Asking the Right Question: Forcing Commitment in Examination Dialogues

T. J. M. Bench-Capon1 S. Doutre2 P. E. Dunne1

1Department of Computer Science, The University of Liverpool, U.K.

2IRIT – Université Toulouse 1, France

COMMA 2008
Overview

1. Examination dialogues

2. Frameworks
 - Argumentation framework
 - Value-based argumentation framework

3. Uncontested semantics

4. Conclusion
Examination dialogues: Dialogues designed not to discover what a person believes, but rather their reasons for holding their beliefs [Dunne \textit{et al} 05].

- Examples: traditional viva voce examinations, political interviews

Problem: \textbf{which question to ask?}

- the interviewee must not have the possibility to evade the issue
- the question must not offer a defence which makes no commitment to the underlying principles of the interviewee.
Argumentation framework - Definition

[Dung95] An **argumentation system** is a pair $\mathcal{H} = \langle \mathcal{X}, A \rangle$ where:

- \mathcal{X} is a set of **arguments**
- $A \subseteq \mathcal{X} \times \mathcal{X}$ represents a notion of **attack**

Can be represented as a directed graph

Example

```
A3 ← A4  A5 → A6
A2 ↓      ↓  A1 ← A7
```

4 / 17
A subset $S \subseteq \mathcal{X}$ is admissible if:

1. S is conflict-free: there are not two arguments in S such that one attacks the other, and
2. S defends all its elements: any argument $y \in \mathcal{X} \setminus S$ that attacks $x \in S$ is attacked by some $z \in S$.

S is a preferred extension if it is a maximal (w.r.t. \subseteq) admissible set.

Example

Preferred extensions: $\{A1, A3, A6\}$ and $\{A2, A4\}$
Argumentation framework - Semantics

- [Dung et al 06] S is an ideal extension if:
 1. S is admissible, and
 2. S is a subset of every preferred extension.

Example

- Preferred extensions: \{A1, A3, A6\} and \{A2, A4\}
- Ideal extension: \emptyset
Value-based argumentation framework - Definition

[Bench-Capon03] A value-based argumentation framework (VAF) is a tuple $\mathcal{H}^{(\mathcal{V})} = \langle \mathcal{H}(\mathcal{X}, \mathcal{A}), \mathcal{V}, \eta \rangle$ where:

- $\mathcal{H}(\mathcal{X}, \mathcal{A})$ is an argumentation framework
- $\mathcal{V} = \{v_1, v_2, \ldots, v_k\}$ is a set of k values
- $\eta : \mathcal{X} \rightarrow \mathcal{V}$ associates a value $\eta(x) \in \mathcal{V}$ with each argument $x \in \mathcal{X}$

Example

$\mathcal{V} = \{v_1, v_2, v_3\}$
Value-based argumentation framework - Definition

- An audience is an ordering of \mathcal{V} whose transitive closure is asymmetric.
- An audience is a specific audience if it yields a total ordering of \mathcal{V}.
- $\chi(R)$ denotes the set of the specific audiences consistent with the transitive closure of an audience R.
- $R = \emptyset$: universal audience

Example

$R = v2 > v1$: $\chi(R)$ contains $v3 > v2 > v1$, $v2 > v1 > v3$, $v2 > v3 > v1$
An argument \(x \) defeats an argument \(y \) w.r.t. an audience \(R \) if \(x \) attacks \(y \) and the value of \(y \) is not preferred to the value of \(x \) according to \(R \).

Example

\[R = v2 > v1: \]
- \(A6 \) defeats \(A5 \)
- \(A5 \) does not defeat \(A7 \)
A subset \(S \subseteq \mathcal{X} \) is admissible w.r.t. \(R \) if:

- **Conflict-free w.r.t. \(R \):** there are not two arguments in \(S \) such that one defeats the other w.r.t. \(R \).
- **Defends w.r.t. \(R \) all its elements:** any argument \(y \in \mathcal{X} \setminus S \) that defeats \(x \in S \) w.r.t. \(R \) is defeated w.r.t. \(R \) by some \(z \in S \).

\(S \) is a **preferred extension w.r.t. \(R \)** if it is a maximal (w.r.t. \(\subseteq \)) admissible set w.r.t. \(R \).

Every specific audience \(\alpha \) induces a unique preferred extension within its underlying VAF.
Value-based argumentation framework - Semantics

Example

Preferred extensions:
- \(R = v2 > v1 \): \(\{A2, A4, A5, A7\} \)
- \(R' = v1 > v2 \): \(\{A2, A4, A5, A6\} \)
An argument is **objectively accepted** w.r.t. an audience R if it is in the preferred extension for *every* specific audience $\alpha \in \chi(R)$.

Example

- Preferred extensions:
 - $R = v_2 > v_1$: $\{A_2, A_4, A_5, A_7\}$
 - $R' = v_1 > v_2$: $\{A_2, A_4, A_5, A_6\}$

- Objectively acceptable arguments (w.r.t. \emptyset): $\{A_2, A_4, A_5\}$
Objectively acceptable arguments (w.r.t. \emptyset): \{A2, A4, A5\}

Question: “How is A5 defended?”

- “A7 defeats A6” \Rightarrow commits to $v_2 > v_1$
- “A6 does not defeat A5” \Rightarrow commits to $v_1 > v_2$

\Rightarrow Arguments objectively accepted but not part of a Dung admissible set are those arguments that may be fruitfully challenged in an examination dialogue.
Definition

Let $\mathcal{H}^{(V)}$ be a VAF and R an audience. A set of arguments, S in $\mathcal{H}^{(V)}$ is an uncontested extension w.r.t. R if:

1. it is an admissible set in \mathcal{H}, and
2. every argument in S is objectively acceptable in $\mathcal{H}^{(V)}$ w.r.t. R

Property

For every VAF and audience R, there is a unique, maximal uncontested extension w.r.t. R.

Uncontested semantics

Example

\[
\begin{align*}
A_2 &\rightarrow A_1 & A_3 &\leftrightarrow A_4 & A_5 \\
A_2 &\rightarrow A_1 & & & A_6 \\
A_1 &\leftrightarrow A_4 & & & A_6 \\
\end{align*}
\]

- Preferred extensions:
 - \(v_2 > v_1\): \(\{A_2, A_4, A_5, A_7\}\)
 - \(v_1 > v_2\): \(\{A_2, A_4, A_5, A_6\}\)

- Objectively acceptable arguments: \(\{A_2, A_4, A_5\}\)

- Maximal uncontested extension: \(\{A_2, A_4\}\)

- Set of arguments to be challenged in an examination dialogue: \(\{A_5\}\)
Theorem (Complexity)

Given a VAF, let U_R be its maximal uncontested extension w.r.t. an audience R:

- *Is a set an uncontested extension?* co-NP-complete
- *Does an argument belongs to U_R?* co-NP-hard
- *Is $U_R = \emptyset$?* NP-hard
- *Is a set equal to U_R?* D_P-hard
Uncontested semantics for value-based argumentation frameworks:

- Refines the nature of objective acceptability in value-based argumentation frameworks
- Counterpart to the ideal semantics [Dung et al 06] for Dung’s argumentation framework

Starting point for examination dialogues: the objectively accepted arguments that do not belong to the maximal uncontested extension can be fruitfully challenged.