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Motivation

Foundational research on:

I Expressive power of “weak” intuitionistic logics.

I High-level properties of proof tactics.



Prenex normal form

In classical logic:

Every formula is classically equivalent to one of the form:

Q1x1Q2x2 . . .Qkxk .Body(x,x2, . . . , xk),

where Body has no quantifiers.

Classification:

Formulas may be classified according to the quantifier prefix,
e.g. universal (∀∗) formulas are in Π1, and Π2 is ∀∗∃∗.

In intuitionistic logic:

The prenex fragment is decidable in Pspace.
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The language we study

To make things simpler, we consider first-order formulas
I with universal quantifiers and implications;
I without function symbols

This fragment is known to be undecidable.



Mints Hierarchy

Can we restore the prenex classification in intuitionistic logic?

Grigori Minc (1968): Yes, consider the quantifier prefix
a formula would get if classically normalized.

For example, ∀ quantifiers occurring at positive positions
will remain ∀ in the prefix.
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Mints Hierarchy

Π1 – All quantifiers at positive positions.
Σ1 – All quantifiers at negative positions.
Π2 – One alternation: some negative quantifiers in scope

of some positive ones.
Σ2 – One alternation: some positive quantifiers in scope

of some negative ones.

And so on.



Lower bounds for Mints Hierarchy

Π1 – 2-UExptime-hard
Σ1 – At least Exptime-hard
Π2 – Undecidable
Σ2 – Undecidable

Work in progress: with function symbols

I Class Σ1 becomes undecidable.
I Class Π1 is of the same complexity as before.



A positive example

Let ϕ = (I → Tv)→ Ap(x), ψ = I → (D → Tv)→ Ap(x)
and ϑ = D → Ap(x), and prove the formula

(∀x(ϕ→ ψ → ϑ→ Ap(x))→ Tv)→ Tv .

The Assumptions The Goal

∀x(ϕ→ ψ → ϑ→ Ap(x))→ Tv Tv

∀x(ϕ→ ψ → ϑ→ Ap(x))→ Tv ∀x(ϕ→ ψ → ϑ→ Ap(x))

∀x(ϕ→ ψ → ϑ→ Ap(x))→ Tv ϕ→ ψ → ϑ→ Ap(x)

∀x(ϕ→ ψ → ϑ→ Ap(x))→ Tv Ap(x)

ϕ, ψ, ϑ
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Example continued
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Eden automaton

The proof-search procedure can be interpreted as
a computation of an automaton.

The automaton operates on the tree of knowledge;
nodes of the tree correspond to the various eigenvariables.

The depth of the tree is bounded, the width is not.

The state of the automaton corresponds to the proof goal.

The available assumptions on a variable y ′′ constitute the
„knowledge” of node y ′′ of the tree. This can be modeled
by memory registers associated to every node.
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Proof search as computation

Assumptions about y ′′ = data written in registers at node y ′′

Present goal P(y ′′) = machine at node y ′′ in state P .

Using assumptions:

Q(x ′)→ P(y ′′) = change state from P to Q and move
from node y ′′ to node x ′.

(R(x ′)→ Q(x ′))→ P(y ′′) = as above; in addition write “1”
to register R at node x ′.

R(x ′)→ Q(x ′)→ P(y ′′) = action possible only if register R
at node x ′ is “1”.

∀z(T → Q0(z))→ P(y ′′) = create a new child z ′ of y ′′;
enter node z ′ in initial state Q0.
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The tree of knowledge of good and. . .

no evil

Restricted access to data:

In intuitionistic logic one cannot reason from non-existence of
assumptions, or delete assumptions.

Therefore in an Eden automaton one cannot verify that
a register is “0”,

One cannot also set a register to “0”.

In this tree there is only good!
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Alternation

Existential choice because there may be more than one
usable assumption.

Universal choice because an assumption may have more
than one premise.

(To derive Ap(x) from ϕ→ ψ → Ap(x)
one has to prove both ϕ and ψ.)
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Eden automaton (simplified)

An ID is a triple 〈q,T ,w〉, where q is a state, T is a tree of
knowledge, and w is the current apple (a node of T ).

There is a fixed number of binary registers at every node.

Possible actions:

I Move the apple can up to the father of w or down to
a nondeterministically chosen child of w ;

I Raise a selected flag at a given ancestor node of w ;

I Check if a selected flag is up at a given ancestor of w ;

I Create a new child of w and move the apple there.
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The main result (1)

The halting problem for Eden Automata is 2-UExptime hard.

From a universal Turing Machine M working in time 22O(n)

and an input word x of length n

we construct (in Logspace) an Eden automaton A such that

M accepts x iff A terminates.
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Provability of positive formulas is 2-UExptime hard.

From an Eden automaton A we define (in Logspace) a positive
first-order formula Φ such that

A terminates iff Φ is provable.
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