model
The neural programs are represented using Cartesian Ge-
netic Programming (CGP) (Miller, 2011) in which the pro-
gram nodes represent mathematical operations, operating on
and returning real-values between -1 and 1. Each primitive
function takes up to two inputs, denoted z0, z1. The func-
tions are as follows. Step: if z0 < 0 then 0 else 1. Add:
(z0 + z1)/2. Sub: (z0− z1)/2. Mult: z0z1. Xor: if the sign
of both inputs is the same then the output is -1 else 1. Is-
tep: if z0 is negative, output is 1 else output is 0. These
functions were found to be effective in previous work. The
programs read variables associated with neurons and den-
drites and produce outputs which are used to update those
variables. The inputs and outputs to the evolved programs
are illustrated in Fig. 1. We refer to the collection of neu-
rons and dendrites as the brain. Later we will explain how
multiple conventional ANNs can be extracted from the brain
and assessed for their effectiveness. Neurons and dendrite
variables can only take values between -1.0 and 1.0. Every
output required by each computational problem has a dedi-
cated output neuron. The other neurons are internal and are

not used to provide outputs from the brain. We refer to these
as non-output neurons.

Figure 1: The model of a developmental neuron. Each neu-
ron has a two-dimensional position, health, bias and a vari-
able number of dendrites. Each dendrite has a two dimen-
sional position (the growing tip), a health and a weight.

soma program

updated neuron
health, bias
position

(a)

dendrite
programdendrite health,

weight, position

neuron health,
bias, position

(b)

nearest neuron
position to dendrite

neuron health,
bias, position

average dendrite
health, weight,
position

updated dendrite
health, weight
position

neuron type

performance

performance

The soma program reads ten variables. Four are neuron
variables: x and y position, health and bias. Bias refers to
an input to the neuron activation function which is added to
the weighted sum of inputs. The soma program is also sup-
plied with averages of properties of its dendritic tree: x and
y position, weight and health. The soma program can also
read a variable called neuron type. For non-output neurons,
the neuron type is -1.0. Output neurons are given a value
1.0. This potentially allows a neuron to behave differently
depending on whether it is an output neuron or not. Finally,
the soma can read the performance score (i.e. fitness) at the
previous learning epoch (see next section). The soma pro-
gram has four outputs: health updater, bias updater, and x
and y position updater. The evolved soma program reads
its ten inputs and outputs the four soma output update vari-
ables. These decide how the corresponding soma variables
will be updated. The way this is done is as follows. If any
soma updater variable is greater (less) than zero, the cor-
responding soma variable is incremented (decremented) by
the user-defined amounts, δsh, δsb, δsp. There are both ‘pre’
deltas and ‘while’ deltas (see next section). After updat-
ing, the corresponding variable is squashed into the interval
[-1, 1] using a hyperbolic tangent function. In the case of
soma health, there is a further step. If it falls below the
user-defined death threshold, θnd , then the neuron will die
and not be present in the updated brain. Alternatively, if it
happens to be above the user-defined neuron birth threshold,
θnb, then the parent neuron will replicate and an additional
neuron will appear in the brain (near to the parent). Thus,
the soma evolved programs can change the health, bias or
position of the soma and whether the neuron will die, or
replicate.

The dendrite program also has ten inputs and is executed

inside every dendrite. Three inputs are the parent neuron’s
bias and x and y positions. Four are the dendrite variables:
x and y position, weight and health. The dendrite program
is also allowed to read the x and y position of the nearest
neuron to the dendrite position. Like the soma, the dendrite
can also read the performance score of the brain at the previ-
ous epoch (see next section). There are four outputs: health
updater, weight updater, and x and y position updater. The
evolved dendrite program reads its ten inputs, and outputs
the four dendrite output update variables. These decide how
the actual dendrite corresponding variables will be updated.
If any dendrite updater variable is greater (less) than zero,
the corresponding dendrite variable is incremented (decre-
mented) by the user-defined amounts, δdh, δdw, δd p. Af-
ter updating the corresponding variable is squashed using
a hyperbolic tangent function. There are also user-defined
thresholds for dendrite birth and death, θdb, θdd .

Developing the brain and evaluating the fitness
The algorithm used for training and developing the ANNs is
given in Alg. 1. The brain is always initialised with at least
as many neurons as the maximum number of outputs over
all computational problems. Note, all problem outputs are
represented by a unique neuron dedicated to the particular
output. Output neurons can change, but not die or repli-
cate as the number of output neurons is fixed by the choice
of computational problems. The number of developmental
steps are defined by the parameters, NDSpre and NDSwhi.
The ‘pre’ learning phase is an initial phase of development
where the brain is not tested in any way (lines 4-6). While
in the ‘while’ phase the brain is assessed and provides feed-
back to the developmental process (lines 10-12).

Lines 9 - 30 form the epoch learning loop. This loop re-
peats the entire training developmental process (the ‘while
loop’) for a number of epochs, Nep. Learning epochs al-
low us to direct evolution to produce a pair of programs that
cause the developing ANN to learn. The neural programs
can read the performance of the brain at the previous learn-
ing epoch. The learning loop only continues while the train-
ing accuracy does not decrease (lines 25-29). If it does, the
algorithm stops and returns the training score of the previous
epoch.

Note that at each epoch, a performance value is deter-
mined corresponding to each individual benchmark problem
and is an input to the soma and dendrite programs for output
neurons. If a neuron is not an output neuron then the average
fitness at the previous epoch is given as an input to the soma
and dendrite programs. The performance signal is intended
to act as a reward to the developmental process, triggering
changes in the brain when necessary. We extract conven-
tional ANNs from the developed brain in the following way
(line 15 in Alg. 1). First only the relevant inputs to the tar-
get problem in hand are given their randomly pre-assigned
positions. Thus different problems can not connect to inputs

Algorithm 1 Fitness algorithm.

1: function FITNESS
2: Initialise brain
3: Load ‘pre’ development parameters
4: PrevFitness = 0
5: for NDSpre times do
6: Run soma/dendrite programs to update brain
7: end for
8: Load ‘while’ developmental parameters
9: for epoch = 1 to Nep do

10: for NDSwhi times do
11: Run evolved programs to update brain
12: end for
13: TotFitness = 0
14: for p = 1 to NumBenchmarkProblems do
15: Extract ANN
16: Fitness(p) = 0
17: for NT (p) training cases do
18: Make activity dependent changes
19: Fitness(p) = Fitness(p)+FitInstance
20: end for
21: Fitness(p) = Fitness(p)/NT (p)
22: TotFitness = TotFitness+Fitness(p)
23: end for
24: TotFitness = TotFitness/NumBenchmarkProblems
25: if TotFitness < PrevFitness then
26: Break
27: else
28: PrevFitness = TotFitness
29: end if
30: end for
31: Return TotFitness
32: end function

of another target problem.

The next phase is to go through all dendrites of the neu-
rons to determine which inputs or neurons they connect to.
To generate a valid neural network we assume that dendrites
are automatically connected to the nearest neuron or input
on the left. We refer to this as snapping. Since, the dendrite
position can be on the right of the parent neuron, before ex-
tracting ANNs it is reflected back from the parent position.
The dendrites of non-output neurons are allowed to connect
to either inputs or other non-output neurons on their left.
However, output neurons are only allowed to connect to non-
output neurons on their left. Although, it is not desirable for
the dendrites of output neurons to be connected directly to
inputs, when output neurons move, they may only have in-
puts on their left. NT (p) is the number of training cases for
each computational problem, p. Thus we can see what the
brain connects to is problem dependent so the same neuron
can appear in one ANN and again (with same bias, posi-
tion, dendrite numbers and weights) in another ANN with
possibly different connections (i.e. to other inputs). The ex-
tracted ANNs use the hyperbolic tangent activation function.
In line 17 of Alg. 1 the signal related changes (activity de-
pendence) in the brain are accumulated. Note, the algorithm

Algorithm 2 Signal propagation and activity dependence.

1: for neuron i do
2: Wsum = 0
3: for dendrite i j do
4: Wsum =Wsum +Wi j×DSi j
5: if Dendrite acitivity dependence then
6: D =| DSi j | −θv
7: Braini j(v) = Braini j(v)−D×δ act

dv
8: Bound Braini j(v)
9: end if

10: end for
11: Wsum =Wsum +Bi
12: NSi = tanh(αWsum)
13: if Hebbian learning then
14: if NSi > θHebb then
15: Nhigh = 1
16: end if
17: if NSi <−θHebb then
18: Nlow = 1
19: end if
20: for dendrite i j do
21: if DSi j > θHebb then
22: Dhigh = 1
23: end if
24: if DSi j <−θHebb then
25: Dlow = 1
26: end if
27: Bothhigh = Nhigh AND Dhigh
28: Bothlow = Nlow AND Dlow
29: D =| Ni−DSi j |
30: if Bothhigh OR Bothlow then
31: BrainWi j = BrainWi j +D×δ Hebb

inc
32: Bound BrainWi j
33: else
34: BrainWi j = BrainWi j×δ Hebb

mult
35: end if
36: end for
37: end if
38: if Neuron activity dependence then
39: D =| NSi | −θv
40: Braini(v) = Braini(v)−D×δ act

sv
41: Bound Braini(v)
42: end if
43: end for

calculates what the output of each neuron is (NSi) in the ex-
tracted ANNs but it also makes activity dependent changes
to the brain which will affect extracted ANNs on subsequent
training instances. There are various ways of making these
changes (see Alg.2). Wi j is the weight of dendrite j of neu-
ron i in the extracted ANN. Braini j(v) is variable v of den-
drite j of neuron i (i.e. v can be health, weight, or position).
BrainWi j is the weight of dendrite j of neuron i in the brain.
DSi j denotes the signal passing through dendrite j belonging
to neuron i. In lines 6-7 the difference between the absolute
value of the dendrite signal and a user defined threshold (θv)
is calculated. Either the variables, weight, health or position
of the dendrite in the brain is then reduced in magnitude us-
ing the user-defined increment corresponding to the chosen

variable, δ act
dv). This is a homeostatic mechanism (Butz et al.,

2009) where with large signals, variables reduce in size to
maintain homeostasis. For brevity we have only shown one
activity dependent adjustment. The user can choose to ad-
just any or all of the three dendrite variables in this way. The
weighted sum of signals over all dendrites belonging to a
neuron is accumulated and a bias Bi is added (line 11). The
neuron signal, NSi, is then calculated using a user-defined
slope parameter, α (line 12). Then if AD is chosen for a
neuron (lines 38-42) brain adjustments take place according
to whether the magnitude of neuron signal, | NSi | exceeds
a user-defined theshold, θv. In this paper, we examine AD
neuron bias. The neuron health or position could also be ad-
justed in a similar manner. Lines 13-37 are concerned with
Hebbian-like learning. Here, if the magnitude of the sig-
nal passing along the dendrite and the output of the parent
neuron both exceed a threshold (i.e. they agree), then the
weight of the dendrite is increased using the user-defined
increment, δ Hebb

inc . However, if only one exceeds a thresh-
old (i.e. they disagree) then the weight is decreased (using
the user-defined multiplier, δ Hebb

mult). It should be noted that
the model has many parameters many of which are thresh-
olds and allowed increments on neural variables. The fre-
quency of AD changes can be controlled via the correspond-
ing threshold, θv. For details, see (Miller et al., 2019).

Experiments and Results
Here, we attempt to simultaneously solve pairs of bench-
mark problems chosen from two classification problems di-
abetes (D) and glass (G) 1 and two reinforcement learn-
ing problems (double-pole balancing and ball throwing).
The ball throwing (BT) task is to design a controller which
throws a ball as far as possible. There are two inputs, the
arm angle from vertical and the angular velocity of the arm.
It has two outputs, the applied torque to the arm and an out-
put which decides when to release the ball. The system is
simulated for a maximum of 10,000 time steps. The max-
imum distance the ball can be thrown is 10.202m. BT is
considered solved when the thrown distance is greater than
or equal to 9.5m (fitness = 0.9312). In double pole balanc-
ing (DP), the task is to balance two poles on a moveable cart
on a limited track by applying a horizontal force to the cart.
The six inputs to the controller are the position and velocity
of the cart and the angle and angular velocity of the pole(s).
The single output is the force applied to the cart. The sys-
tem is simulated for a maximum of 100,000 time steps. It is
solved if both poles are balanced to within certain limits for
this number of steps.

The genotype length is 600 nodes. Goldman mutation
was used which carries out random point mutation until an
active gene is changed. Multiple problems were solved in-
crementally the first 5000 generations for problem 1 only,

1https://archive.ics.uci.edu/ml/datasets.
html

then 5000 for problems 1 and 2. A maximum of 30 neurons
were allowed and a maximum of 60 dendrites per neuron.
Epoch learning was chosen with Nep = 8, NDSpre = 6 and
NDSwhi = 1. The increment deltas were as follows: δ

pre
dh

and δ
pre
nh were 0.2, δ

pre
dw = 0.05, the remaining deltas (‘pre’

or ‘while’) were 0.1. However, when AD bias was allowed,
δ whi

sb was set to zero. The user defined developmental thresh-
olds were as follows: θ

pre
db and θ

pre
nb = 0.2, θ

pre
dd = −0.7,

θ
pre
nd = −0.6, θ whi

db = −0.65, θ whi
dd = −0.7, θ whi

nb = 0.2 and
θ whi

nd = −0.4. The signal threshold for neuron bias adjust-
ment, θbias = 0.5 and the AD soma bias adjustment δ act

nb was
0.01

We assessed the utility of activity dependent bias on pairs
of benchmark problems (Fig. 2), the results in the two cases
were not statistically significantly different. However, it is
noteworthy that AD gave superior performance in all but
one of the paired experiments (DP/D) and even in that the
median for AD results was higher.

Figure 2: Comparison of mean fitness for AD bias with no
AD bias for six pairs of benchmarks.

Conclusion and Future Work

We have discussed ways that AD can be introduced into the
developmental neural model. We found that implementing a
form of AD soma bias gives improved performance. AD can
be introduced for other neural variables and further work is
needed to determine which are most effective. At present
we accumulate activity related changes in the brain at each
epoch, but we could allow the changes to have immediate ef-
fect in the ANN during training. In future, it might be better
to create new suites of simpler problems for developmen-
tal methods, where one can start with simple problems and
gradually increase the task complexity.

References
Butz, M., Wörgötter, F., and van Ooyen, A. (2009). Activity-

dependent structural plasticity. Brain Research Re-
views, 60(2):287 – 305.

Miller, J. F., editor (2011). Cartesian Genetic Programming.
Springer.

Miller, J. F., Wilson, D. G., and Cussat-Blanc, S. (2019).
Evolving programs to build artificial neural networks.
In From Astrophysics to Unconventional Computation,
pages 23–71. Springer International Publishing.

Smythies, J. (2002). The Dynamic Neuron. MIT Press.

