Non-asymptotic convergence bound for the Unadjusted Langevin Algorithm

Eric Moulines

Ecole Polytechnique, CMAP

Joint work with: A. Durmus
1 Motivation

2 Framework

3 Langevin diffusions

4 Euler discretisation of the Langevin diffusion

5 Deviation inequalities

6 Conclusion
Sampling distribution over high-dimensional state-space has recently attracted a lot of research efforts in computational statistics and machine learning community...

Applications (non-exhaustive)

1. Bayesian inference for high-dimensional models and Bayesian non-parametrics
2. Bayesian linear inverse problems (typically function space problems converted to high-dimensional problem by Galerkin method)
3. Aggregation of estimators and experts

Most of the sampling techniques known so far do not scale to high-dimension... Challenges are numerous in this area...
Logistic and probit regression

- **Likelihood**: Binary regression set-up in which the binary observations (responses) \((Y_1, \ldots, Y_n)\) are conditionally independent Bernoulli random variables with success probability \(F(\beta^T X_i)\), where
 1. \(X_i\) is a \(d\) dimensional vector of known covariates,
 2. \(\beta\) is a \(d\) dimensional vector of unknown regression coefficient
 3. \(F\) is a distribution function.

- **Two important special cases**:
 1. **probit regression**: \(F\) is the standard normal distribution function,
 2. **logistic regression**: \(F\) is the standard logistic distribution function, \(F(t) = e^t / (1 + e^t)\).
New challenges

- Problems
 1. the number of predictor variables d is large (10^4 and up). Inverting a linear system is problematic.
 2. the number of predictor usually of predictor variables exceeds the number of observations... (“short,fat” data sets)
 3. or... both the number of predictor and observations are large... (Big Data)

- Examples
 - text categorization,
 - genomics and proteomics (gene expression analysis),
 - other data mining tasks (recommendations, longitudinal clinical trials, ..).
Bayes 101

- Bayesian analysis requires a prior distribution for the unknown regression parameter. For simplicity $\pi(\beta) = N(0, \Sigma_{\beta})$ but in high dimension prior elicitation is challenging.

- The posterior of β is given by Bayes’ rule, up to a proportionality constant by

$$\pi(\beta|(Y, X)) \propto \prod_{i=1}^{n} F_{Y_i}(\beta' X_i)(1 - F(\beta' X_i))^{1-Y_i} \pi(\beta)$$

- For probit and logistic link, the posterior density is intractable.
The most popular algorithms for Bayesian inference in binary regression models are based on data augmentation:

2. logistic link: Polya-Gamma sampler, Polsson and Scott (2012)...

Bayesian lexicon:

- Data Augmentation instead on sampling $\pi(\beta|(Y, X))$ sample $\pi(\beta, W|(Y, X))$ and marginalize W.
- Typical application of the Gibbs sampler: sample in turn $\pi(\beta|W, Y, X)$ and $\pi(W|\beta, X, Y)$
- The choice of the DA should make these two steps reasonably easy...
Data Augmentation algorithms

- These two algorithms have been shown to be uniformly geometrically ergodic, BUT
 - The geometric rate of convergence is exponentially small with the dimension
- The algorithms are very demanding in terms of computational resources...
 - applicable only when is d small 10 to moderate 100 but certainly not when d is large (10^4 or more).
A daunting problem?

The posterior density distribution of β is given by Bayes’ rule, up to a proportionality constant by

$$
\pi(\beta|(Y, X)) \propto \exp(-U(\beta)).
$$

where the potential $U(\beta)$ is given by

$$
U(\beta) = - \sum_{i=1}^{p} \left\{ Y_i \log F(\beta^T X_i) + (1 - Y_i) \log (1 - F(\beta^T X_i)) \right\}
+ \frac{1}{2} \beta^T \Sigma^{-1} \beta
$$

The potential $\beta \mapsto U(\beta)$ is smooth, strongly convex...

The corresponding optimization problem is conceptually straightforward and relatively to solve in high-dimension...
Tales for the Machine Learning Community

- Focus on first order method...
 - second-order information is so-costly to compute that the improvements are generally offset by computational cost.
 - solving a $d \times d$ linear system of equations can be difficult when $d \ll 1$.
- Algorithms which are easy to parallelize or distribute are a must.
1 Motivation

2 Framework

3 Langevin diffusions

4 Euler discretisation of the Langevin diffusion

5 Deviation inequalities

6 Conclusion
Denote by π a target density w.r.t. the Lebesgue measure on \mathbb{R}^d, known up to a normalisation factor

$$x \mapsto e^{-U(x)}/\int_{\mathbb{R}^d} e^{-U(y)} dy,$$

Implicitly, $d \gg 1$.

Assumption: U is L-smooth: twice continuously differentiable and there exists a constant L such that for all $x, y \in \mathbb{R}^d$,

$$\|\nabla U(x) - \nabla U(y)\| \leq L\|x - y\|.$$
Langevin diffusion

- Langevin SDE:

\[dY_t = -\nabla U(Y_t)dt + \sqrt{2}dB_t, \]

where \((B_t)_{t \geq 0}\) is a \(d\)-dimensional Brownian motion.

- Unique strong solution \((Y_t)_{t \geq 0}\) which is a Markov process.

- \(\pi \propto e^{-U}\) is reversible w.r.t. the Markov semi-group and is therefore the unique invariant probability measure.

- The convergence to the stationary distribution takes place at geometrical rate.
 - Precise estimates of the convergence rate can be obtained (using Poincaré or Log-Sobolev inequalities)
Discretized Langevin diffusion

- **Idea:** Sample the stationary distribution π by sampling approximately the diffusion paths, using for example the Euler-Maruyama (EM) scheme:

$$X_{k+1} = X_k - \gamma_{k+1} \nabla U(X_k) + \sqrt{2\gamma_{k+1}} Z_{k+1}$$

where

- $(Z_k)_{k \geq 1}$ is i.i.d. $\mathcal{N}(0, I_d)$
- $(\gamma_k)_{k \geq 1}$ is a sequence of stepsizes, which can either be held constant or be chosen to decrease to 0 at a certain rate.

- Closely related to the gradient algorithm.
Discretized Langevin diffusion: constant stepsize

- When $\gamma_k = \gamma$, then $(X_k)_{k \geq 1}$ is an homogeneous Markov chain with Markov kernel R_γ.
- Under some appropriate conditions, this Markov chain is irreducible and positive recurrent, but its stationary distribution π_γ is no longer equal to the target π.
Metropolis-Adjusted Langevin Algorithm

- To correct the bias, a Metropolis-Hastings step can be included: every EM step is a proposal in a Metropolis-Hastings algorithm, leading to Metropolis Adjusted Langevin Algorithm (MALA).
 - Key references Roberts and Tweedie, 1996

Algorithm:

1. Propose $Y_{k+1} \sim X_k - \gamma \nabla U(X_k) + \sqrt{2\gamma}Z_{k+1}$, $Z_{k+1} \sim \mathcal{N}(0, I_d)$

2. Compute the acceptance ratio $\alpha_\gamma(X_k, Y_{k+1})$

$$\alpha(x, y) = 1 \land \frac{\pi(y)r_\gamma(y, x)}{\pi(x)r_\gamma(x, y)}$$

$$r_\gamma(x, y) \propto e^{-\|y - x - \gamma \nabla U(x)\|^2/(2\pi)^d}$$

3. Accept / Reject the proposal.
MALA: pros and cons

- Require to compute 2 gradients at each iteration and to evaluate two times the objective function.

- Geometric convergence is established under the condition that in the tail the acceptance region is *inwards in* \(q \),

\[
\lim_{\|x\| \to \infty} \int A_{\gamma}(x) \Delta I_\gamma(x) r_\gamma(x, y) dy = 0.
\]

where \(I(x) = \{ y, \|y\| \leq \|x\| \} \) and \(A_{\gamma}(x) \) is the acceptance region

\[
A_{\gamma}(x) = \{ y, \pi(x)r_\gamma(x, y) \leq \pi(y)r_\gamma(y, x) \}.
\]
Discretized Langevin diffusion: decreasing stepsize

- If \(\lim_{k \to \infty} \gamma_k = 0 \), then \((X_k)_{k \geq 0} \) is a non-homogeneous Markov chain.

- Questions:
 1. Convergence and rate of convergence to the stationary distribution (in total variation? Wasserstein distance?)
 2. Non-asymptotic control for additive functionals?

- Available results Weak convergence (Lamberton and Pagès, 2002-2003, Lemaire and co-authors 2010) of the weighted empirical measure + CLT

 \[
 \sum_{k=1}^{p} \frac{\gamma_k}{\Gamma^p_1} \delta X_k \Rightarrow_{p \to \infty} \pi, \quad \Gamma^p_1 = \sum_{k=1}^{p} \gamma_k.
 \]
Motivation

Framework

Langevin diffusions

Euler discretisation of the Langevin diffusion

Deviation inequalities

Conclusion
Level-0: Ergodicity

- If the initial distribution μ_0 satisfies $\int \|x\|^2 \mu_0(dx) < \infty$ then there exists a unique strong solution $(Y_t)_{t \geq 0}$ to

$$dY_t = -\nabla U(Y_t)dt + \sqrt{2}dB_t$$

with Y_0 distributed according to μ_0.

- The semi-group $(P_t)_{t \geq 0}$ is
 - aperiodic, strong Feller (all compact sets are small).
 - reversible w.r.t. to π (admits π as its unique invariant distribution).

- For all initial distribution,

$$\lim_{t \to +\infty} \|\mu_0 P_t - \pi\|_{TV} = 0.$$
A function $V \in C^2(\mathbb{R}^d)$ is a Lyapunov function if $V \geq 1$ and if there exists $\theta > 0$, $b \geq 0$ and $R > 0$ such that,

$$\mathcal{A}V \leq -\theta V + b 1_{B(0,R)},$$

where $\mathcal{A}f = -\langle \nabla U, \nabla f \rangle + \Delta f$ is the generator of the diffusion

- If there exist $\alpha > 1$, $\rho > 0$ and $M_\rho \geq 0$ such that for all $y \in \mathbb{R}^d$,
 $$\|y\| \geq M_\rho:$$
 $$\langle \nabla U(y), y \rangle \geq \rho \|y\|^\alpha.$$

 then $V(x) = \exp(U(x)/2)$ is a Lyapunov function (constants are quantitative).

- The case $\alpha = 1$ may be dealt with, but results are clumsier.
Lemma (Generalized Pinsker inequality)

Let $\psi : \mathbb{R}^+ \rightarrow \mathbb{R}$ be a C^2 convex function such that

1. ψ is uniformly convex on all bounded intervals,
2. $\psi(1) = 0$ and $\lim_{u \to \infty} \psi(u)/u = +\infty$.

Then, for all (μ, ν) on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ such that $\mu \ll \nu$,

$$
\|\mu - \nu\|_{TV} \leq c_\psi I^{1/2}_\psi(\mu|\nu), \quad \text{where} \quad I_\psi(\mu, \nu) = \int \psi \left(\frac{d\mu}{d\nu} \right) d\mu,
$$

where $d\mu/d\nu$ is the Radon-Nykodim derivative and c_ψ is a universal constant.
Poincaré and Log-Sobolev inequalities

- **Poincaré inequality**: If $\psi(u) = (u - 1)^2$, then $I_\psi(\mu, \nu)$ is the chi-square distance, $c_\psi = 1$ and
 \[
 \|\mu - \nu\|_{TV} \leq \text{Var}^{1/2} \{d\mu/d\nu\} .
 \]

- **Log-Sobolev inequality**: If $\psi(u) = u \ln(u)$, then $I_\psi(\mu, \nu)$ is the Kullback-Leibler divergence and $c_\psi = 2$ and
 \[
 \|\mu - \nu\|_{TV} \leq (2 \text{KL}(\mu | \nu))^{1/2} ,
 \]
Level-1: "Carré du champ" inequalities

Theorem

Assume that there exists a constant C_{ψ} such that for any density function $h \in D(\mathcal{H})$ satisfying $\int \psi(h) d\pi < \infty$,

$$\int \psi(h) d\pi \leq C_{\psi} \int \psi''(h) \|\nabla h\|^2 d\pi.$$

Then, for all $t \geq 0$, and any initial distribution μ_0 such that $\mu_0 \ll \pi$,

$$\|\mu_0 P_t - \pi\|_{TV} \leq c_{\psi} e^{-t/C_{\psi}} I_{\psi}^{1/2} \left(\frac{d\mu_0}{d\pi} \cdot \pi, \pi \right).$$
Theorem (after Barthe, Cattiaux, Guillin, 2009)

Assume that U is L-smooth and that $\mathcal{A}V \leq -\theta V + b \mathbb{1}_{B(0, R)}$. Then π satisfies a Poincaré inequality with constant

$$C_{\text{lyap}} = -\theta^{-1} \left\{ 1 + b4R^2/\pi^2 \ e^{\text{osc}_R(U)} \right\}$$

where

$$\text{osc}_R(U) = \sup_{B(0, R)} (U) - \inf_{B(0, R)} (U).$$
Theorem (Bobkov, 1999)

Assume that U is L-smooth and convex. Then, π satisfies a Poincaré inequality with constant C_P given by

$$C_{cvx} = 432 \int_{\mathbb{R}^d} \left\{ x - \int_{\mathbb{R}^d} y d\pi(y) \right\}^2 d\pi(x).$$

If $\pi(x) = (2\pi)^{-d/2} \exp\left(-\frac{1}{2} x^T \Sigma^{-1} x\right)$ where Σ is a definite positive matrix, then C_{cvx} is proportional to $\text{Tr}(\Sigma)$ (which typically scales linearly with the dimension).
If we apply the "carré du champ" inequality with $\psi(u) = u \ln(u)$, we obtain the log-Sobolev inequality.

If there exists some constant C_{LS} such that, for any density $h \in D(\mathcal{A})$, $\text{Ent}_\pi(h) < \infty$,

$$\text{Ent}_\pi(h) \leq C_{LS} \int h^{-1} \|\nabla h\|^2 d\pi,$$

then for all $t \geq 0$,

$$\|\mu_0 P_t - \pi\|_{TV} \leq \exp(-t/C_{LS}) (2\text{Ent}_\pi(d\mu_0/d\pi))^{1/2}.$$
Strong convexity

- **Strong convexity** There exists $m > 0$ such that for all $x, y \in \mathbb{R}^d$,

\[U(y) \geq U(x) + \langle \nabla U(x), y - x \rangle + \left(\frac{m}{2} \right) \| x - y \|^2. \]

- If U is strongly convex and L-smooth then, for all $x, y \in \mathbb{R}^d$:

\[
\langle \nabla U(y) - \nabla U(x), y - x \rangle \geq \frac{\kappa}{2} \| y - x \|^2 + \frac{1}{m + L} \| \nabla U(y) - \nabla U(x) \|^2
\]

\[
\langle \nabla U(y) - \nabla U(x), y - x \rangle \geq m \| y - x \|^2,
\]

where

\[\kappa = \frac{2mL}{m + L}. \]
Theorem

Assume that U is twice continuously differentiable, L-smooth and strongly convex. Then, for all probability measure $\mu_0 \ll \pi$ such that $d\mu_0/d\pi \in L^2(\pi)$, we have

$$\|\mu_0 P_t - \pi\|_{TV} \leq e^{-mt} \left(2\text{Ent}_{\pi} \left(\frac{d\mu_0}{d\pi}\right)\right)^{1/2}.$$

In such case, the ergodicity constant does not depend on the dimension.
Wasserstein distance convergence

Theorem

Assume that U is L-smooth and strongly convex. Then,

(i) For all probability measures μ_0 and $\nu_0 \in \mathcal{P}_2(\mathbb{R}^d)$ and $t \geq 0$,

$$W_2(\mu_0 P_t, \nu_0 P_t) \leq e^{-mt} W_2(\mu_0, \nu_0)$$

(ii) The stationary distribution π satisfies

$$\int_{\mathbb{R}^d} \|x - x^*\|^2 \pi(dx) \leq d/m .$$

In addition, for any $\mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$,

$$W_2(\mu_0 P_t, \pi) \leq e^{-mt} W_2(\mu, \pi) .$$
Elements of proof

\[
\begin{cases}
 dY_t = -\nabla U(Y_t)dt + \sqrt{2}dB_t, \\
 d\tilde{Y}_t = -\nabla U(\tilde{Y}_t)dt + \sqrt{2}dB_t,
\end{cases}
\]

where \((Y_0, \tilde{Y}_0)\) is some coupling between \(\mu\) and \(\nu\).
Elements of proof

\[
\begin{aligned}
\begin{cases}
 dY_t &= -\nabla U(Y_t)dt + \sqrt{2}dB_t, \\
 d\tilde{Y}_t &= -\nabla U(\tilde{Y}_t)dt + \sqrt{2}dB_t,
\end{cases}
\end{aligned}
\]

where \((Y_0, \tilde{Y}_0)\) is some coupling between \(\mu\) and \(\nu\). Since \(\mu\) and \(\nu\) are in \(\mathcal{P}_2(\mathbb{R}^d)\) and \(\nabla U\) is Lipschitz, then this SDE has a unique strong solution \((Y_t, \tilde{Y}_t)_{t \geq 0}\) associated to \((B_t)_{t \geq 0}\).
Elements of proof

\[
\begin{align*}
 dY_t &= -\nabla U(Y_t)dt + \sqrt{2}dB_t, \\
 d\tilde{Y}_t &= -\nabla U(\tilde{Y}_t)dt + \sqrt{2}dB_t,
\end{align*}
\]

where \((Y_0, \tilde{Y}_0)\) is some coupling between \(\mu\) and \(\nu\). Since \(\mu\) and \(\nu\) are in \(\mathcal{P}_2(\mathbb{R}^d)\) and \(\nabla U\) is Lipschitz, then this SDE has a unique strong solution \((Y_t, \tilde{Y}_t)_{t \geq 0}\) associated to \((B_t)_{t \geq 0}\). Moreover

\[
\|Y_t - \tilde{Y}_t\|^2 = \|Y_0 - \tilde{Y}_0\|^2 - 2 \int_0^t \langle (\nabla U(Y_s) - \nabla U(\tilde{Y}_s)), Y_s - \tilde{Y}_s \rangle \, ds,
\]

which implies using Grönwall’s inequality that

\[
\|Y_t - \tilde{Y}_t\|^2 \leq \|Y_0 - \tilde{Y}_0\|^2 - 2m \int_0^t \|Y_s - \tilde{Y}_s\|^2 \, ds \leq \|Y_0 - \tilde{Y}_0\|^2 e^{-2mt}.
\]
Elements of proof

\[
\begin{aligned}
\left\{ \begin{array}{l}
 dY_t &= -\nabla U(Y_t)dt + \sqrt{2}dB_t, \\
 d\tilde{Y}_t &= -\nabla U(\tilde{Y}_t)dt + \sqrt{2}dB_t,
\end{array} \right.
\end{aligned}
\]

where \((Y_0, \tilde{Y}_0)\) is some coupling between \(\mu\) and \(\nu\). Since \(\mu\) and \(\nu\) are in \(\mathcal{P}_2(\mathbb{R}^d)\) and \(\nabla U\) is Lipschitz, then this SDE has a unique strong solution \((Y_t, \tilde{Y}_t)_{t \geq 0}\) associated to \((B_t)_{t \geq 0}\). Moreover

\[
\|Y_t - \tilde{Y}_t\|^2 = \|Y_0 - \tilde{Y}_0\|^2 - 2 \int_0^t \langle \nabla U(Y_s) - \nabla U(\tilde{Y}_s), Y_s - \tilde{Y}_s \rangle ds,
\]

which implies using Grönwall’s inequality that

\[
\|Y_t - \tilde{Y}_t\|^2 \leq \|Y_0 - \tilde{Y}_0\|^2 - 2m \int_0^t \|Y_s - \tilde{Y}_s\|^2 ds \leq \|Y_0 - \tilde{Y}_0\|^2 e^{-2mt}.
\]

The proof follows since or all \(t \geq 0\), the law of \((Y_t, \tilde{Y}_t)\) is a coupling between \(\mu P_t\) and \(\nu P_t\).
1 Motivation

2 Framework

3 Langevin diffusions

4 Euler discretisation of the Langevin diffusion

5 Deviation inequalities

6 Conclusion
Let \((\gamma_k)_{k \geq 1}\) be a sequence of positive and non-increasing step sizes.

Euler discretization:

\[
X_{k+1} = X_k - \gamma_{k+1} \nabla U(X_k) + \sqrt{2\gamma_{k+1}} Z_{k+1},
\]

where \((Z_k)_{k \geq 1}\) is i.i.d. \(\mathcal{N}(0, I_d)\), independent of \(X_0\).

Markov kernel \(R_\gamma\) and \(x \in \mathbb{R}^d\) by

\[
R_\gamma(x, A) = \int_A \frac{1}{(4\pi\gamma)^{d/2}} \exp \left(-\left(\frac{1}{4\gamma}\|y - x + \gamma \nabla U(x)\|^2\right)\right) \, dy.
\]

The sequence \((X_n)_{n \geq 0}\) is a (possibly nonhomogeneous) Markov chain with respect to the sequence of Markov kernels \((R_{\gamma_n})_{n \geq 1}\).
A drift condition for R_γ

Theorem

Assume U is L-smooth and there exist $\rho > 0$, $\alpha > 1$ and $M_\rho \geq 0$ such that:

$$\langle \nabla U(y), y \rangle \geq \rho \|y\|^\alpha,$$

for all $y \in \mathbb{R}^d$, $\|y\| \geq M_\rho$

Then for all $\tilde{\gamma} \in (0, L^{-1})$, there exists $b \geq 0$ and $s > 0$ such that,

$$R_{\gamma} V(x) \leq e^{-s\gamma} V(x) + \gamma b,$$

for all $\gamma \in (0, \tilde{\gamma}]$ and $x \in \mathbb{R}^d$,

where $V(x) = \exp(U(x)/2)$. In addition, with $Q_{\gamma}^{n,p} = R_{\gamma_n} \cdots R_{\gamma_p}$,

$$Q_{\gamma}^{n} V(x) \leq e^{-s\gamma_1 \Gamma_{1,n}} V(x) + b_{\gamma_1, \alpha, \rho} \sum_{i=1}^{n} \gamma_i e^{-s\gamma_1 \Gamma_{i+1,n}}$$
Error decomposition

\[\| \mu_0 Q^p - \pi \|_{TV} \leq \| \mu_0 Q^n Q^n+1,p - \mu_0 Q^n P_{\Gamma_{n+1},p} \|_{TV} \]
\[+ \| \mu_0 Q^n P_{\Gamma_{n+1},p} - \pi \|_{TV} . \]

where

\[\Gamma_{n,p} \overset{\text{def}}{=} \sum_{k=n}^{p} \gamma_k , \quad \Gamma_n = \Gamma_{1,n} . \]

- We have the right tools to control the second terms on the RHS of the previous equation.
- We need to find a way to compare the total variation distance between the diffusion and its discretization started at time \(\Gamma_n \) from the same distribution.
A trivial coupling (after Dalalyan, Tsybakov, 2012-2015)

For all $x \in \mathbb{R}^d$, denote by $\mu_{n,p}^x$ and $\overline{\mu}_{n,p}^x$ the laws on $C([\Gamma_n, \Gamma_p], \mathbb{R}^d)$ of the Langevin diffusion $(Y_t)_{\Gamma_n \leq t \leq \Gamma_p}$ and of the Euler discretisation $(\bar{Y}_t)_{\Gamma_n \leq t \leq \Gamma_p}$ both started at x at time Γ_n.

For any $\zeta_0 \in \mathcal{P}_2(\mathbb{R}^d \times \mathbb{R}^d)$, consider the diffusion $(Y_t, \overline{Y}_t)_{t \geq 0}$ with initial distribution equals to ζ_0, and defined for $t \geq 0$ by

$$\begin{cases} dY_t = -\nabla U(Y_t)dt + \sqrt{2}dB_t \\ d\bar{Y}_t = -\nabla U(\overline{Y}_t)dt + \sqrt{2}dB_t \end{cases}$$

and

$$\nabla U(y) = \sum_{k=0}^{\infty} \nabla U(y_{\Gamma_n}) \mathbb{1}_{[\Gamma_n, \Gamma_{n+1})}(t)$$
Change of measure

- The Girsanov theorem shows that $\mu_{n,p}^x \ll \bar{\mu}_{n,p}^x$ with density

$$
\frac{d\mu_{n,p}^x}{d\bar{\mu}_{n,p}^x}(\bar{Y}) = \exp \left(\frac{1}{2} \int_{\Gamma_n}^{\Gamma_p} \langle \nabla U(\bar{Y}_s) - \overline{\nabla U}(\bar{Y}_s), d\bar{Y}_s \rangle
- \frac{1}{4} \int_{\Gamma_n}^{\Gamma_p} \left\{ \|\nabla U(\bar{Y}_s)\|^2 - \|\overline{\nabla U}(\bar{Y}_s)\|^2 \right\} ds \right).
$$

- The Pinsker inequality implies that for all $x \in \mathbb{R}^d$

$$
\|\delta_x Q_{\gamma}^{n+1,p} - \delta_x P_{\Gamma_{n+1},p}\|_{TV} \leq 2^{-1} \left(\text{Ent}_{\bar{\mu}_{n,p}^x} \left(\frac{d\mu_{n,p}^x}{d\bar{\mu}_{n,p}^x} \right) \right)^{1/2}
 \leq 4^{-1} \left(\int_{\Gamma_n}^{\Gamma_p} \mathbb{E}_x \left[\|\nabla U(\bar{Y}_s) - \overline{\nabla U}(\bar{Y}_s)\|^2 \right] ds \right)^{1/2}.
$$
Change of measure

- **Pinsker inequality**: for all $x \in \mathbb{R}^d$

$$\|\delta_x Q_{\Gamma_n}^{n+1,p} - \delta_x P_{\Gamma_n+1,p}\|_{TV} \leq 4^{-1} \left(\int_{\Gamma_n}^{\Gamma_p} E_x \left[\| \nabla U(\bar{Y}_s) - \nabla U(\bar{Y}_s) \|^2 \right] ds \right)^{1/2}.$$

- If U is L-smooth,

$$\|\delta_x Q_{\Gamma_n}^{n+1,p} - \delta_x P_{\Gamma_n+1,p}\|_{TV} \leq 4^{-1} L \left(\sum_{k=n+1}^{p} \left\{ (\gamma_k^3/3) E_x \left[\| \nabla U(X_k) \|^2 \right] + d\gamma_k^2 \right\} \right)^{1/2}.$$
Back to the decomposition of the error

\[\| \mu_0 Q_\gamma^p - \pi \|_{TV} \leq \| \mu_0 Q_\gamma^p - \mu_0 Q_\gamma^n P_{\Gamma_{n+1},p} \|_{TV} + \| \mu_0 Q_\gamma^n P_{\Gamma_{n+1},p} - \pi \|_{TV}. \]

- The first term goes to zero if \(\sum_{k=n+1}^{p} \gamma_k^2 \to 0 \) as \(n, p \to \infty \).
- The second-term goes to zero using either the Poincaré or the Log-Sobolev inequalities provided that \(\Gamma_{n+1,p} = \sum_{k=n+1}^{p} \gamma_k \to \infty \)...

Main result: For all \(n, p \geq 1, n \leq p, \) and \(x \in \mathbb{R}^d \)

\[\| \mu_0 Q_\gamma^p - \pi \|_{TV} \leq C_1 V(x) \lambda^{\Gamma_{n+1,p}} + \left(C_2 V(x) \sum_{k=n+1}^{p} \gamma_k^2 \right)^{1/2} \]

- **Same conditions** than for stochastic approximation, \(\sum k \gamma_k = \infty \) and \(\sum k \gamma_k^2 < \infty \)…

Eric Moulines
Toulouse-2015
The strongly convex case

- In the strongly convex case, a direct proof (with more explicit constants) can be obtained in Wasserstein distance...

- Idea: Bound with explicit constants, the Wasserstein distance between the diffusion and its discretized version by constructing a coupling between these two probabilities measures.

- Obvious candidate: synchronous coupling!
Theorem

Assume U is L-smooth and strongly convex. Let $(\gamma_k)_{k \geq 1}$ be a nonincreasing sequence with $\gamma_1 \leq 1/(m + L)$. Then for all $\mu_0 \in \mathcal{P}_2(\mathbb{R}^d)$ and $n \geq 1$,

$$W_2^2(\mu_0 Q^n_{\gamma}, \pi) \leq u_n^{(1)}(\gamma) W_2^2(\mu_0, \pi) + u_n^{(2)}(\gamma),$$

where

$$u_n^{(1)}(\gamma) \overset{\text{def}}{=} \prod_{k=1}^{n} \left(1 - \kappa \gamma_k / 2\right) \quad \kappa = 2mL/(m + L)$$

and

$$u_n^{(2)}(\gamma) \overset{\text{def}}{=} L^2 \sum_{i=1}^{n} \gamma_i^2 \left\{ \kappa^{-1} + \gamma_i \right\} \left(2d + dL^2 \gamma_i / m + dL^2 \gamma_i^2 / 6\right) \prod_{k=i+1}^{n} \left(1 - \kappa \gamma_k / 2\right),$$
1 Motivation

2 Framework

3 Langevin diffusions

4 Euler discretisation of the Langevin diffusion

5 Deviation inequalities

6 Conclusion
Bounds for functionals

- Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be a **Lipschitz** function and $(X_k)_{k \geq 0}$ the Euler discretization of the Langevin diffusion. We approximate $\int_{\mathbb{R}^d} f(x) \pi(dx)$ by the **weighted average estimator**

$$
\hat{\pi}_n^N (f) = \sum_{k=N+1}^{N+n} \omega_{k,n}^N f(X_k), \quad \omega_{k,n}^N = \frac{\gamma_{k+1} \Gamma_{N+2,N+n+1}^{-1}}{N+2,N+n+1}.
$$

where $N \geq 0$ is the length of the burn-in period, $n \geq 1$ is the number of effective samples.

- **Objective**: compute an explicit bounds for the Mean Square Error (MSE) of this estimator defined by:

$$
\text{MSE}_f(N, n) = \mathbb{E}_x \left[|\hat{\pi}_n^N (f) - \pi(f)|^2 \right].
$$
The MSE can be decomposed into the sum of the squared bias and the variance

\[\text{MSE}_f(N, n) = \left\{ \mathbb{E}_x [\hat{\pi}_n^N(f)] - \pi(f) \right\}^2 + \text{Var}_x \left\{ \hat{\pi}_n^N(f) \right\}, \]

Denote by \(\xi_k \) the optimal transference plan between \(\delta_x Q_{\gamma}^k \) and \(\pi \) for \(W_2 \). Then by the Jensen inequality,

\[\text{Bias}^2 = \left(\sum_{k=N+1}^{N+n} \omega_{k,n}^N \int_{\mathbb{R}^d \times \mathbb{R}^d} \{ f(z) - f(y) \} \xi_k(dz, dy) \right)^2 \]

\leq \| f \|_{\text{Lip}}^2 \sum_{k=N+1}^{N+n} \omega_{k,n}^N W_2^2(\delta_x Q_{\gamma}^k, \pi).

and

\[W_2^2(\delta_x Q_{\gamma}^k, \pi) \leq 2(\| x - x^* \|^2 + d/m) u_k^{(1)}(\gamma) + u_k^{(2)}(\gamma). \]

Eric Moulines Toulouse-2015
Gaussian Poincaré inequality

- If $Z = (Z_1, \ldots, Z_d) \sim \mathcal{N}(\mu, I_d)$, then
 \[
 \text{Var} \{ g(Z) \} \leq \| g \|_{\text{Lip}}^2 .
 \]

- Idea: Apply to $R_\gamma \!$... For any Lipshitz function $g : \mathbb{R}^d \to \mathbb{R}$, $\gamma > 0$ and $y \in \mathbb{R}^d$, we get
 \[
 0 \leq R_\gamma \{ g(\cdot) - R_\gamma g(y) \}^2 (y)
 = \int R_\gamma (y, \mathrm{d}z) \{ g(z) - R_\gamma g(y) \}^2 \leq 2 \gamma \| g \|_{\text{Lip}}^2 .
 \]
A martingale decomposition

Idea Decompose \(\hat{\pi}_n^N(f) - \mathbb{E}_x[\hat{\pi}_n^N(f)] \) as the sum of martingale increments,

\[
\hat{\pi}_n^N(f) - \mathbb{E}_x[\hat{\pi}_n^N(f)] = \sum_{k=N}^{N+n-1} \left\{ \mathbb{E}^{G_{k+1}}_x[\hat{\pi}_n^N(f)] - \mathbb{E}^{G_k}_x[\hat{\pi}_n^N(f)] \right\} \\
+ \mathbb{E}^{G_N}_x[\hat{\pi}_n^N(f)] - \mathbb{E}_x[\hat{\pi}_n^N(f)],
\]

where \((G_k)_{k \geq 0}\) is the natural filtration of \((X_k)_{k \geq 0}\) (sorry Sean, no Poisson equation today...).

Variance:

\[
\text{Var}_x \{ \hat{\pi}_n^N(f) \} = \sum_{k=N}^{N+n-1} \mathbb{E}_x \left[\left(\mathbb{E}^{G_{k+1}}_x[\hat{\pi}_n^N(f)] - \mathbb{E}^{G_k}_x[\hat{\pi}_n^N(f)] \right)^2 \right] \\
+ \mathbb{E}_x \left[\left(\mathbb{E}^{G_N}_x[\hat{\pi}_n^N(f)] - \mathbb{E}_x[\hat{\pi}_n^N(f)] \right)^2 \right].
\]
Martingale decomposition

- $\hat{\pi}_n^N(f)$ is a sum and $\mathbb{E}_x^{G_{k+1}} [\hat{\pi}_n^N(f)] - \mathbb{E}_x^{G_k} [\hat{\pi}_n^N(f)]$ is easy.

- Set $S_{n,N+n}^N(x_{N+n}) = \omega_{N+n,n}^N f(x_{N+n})$ and define backward in time
 \[
 S_{n,k}^N : x_k \mapsto \omega_{k,n}^N f(x_k) + R_{\gamma_{k+1}} S_{n,k+1}^N(x_k).
 \]

- Variance: $\text{Var}_x \{\hat{\pi}_n^N(f)\} = \sum_{k=1}^N V_k + W_N$ where
 \[
 V_k = \mathbb{E}_x \left[R_{\gamma_{k+1}} \left\{ S_{n,k+1}^N(\cdot) - R_{\gamma_{k+1}} S_{n,k+1}^N(X_k) \right\}^2 (X_k) \right]
 \]
Bound of the incremental variance

- **Idea:** Prove that $S_{n,k+1}^N$ is Lipshitz and use recursively, backward in time, the Gaussian Poincaré inequality;

- **Step 1:**

$$
\left| S_{n,k+1}^N(y) - S_{n,k+1}^N(z) \right| = \left| \omega_{k+1,n}^N \{ f(y) - f(z) \} \right|
+ \sum_{i=k+2}^{N+n} \omega_{i,n}^N \{ Q_{\gamma}^{k+2,i} f(y) - Q_{\gamma}^{k+2,i} f(z) \}.
$$

- **Step 2:** (Monge-Kantorovich duality)

$$
W_1(\delta_y Q_{\gamma}^{n,p} , \delta_z Q_{\gamma}^{n,p}) \leq \prod_{k=n}^{p} (1 - \kappa \gamma_k)^{1/2} \| y - z \|;
$$
Elements of proof

Let ζ_0 be an OT plan of μ_0 and ν_0 and $(Z_k)_{k\geq n-1}$ be i.i.d. $\mathcal{N}(0, I_d)$. Consider the processes $(X_{n-1,k}^1, X_{n-1,k}^2)_{k\geq n-1}$ with initial distribution ζ_0 and defined for $k \geq n - 1$ by

$$X_{n-1,k+1}^j = X_{n-1,k}^j - \gamma_{k+1} \nabla U(X_{n-1,k}^j) + \sqrt{2}\gamma_{k+1} Z_{k+1}, \quad j = 1, 2.$$
Elements of proof

- Let ζ_0 be an OT plan of μ_0 and ν_0 and $(Z_k)_{k \geq n-1}$ be i.i.d. $\mathcal{N}(0, I_d)$. Consider the processes $(X_{n-1,k}^1, X_{n-1,k}^2)_{k \geq n-1}$ with initial distribution ζ_0 and defined for $k \geq n-1$ by

$$X_{n-1,k+1}^j = X_{n-1,k}^j - \gamma_{k+1} \nabla U(X_{n-1,k}^j) + \sqrt{2}\gamma_{k+1}Z_{k+1}$$

with $j = 1, 2$.

- For any $p \geq n \geq 0$, $W_2^2(\mu_0 Q^n, \nu_0 Q^n) \leq \mathbb{E} \left[\| \Delta_{n-1,p} \|^2 \right]$ with $\Delta_{n-1,k} = X_{n-1,k}^1 - X_{n-1,k}^2$.

Elements of proof

- Let ζ_0 be an OT plan of μ_0 and ν_0 and $(Z_k)_{k\geq n-1}$ be i.i.d. $\mathcal{N}(0, I_d)$. Consider the processes $(X_{n-1,k}^1, X_{n-1,k}^2)_{k\geq n-1}$ with initial distribution ζ_0 and defined for $k \geq n - 1$ by

$$X_{n-1,k+1}^j = X_{n-1,k}^j - \gamma_{k+1} \nabla U(X_{n-1,k}^j) + \sqrt{2} \gamma_{k+1} Z_{k+1} \quad j = 1, 2.$$

- For any $p \geq n \geq 0$, $W_2^2(\mu_0 Q_{\gamma}^n p, \nu_0 Q_{\gamma}^n p) \leq \mathbb{E} \left[\|\Delta_{n-1,p}\|^2 \right]$

 with $\Delta_{n-1,k} = X_{n-1,k}^1 - X_{n-1,k}^2$.

- The strong convexity implies for $k \geq n - 1$,

$$\|\Delta_{n-1,k+1}\|^2 = \|\Delta_{n-1,k}\|^2 + \gamma_{k+1}^2 \|\nabla U(X_{n-1,k}^1) - \nabla U(X_{n-1,k}^2)\|^2 - 2 \gamma_{k+1} \langle \Delta_{n-1,k}, \nabla U(X_{n-1,k}^1) - \nabla U(X_{n-1,k}^2) \rangle \leq (1 - \kappa \gamma_{k+1}) \|\Delta_{n-1,k}\|^2.$$
Theorem

Assume that U is L-smooth and strongly convex. Let $(\gamma_k)_{k \geq 1}$ be a nonincreasing sequence with $\gamma_1 \leq 2/(m + L)$. Then for all $N \geq 0$, $n \geq 1$ and Lipschitz functions $f : \mathbb{R}^d \rightarrow \mathbb{R}$, we get

$$\text{Var}_x \left\{ \hat{\pi}_N^n (f) \right\} \leq 8\kappa^{-2} \| f \|^2_{\text{Lip}} \Gamma_{N+2,N+n+1}^{-1} u^{(3)}_{N,n}(\gamma)$$

where

$$u^{(3)}_{N,n}(\gamma) \overset{\text{def}}{=} \left\{ 1 + \Gamma_{N+2,N+n+1}^{-1}(\kappa^{-1} + 2/(m + L)) \right\}.$$

- The upper bound is independent of the dimension and allow to construct honest confidence bounds.
- The optimal rate for the variance is obtained for fixed stepsizes.
MSE

<table>
<thead>
<tr>
<th>α</th>
<th>Bound for the MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 0$</td>
<td>$\gamma_1 + (\gamma_1 n)^{-1} \exp(-\kappa \gamma_1 N/2)$</td>
</tr>
<tr>
<td>$\alpha \in (0, 1/2)$</td>
<td>$\gamma_1 n^{-\alpha} + (\gamma_1 n^{1-\alpha})^{-1} \exp(-\kappa \gamma_1 N^{1-\alpha}/(2(1 - \alpha)))$</td>
</tr>
<tr>
<td>$\alpha = 1/2$</td>
<td>$\gamma_1 \log(n) n^{-1/2} + (\gamma_1 n^{1/2})^{-1} \exp(-\kappa \gamma_1 N^{1/2}/4)$</td>
</tr>
<tr>
<td>$\alpha \in (1/2, 1)$</td>
<td>$n^{\alpha-1} \left{\gamma_1 + \gamma_1^{-1} \exp(-\kappa \gamma_1 N^{1-\alpha}/(2(1 - \alpha)))\right}$</td>
</tr>
<tr>
<td>$\alpha = 1$</td>
<td>$\log(n)^{-1} \left{\gamma_1 + \gamma_1^{-1} N - \gamma_1 \kappa/2\right}$</td>
</tr>
</tbody>
</table>

Table: Bound for the MSE for $\gamma_k = \gamma_1 k^{-\alpha}$ as a function of γ_1, n and N.

Motivation

Framework

Langevin diffusions

Euler discretisation of the Langevin diffusion

Deviation inequalities

Conclusion
Motivation
Framework
Langevin diffusions
Euler discretisation of the Langevin diffusion
Deviation inequalities
Conclusion

1 Motivation
2 Framework
3 Langevin diffusions
4 Euler discretisation of the Langevin diffusion
5 Deviation inequalities
6 Conclusion
What’s next ?

- A simple algorithm which scale easily in the dimension of the problem
- Computable bounds for convergence in TV, MSE, and deviation inequalities with constants which make sense !
- Future works
 - partial updates (coordinate descent)
 - sparsity inducing priors
 - detailed comparison with MALA
 - bias reduction (”exact estimation” à la Glynn and Rhee ?)