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An Example of Classical Timing Analysis Flow

V1 V2 V3

V4 V5 V6

V7 V8 V9

m1

m2

m3

3 periodic messages
fixed path, preemptive

priority: m1 > m2 > m3

• Suppose to analyze lowest-priority message m3
• Imagine that the path of m3 is equivalent to a

uniprocessor

• 1994/1997: only consider m2 (unsafe)
• 1998-2015: m1 pushes m2 which introduces release

jitters (unsafe)
• 2016/2018: m2 may interfere with m3 more than

its best transmission time (??)

• At least 8 papers introduced unsafe analyses
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Timing Analysis Flow: Multiple Resources

• Imagine that the path of m3 is equivalent to a
uniprocessor

• Is the imagination correct?

V1 V2 V3

V4 V5 V6

V7 V8 V9

m1

m2

m3

(10, 0, 0, 0)

(9, 1, 0, 0)

(8, 2, 0, 0)

...
...

[-1, 1, 0, 0]

(9, 0, 1, 0)

(9, 0, 0, 1)

[0, 0,-1, 1]

(8, 1, 1, 0)
[-1, 1, 0, 0]

(8, 1, 0, 1)

[-1, 1,-1, 1]

[0,-1, 1, 0]

(8, 1, 1, 0)

...
...

[-1, 0, 1, 0]

[-1, 1, 0, 0]

Ueter, ..., Chen, ... in RTCSA. 2020

Jian-Jia Chen (TU Dortmund) 5 / 49



Timing Analysis Flow: Multiple Resources

• Imagine that the path of m3 is equivalent to a
uniprocessor

• Is the imagination correct?

V1 V2 V3

V4 V5 V6

V7 V8 V9

m1

m2

m3(10, 0, 0, 0)

(9, 1, 0, 0)

(8, 2, 0, 0)

...
...

[-1, 1, 0, 0]

(9, 0, 1, 0)

(9, 0, 0, 1)

[0, 0,-1, 1]

(8, 1, 1, 0)
[-1, 1, 0, 0]

(8, 1, 0, 1)

[-1, 1,-1, 1]

[0,-1, 1, 0]

(8, 1, 1, 0)

...
...

[-1, 0, 1, 0]

[-1, 1, 0, 0]

Ueter, ..., Chen, ... in RTCSA. 2020

Jian-Jia Chen (TU Dortmund) 5 / 49



Motivation of PropRT: Property-Based Real-Time Analyses

• Ad-hoc solutions for one dedicated problem
• originally not formulated with the goal of general applicability
• later applied to deal with a wide range of problems
• later found to be misused since the assumptions are not met

• An Example: critical instant theorem by Liu and Layland in JACM 1973
• Original statement: A critical instant for any task occurs whenever the task is

requested simultaneously with requests for all higher priority tasks
• No formal statement regarding its applicability

• Misuse of critical instant theorem in the first four analyses of previous example
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Property-Based Modulable Timing Analysis and Optimization

Radically new
property-based and modulable

foundation for complex
real-time cyber-physical systems

Jian-Jia Chen (TU Dortmund) 7 / 49
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Library of Properties

Platform
Model

Recurrent
Model

Scheduling
Model

Property Library

Assertions Properties

✓

✓

✓

✓

✓

✓

✓

Analysis Methodology/Tool

✓

Schedulability conditions

✓

Analytical quality

Automatic analyses

Theoretical metrics
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Goals of PropRT

• Formal properties to modularly compose real-time embedded systems
• Methodologies for generating/verifying properties and modular compositions
• Predictable interplay of computation, communication, and synchronization for

complex real-time embedded systems

Brake
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Periodic Task System Model

τi (Ci , Di , Ti ), Ui =
Ci
Ti

WCETτ1

Relative Deadline

Period

Utilization

Suspension time: Si
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Periodic Task System Model

τi (Ci , Di , Ti ), Ui =
Ci
Ti

suspension suspension
exec exec execτ1

Suspension time: Si
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Possible Self Suspensions

• 1-Segmented self-suspension: 2 computation segments separated by a suspension interval
• Segmented self-suspension: f computation segments separated by f − 1 suspension intervals
• Dynamic self-suspension: the suspension pattern is unknown and can be arbitrary

Jian-Jia Chen (TU Dortmund) 12 / 49



Reasons for Suspension: Computation Offloading

Pseudo-code for this system
set timer to interrupt periodically with period T ;

at each timer interrupt
do

• perform analog-to-digital conversion to get y ;

• compute control output u by using accelerators;

• output u and do digital-to-analog conversion;

od

Control System

A/D

(The system

being controlled)

plant

actuator

D/A
Control−law

computation

sensor

y(t) u(t)

ukyk

Jian-Jia Chen (TU Dortmund) 13 / 49



The Golden Critical Instant Theorem (without Suspension)

τ1

τ2

τ3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ4

• Release the higher-priority tasks at the same time as task (i.e., τk) under analysis
• The following jobs of a higher-priority task should be released then by following the

period constraint

∃t|0 < t ≤ Dk s.t. Ck +
∑

τj∈higher_priority(τk )

⌈
t

Tj

⌉
Cj ≤ t.

Jian-Jia Chen (TU Dortmund) 14 / 49



Suspension Induces Jitter under Fixed-Priority

Schedulability test of task τk :

∃t|0 < t ≤ Dk s.t. Ck

+ Sk

+
∑

τj∈higher_priority(τk )

⌈
t

+ Sj

Tj

⌉
Cj ≤ t.

t-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

τ3
12

τ2

τ1

Worst Case

t-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

τ3
22 − 5ε

τ2

ε 5ε
τ1
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Literature of Self-Suspension (before 2013)

• Simplest method: convert suspension into computation in the analysis

• Ridouard et al. in RTSS 2004
• Uniprocessor scheduling of self-suspending tasks is NP-hard in the strong sense

• Bletsas and Audsley in RTAS 2004 (flawed), ECRTS 2004 (flawed), RTCSA 2005
(flawed)

• Lakshmanan et al. in RTAS 2010 (flawed)
• Kim et al. in RTSS 2013 (flawed)
• Ding et al. 2009 (flawed)
• Meng RTCSA 1994 (flawed)
• Kim et al. in RTCSA 1995 (flawed)
• Rajkumar IBM report 1991 (inconclusive)
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My Contribution for Systems with Self Suspensions
• A summary of misconceptions in the literature (Real-Time Systems Journal 2019)
• 15+ technical papers

• Publications detailing how to safely analyze the timing properties for different
self-suspension models

• Publications with different methods and models for improving the scheduling quality
• Computational complexity analysis

• Extension for resource-centric analyses
• Sharing of memory or bus (DAC 2016) and GPUs (RTAS 2018)
• NoC schedulability analysis (RTCSA 2020)
• Response time analysis for deferrable servers (ECRTS 2022)

• Extension for DAG scheduling and analysis
• Gang scheduling (ECRTS 2021)
• Type-aware scheduling (IEEE TC 2023)

• Extension in multiprocessor locking protocols
• Resource-oriented partitioned scheduling (RTSS)
• Dependency-graph approach (RTSS 2018, RTAS 2019)
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• A summary of misconceptions in the literature (Real-Time Systems Journal 2019)
• 15+ technical papers

• Publications detailing how to safely analyze the timing properties for different
self-suspension models

• Publications with different methods and models for improving the scheduling quality
• Computational complexity analysis

• Extension for resource-centric analyses
• Sharing of memory or bus (DAC 2016) and GPUs (RTAS 2018)
• NoC schedulability analysis (RTCSA 2020)
• Response time analysis for deferrable servers (ECRTS 2022)
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Reasons for Suspension: DAG Structure

0.5

3

4

7

2

t

Proc. 1

Proc. 2

0 1 2 3 4 5 6 7 8 9 10 11 12

.5

3 4

7

2
suspension

suspension suspension

• A task may be parallelized such that it can be executed simultaneously on some
processors to perform independent computation

• To this end, we can use a directed acyclic graph (DAG) to model the dependency
of the subtasks in a sporadic task

• Each vertex in the DAG represents a subtask
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Reasons for Self-Suspensions: Locking Protocols

t

P3: τ3

P2: τ2

P1: τ1

P0: Aq

0 2 4 6 8 10 12 14 16 18 20 22 24 26

job release normal execution critical section waiting for critical sections

τ1 τ1 τ1τ2 τ2τ3 τ3 τ3

• Distributed PCP in the above example
• Semaphores in multiprocessor systems: remote blocking due to mutual exclusion
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Does Spinning Avoid Self-Suspension?
τi Proc(τi ) Ci Ti (= Di ) Nk Li
τ1 Proc1 6 10 1 2
τ2 Proc2 11 18 1 4
τ3 Proc3 8 20 3 1

t

P3: τ3

P2: τ2

P1: τ1

P0: Aq

0 2 4 6 8 10 12 14 16 18 20 22 24 26

job release normal execution critical section waiting for critical sections

τ1 τ1 τ1τ2 τ2τ3 τ3 τ3

miss deadline

A job of task τ3: run 0.5 time unit on Proc3, critical section 1 time unit, run 1 time unit on Proc3,
access the critical section for 1 time unit, run 3.5 time units on Proc3, and access the critical section
for 1 time unit
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Reasons for Self-Suspensions: Physical Resource Sharing

t

Shared
Resource

Core 2

Core 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

τ2 τ2 τ2

τ1 τ1 τ1 τ1

τ1 τ1 τ1 τ1τ2 τ2 τ2

c-execution
c-suspension
r-execution
r-suspension

• Multiple cores may share a bus
• The contention on the bus can be considered as a suspension problem (with

respect to the bus access)
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Platform Model
• Multicore with a share resource
• For example, atomic (non-split-transaction) bus

• Bus sits idle while memory processes the request and sends the response
• Fixed-priority arbitration
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Task and Scheduling Model

• Resource access task τi
(Ci ,Ai ,Ti ,Di , σi )
• Ci : upper bound on local

computation
• Ai : upper bound on resource

accesses
• Ti : minimum inter-arrival time
• Di : relative deadline (Di ≤ Ti )
• σi : the maximum number segments

of consecutive resource accesses

• Path analysis
• Fixed-priority scheduling (we use

deadline-monotinic scheduling)

Assume compositional properties: 75 is a
safe upper bound.
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Key Observations: Symmetric Property

t

Shared
Resource

Core 2

Core 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

τ2 τ2 τ2

τ1 τ1 τ1 τ1

τ1 τ1 τ1 τ1τ2 τ2 τ2

c-execution
c-suspension
r-execution
r-suspension

• From the core perspectives for τ2
• accessing or waiting: [3,4), [8,12), [15, 16)
• suspension: [4,8), [12, 15)

• From the shared resource perspectives for τ2
• executing or waiting: [4,8), [12, 15)
• suspension:[3,4), [8,12), [15, 16)
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Schedulability Test for Task τ k

• WCRT is upper bounded by the minimum t|0 < t ≤ Dk

(Ck + exec_core(t)) + (Ak + exec_resource(t)) ≤ t

Ck +
∑

τi∈hp(τk ,c)

⌈
t + Ti

Ti

⌉
Ci

+ σkB +

Ak +
∑

τi∈hp(τk ,r)

⌈
t + Ti

Ti

⌉
Ai

 ≤ t

• σk B: the maximum blocking time by the lower priority tasks on the shared resource
• hp(τ k, c): higher-priority tasks thanτ k on the same core
• hp(τ k, r): higher-priority tasks than τ k on shared resource

• Pessimism of the above response time analysis: number of resource access segments was not
exploited

• In our paper, we explain how to calculate and utilize the information σk in a symmetric and more
precise manner
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Task Assignment (Partition)

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

P1 P2 P3

• Schedulability tests are based on the previous slide.
• Fitting can be First-Fit (FF), Worst-Fit (WF), Best-Fit (BF)
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Experiments

• Configuration
• 4-core platform (m=4)
• 20 tasks
• Periods [10-1000ms]
• Each utilization level:100 task sets

• Comparison:
• Exact-MC (Bonifaci et al. in RTNS 2015): do memory access and then do execution
• MIRROR-SPIN (This resembles the test from Altmeyer et al. in RTNS 2015)

• Evaluation Metrics:
• The acceptance ratio of a level: the number of task sets that are schedulable by the

test divided by the number of task sets.
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Experiments

Resource access
segments σi:
• 1 (rare access,

type=R),
• 2 (moderate

access,
type=M),

• 10 (frequent
access,
type=F).
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Gang Scheduling

A set of threads is grouped together into a gang s.t. they must be co-scheduled at the
same time

P0

0 2 4 6 8 10 12

τi τi τi

P1

0 2 4 6 8 10 12

τi τi τi

P2

0 2 4 6 8 10 12

τi τi τi
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Gang Task Model
Definition
[A sporadic constrained-deadline gang task τ i]
• WCET: Ci

• Gang size: Ei

• Relative deadline: Di ≤ Ti

• Minimal inter-arrival time: Ti

Di

Ti

P1

P2

P3

Ai

Ci

Jian-Jia Chen (TU Dortmund) 32 / 49



Exemplary Stationary Gang Assignment

P0 P1 P2 P3

τi τj τk
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Fixed-Priority Stationary Gang Schedule
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Response-Time Analysis
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Exemplary Stationary Gang Assignment

Definition
[Self-Suspension] Higher-priority tasks that do not interfere with the job under analysis
may cause self-suspension like behaviour of interfering tasks

P0 P1 P2 P3

τi τj τk

not visible
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Transformation and Schedulability Analysis

For each task in priority order do:
1 Transform higher-priority task set
2 Analyze worst-case response-time based on uniprocessor self-suspension analysis

Definition
[Transformation] Let a sporadic gang task τi be transformed to the corresponding self-
suspending task (Ci ,Di ,Ti , Si ,k) with the same Ci , Di , and Ti as for τi , where{

Si ,k = min
{
Ri − Ci ,

∑
τj∈Vi,k

(
1 +

⌈
Ri
Tj

⌉)
· Cj

}
if it has suspension behaviour

Si ,k = 0 otherwise
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Evaluation: Gang Size [1, M/4]
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• OUR-DM: Ueter et al. ECRTS 2021
• Dong-OPT: Dong and Liu, RTSS 2017
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Evaluation: Gang Size [M/8, M/2]
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Real-Time Networks on Chip (Revisited)

V1 V2 V3

V4 V5 V6

V7 V8 V9

m1

m2

m3

3 periodic messages
fixed path, preemptive

priority: m1 > m2 > m3

• We can map this to gang scheduling, using each
link as a processor

• Assuming that the switching is reserved for one
stream completely along the path

• Ueter et al. RTCSA 2020
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Probabilistic Reasoning

Worst Case Response Time Exceedance Probability (WCRTEP)

The WCRTEP of task τk is an upper bound on the probability that the response time
of a job of τk is greater than t, i.e.,

sup
j∈N

{P(Rk,j > t)}, (1)

Worst Case Deadline Failure Probability (WCDFP)

The WCDFP of task τk is an upper bound on the probability that a job of τk misses its
relative deadline Dk :

sup
j∈N

{P(Rk,j > Dk)} (2)
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Critical Instant

τ1

τ2

τ3

τ4

t0 rk,ℓ fk,ℓ

• 1) Interval extension
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Critical Instant for Probabilistic Setup? Refuted

τ1

τ2

τ3

τ4

t0 rk,ℓ fk,ℓ

carry-in?

• 1) Interval extension is not deterministic: a probabilistic distribution function!
• Detailed in Chen et al. RTSS 2022
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Counterexample: P(R2,6 > t) is higher than P(R2,1 > t)

Periodic task τ1 and τ2, simultaneously released at time 0, for all j ∈ N:
• T1 = 4, P(C1,j = 1) = 0.9, P(C1,j = 2.5) = 0.1
• T2 = 4.4, P(C1,j = 3) = 1.0

τ1 τ1,1 τ1,2 τ1,3 τ1,4 τ1,5 τ1,6 τ1,7

τ2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

τ2,1 τ2,2 τ2,3 τ2,4 τ2,5 τ2,6

Higher priority tasks like τ1 may still provide carry-in!
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Consider t = 4.4, we obtain:
P(R2,6 > 4.4) = P(C1,6 = 1) · P(C1,7 = 2.5)
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Counterexample: P(R2,6 > t) is higher than P(R2,1 > t)

Consider t = 4.4, we obtain:
P(R2,6 > 4.4) = P(C1,6 = 1) · P(C1,7 = 2.5)+P(C1,6 = 2.5) = 0.9 · 0.1 + 0.1 = 0.19
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Conclusion

• To effectively analyze real-time properties in multicore systems, we need
• formal properties to modularly compose real-time embedded systems
• methodologies for generating/verifying properties and modular compositions
• predictable interplay of complex real-time embedded systems

• Classical computation-centric view is limited and may be prone to error
• The focus should be shifted to

• communication,
• synchronization, and
• parallelization.

It is the worst of time and also the best of time.
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