Modélisation UML/MARTE de SoC et analyse Temporelle basée sur l’approche synchrone

A. Abdallah, A. Gamatié and J.-L. Dekeyser
INRIA LILLE NORD EUROPE - LIFL - USTL - CNRS, FRANCE

SympA’13, 9th September, 2009
Introduction

High level design specification

Synchronous clock analysis for efficient system redesign

Concluding remarks
Increasing dramatically in our day-to-day life

Chips growing in size and speed, Driving up to a computational complexity

- Shorten design cost and time-to-market
- Guarantee QoS constraints and efficient resource distribution

- System design at a high-level abstraction : UML/ MARTE (Modeling and Analysis of Real Time Embedded systems) and the synchronous approach
Gaspard framework

Oriented towards the Co-design of parallel software and hardware: http://www2.lifl.fr/west/gaspard/index.html
Overall approach

Logical clock extraction

Application

Association

Clock mapping synthesis

Deployment

Physical clock extraction

Architecture

Physical IPs refactoring
Overview

Introduction

High level design specification

Synchronous clock analysis for efficient system redesign

Concluding remarks
Application specification

- Specification of functional aspects

- Logical clock insertion using CCSL of MARTE
Repetitive Structure Modeling (RSM)

- Task expressing how a single subtask is repeated
- Building patterns from arrays
- Instances operates on subarrays or patterns with the same shape
Architecture specification

- A multiprocessor architecture structure
Architecture specification (cont’d)

- IP deployment for processor **Proc1**

- Physical clock synthesis
 - **Proc1** = 15 MHz, **Proc3** = 30 MHz
Association specification

- Association of application and architecture
Overview

Introduction

High level design specification

Synchronous clock analysis for efficient system redesign

Concluding remarks
Clock Merging

- Clock Merging

- QoS constraint violated

- Incoherence between designer constraints and resources capacity
Solution 1: Delaying the processors activation

- Delaying the activation of **Proc3** (Cohen et al., 2006)

 ![Clock Cycle Diagram]

 - Advantage: QoS constraint Verified
 - Inconvenient: Temporary memory needed to buffer unconsumed data
Solution 2: Physical IPs modification

- Modification of physical clocks
 - **Proc1** = 30 MHz, **Proc3** = 15 MHz

- Clock merging

IdealPhysicalClk	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ClkProc1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ClkProc3	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	0	1	1	1	1	1

- Advantage: QoS requirements Verified

- Inconvenient: Temporary memory needed to buffer unconsumed data
Solution 2: Physical IPs modification (cont’d)

- Modification of physical clocks
 - \(\text{Proc1} = 90 \text{ MHz}, \text{Proc3} = 90 \text{ MHz} \)

- Advantages
 - QoS requirements Verified
 - No buffering system needed since producers and consumers are synchronized
Overview

Introduction

High level design specification

Synchronous clock analysis for efficient system redesign

Concluding remarks
Conclusion

- System specification using UML/MARTE and synchronous approach: system structure modeling and clock specification

- Clock analysis for QoS constraint verification and efficient system redesign, based on the synchronous approach

- Benefits: Efficient frequency and memory distribution