Resolution-based argumentation semantics

Pietro Baroni, Massimiliano Giacomin

{baroni, giacomin}@ing.unibs.it

DEA - Dipartimento di Elettronica per l’Automazione
Università degli Studi di Brescia (Italy)

COMMA 2008, Toulouse, France
The context: Dung’s Argumentation Framework

\[\text{AF} = \langle A, \rightarrow \rangle \]

Semantics S

Set of extensions \(\mathcal{E}_s(\text{AF}) \)

Defeat Status

(Justification Status)

[Justified arguments: belong to all extensions]
Several argumentation semantics

- Grounded Semantics
- Preferred Semantics
- Recent proposals, e.g. prudent, semistable, CF2 semantics

How to evaluate and compare them [without examples]?

- General criteria considering conflict definition (Amgoud, Caminada 07)
- General criteria focusing on semantics definition (Baroni, Giacomin 06)

 - strong admissibility
 - admissibility
 - [weak, CF] reinstatement
 - Directionality
 - I-maximality
 - Skepticism-Adequacy
 - Resolution-Adequacy

NONE OF TRADITIONAL AND RECENT SEMANTICS SATISFY ALL OF THEM
Aim of the work and presentation plan

CAN DESIRABLE CRITERIA BE SATISFIED ALTOGETHER?
Aim of the work and presentation plan

CAN DESIRABLE CRITERIA BE SATISFIED ALTOGETHER?

YES!!!

RESOLUTION-BASED SCHEME (see also Modgil 06)
OF SEMANTICS DEFINITION:
From S to S*
Resolution-based grounded semantics
Resolution-based preferred semantics
Aim of the work and presentation plan

CAN DESIRABLE CRITERIA BE SATISFIED ALTOGETHER?

YES!!!

RESOLUTION-BASED SCHEME OF SEMANTICS DEFINITION:
From S to S*
Resolution-based grounded semantics
Resolution-based preferred semantics

PRESENTATION PLAN

1) Review of desirable criteria definitions

2) Definition and evaluation of resolution-based semantics
I-maximality principle

A semantics \(S \) satisfies the "I-maximality principle" iff

\[
\forall AF, \ \forall E_1, E_2 \in \mathcal{C}_S(AF) \text{ if } E_1 \subseteq E_2 \text{ then } E_1 = E_2
\]

- Grounded and preferred (as well as prudent, semistable, ideal and CF2-semantics) satisfy I-maximality
- Complete semantics do not
Admissibility and reinstatement principles

Admissibility

∀ AF, ∀ E ∈ \(\mathcal{E}_s(AF)\)

- E is conflict-free
- E defends all of its arguments

Reinstatement

∀ AF, ∀ E ∈ \(\mathcal{E}_s(AF)\)

- if E “defends” α then \(α \in E\)

[weak and CF reinstatement entailed]

Admissibility + reinstatement = complete extensions

- Grounded and preferred (as well as complete-based) semantics: YES
- CF2 semantics: NO (admissibility is not satisfied)
Directionality principle

Basic idea

Extension membership of an argument is determined by its ancestors, while it is not affected by the arguments it defeats.

Definition

∀ AF, ∀ U “unattacked set” of AF,

\[\{ (E \cap U) \mid E \in \mathcal{C}_s(AF) \} = \mathcal{C}_s(AF \downarrow_U) \]

Semantics behavior

• Both preferred and grounded semantics satisfy directionality
Directionality: example with preferred semantics

\[\alpha \rightarrow \beta \rightarrow \delta \]
\[\alpha \rightarrow \beta \rightarrow \delta \]
\[\alpha \rightarrow \beta \rightarrow \gamma \]

\[\alpha \rightarrow \beta \rightarrow \delta \rightarrow \gamma \]
\[\alpha \rightarrow \beta \rightarrow \delta \rightarrow \gamma \]
\[\alpha \rightarrow \beta \rightarrow \delta \rightarrow \gamma \]
Skepticism related criteria

The informal notion of skepticism

Making “less|more committed choices” for arguments, i.e. assigning to them “less|more decided” justification states.

Two kinds of skepticism relations

A basic skepticism relation \preceq^E between sets of extensions:

$$E_1 \preceq^E E_2$$

denotes that E_1 is “at least as skeptical as” (or “not more committed” than) E_2

A skepticism relation \preceq^A between argumentation frameworks:

$$AF_1 \preceq^A AF_2$$

denotes that AF_1 is “at least as skeptical as” AF_2

Adequacy criteria

Skepticism relations between $AF_1 \leftrightarrow$ Skepticism relations between E_i
Skepticism relations between sets of extensions

Comparison between two extensions E_1 and E_2: $E_1 \subseteq E_2$

A direct generalization: the \preceq_E relation

$$E_1 \preceq_E E_2 : \quad \bigcap E_1 \subseteq \bigcap E_2$$

A finer generalization: the \preceq_W relation

Comparison between an extension E_1 and a set of extensions E_2:

$$\forall E_2 \in E_2 \quad E_1 \subseteq E_2 \quad (\text{e.g. GE}_{AF} \text{ contained in any pref. extension})$$

$$E_1 \preceq_W E_2 : \quad \forall E_2 \in E_2, \quad \exists E_1 \in E_1 : E_1 \subseteq E_2$$
Skepticism relation between argumentation frameworks

The Basic idea

More skeptical (less committed)

Less skeptical (more committed)

The General relation

$\text{AF}_1 \ \text{vs.} \ \text{AF}_2$

$\text{AF}_1 \preceq^A \text{AF}_2$
Skepticism relation between argumentation frameworks

\[\preceq_A \text{-maximal AF [resolutions in (Modgil 06)]} \]
Skepticism-related criteria definition

Skepticism-adequacy of a semantics

Given a skepticism relation \leq^E between sets of extensions, a semantics S is \leq^E-adequate iff for any AF_1, AF_2

$$AF_1 \leq^A AF_2 \implies \mathcal{E}_S (AF_1) \leq^E \mathcal{E}_S (AF_2)$$

Resolution-adequacy of a semantics

Given a skepticism relation \leq^E between sets of extensions, a semantics S is \leq^E-resolution-adequate iff for any AF

$$\bigcup_{AF' \in \text{RES}(AF)} \mathcal{E}_S (AF') \leq^E \mathcal{E}_S (AF)$$

Implication orders

- \leq^E_W-adequacy $\implies \leq^E_\cap$-adequacy
- \leq^E_W-resolution-adequacy $\implies \leq^E_\cap$-resolution-adequacy
Adequacy criteria in action: grounded vs. preferred semantics

\[\mathcal{E}_{GR}(AF) = \{\emptyset\} \]
\[\mathcal{E}_{PR}(AF) = \{\{\alpha, \delta\}, \{\beta, \delta\}\} \]
\[U_{AF' \in \text{RES}(AF)} \mathcal{E}_S(AF') = \{\{\alpha, \delta\}, \{\beta, \delta\}\} \]

Preferred semantics: resolution adequate
Grounded semantics: NO
Adequacy criteria in action: grounded vs. preferred semantics

- Grounded semantics: skepticism adequate

\[\text{GE}_{AF \leftrightarrow (\beta, \alpha)} \subseteq \text{GE}_{AF} \]

\[\Leftrightarrow \subseteq_{W} - 	ext{adequate} \]

- Preferred semantics: NO

\[\alpha \text{ and } \beta \text{ definitely justified} \]

All arguments provisionally defeated
Defining resolution-based semantics

The Basic idea

A semantics should be...

$$\mathcal{E}_S (AF) \leq^E \mathcal{E}_S (AF')$$

More skeptical w.r.t. extensions of a resolution

$$\cup_{AF'} \mathcal{E}_S (AF') \leq^E \mathcal{E}_S (AF)$$

Less skeptical w.r.t. extensions of all resolutions

[Grounded semantics: too much skeptical, preferred: too much committed]

The definition

Given a semantics S, its resolution-based version is S^* such that

$$\mathcal{E}_{S^*} (AF) = \text{MIN} \ (\cup_{AF' \in \text{RES}(AF)} \mathcal{E}_S (AF'))$$
General desirable properties

I-maximality

• Achieved by definition: $\mathcal{E}_{S^*}(AF) = \text{MIN} \ldots$

Skepticism-adequacy

• For any semantics S, S^* satisfies \preceq_W-skepticism-adequacy

Resolution-adequacy

• S is I-maximal \Rightarrow S^* satisfies \preceq_W-resolution-adequacy

Admissibility and reinstatement

• S: complete extensions \Rightarrow S^* satisfies admissibility and reinstatement

BOTH RESOLUTION-BASED GROUNDED AND PREFERRED SEMANTICS SATISFY ALL OF THESE PRINCIPLES
Examples

\[\mathcal{E}_{PR^*}(AF) = \mathcal{E}_{GR^*}(AF) = \{\{\alpha, \delta\}, \{\beta, \delta\}\} \]

\[\mathcal{E}_{PR^*}(AF) = \mathcal{E}_{GR^*}(AF) = \{\varnothing\} \]
And directionality?

- Resolution-based **grounded semantics satisfies** directionality
 [see the paper for a –complicated– proof]
- Resolution-based **preferred semantics does not**
And directionality?

- Resolution-based **grounded semantics satisfies** directionality

 [see the paper for a –complicated– proof]

- Resolution-based **preferred semantics does not**

\[
\mathcal{E}_{PR^*} : \{\{\alpha, \varepsilon, \eta\}, \{\theta, \iota, \zeta\}\}
\]

\[
\mathcal{E}_{PR^*} : \{\emptyset\}
\]
Conclusions

- All desirable criteria (I-maximality, admissibility, reinstatement, directionality, skepticism adequacy, resolution adequacy) can be satisfied altogether
- Resolution-based version of traditional semantics:
 - GR*: satisfies all desirable criteria
 - PR*: does not satisfy directionality

- Future work:
 - resolution-based version of other semantics
 - is GR* useful in practice?
 ... algorithms and complexity...