Analyzing ARM's MPAM From the Perspective of Time Predictability

M. Zini, D. Casini, A. Biondi, "Analyzing ARM's MPAM From the Perspective of Time Predictability", in *Transactions on Computers*, 2022

ReTiS Lab, Scuola Superiore Sant'Anna, Pisa, Italy

Real-Time Systems Laboratory

In modern computing platform, not only the processor is a shared resource among tasks

Systems that require predictability need to take into account other factors: two of them are cache and memory contention

Cache contention

Bus and Memory Contention

ARM MPAM Extension

Memory system resource Partitioning and Monitoring

Extension of ARMv8-A architecture

- The MPAM specifications describe hardware mechanisms to limit cache and memory access
- Such mechanism can be integrated inside CPU cores and Memory System Components

- State of the art
- MPAM architecture
- Modelling the system
- Results

- State of the art
- MPAM architecture
- Modelling the system
- Results

State of the art

Software-based techniques:

- Cache coloring
- Bandwidth partitioning with usage monitors

Hardware-based techniques:

Intel Resource Director Technology (RDT)

State of the art: cache coloring

Exploit relation between:

- Physical page number
- Cache index

State of the art: bandwidth partitioning

P. Modica et al. "Supporting temporal and spatial isolation in a hypervisor for ARM multicore platforms"

State of the art: bandwidth partitioning

Memory bandwidth monitors Explicit preemption of the tasks Budget replenishment Budget Bandwidth monitor CPU Domain 1

P. Modica et al. "Supporting temporal and spatial isolation in a hypervisor for ARM multicore platforms"

State of the art: bandwidth partitioning

P. Modica et al. "Supporting temporal and spatial isolation in a hypervisor for ARM multicore platforms"

State of the art: Intel RDT

Intel Resource Director Technology functionalities

- Cache Monitoring Technology
- Memory Bandwidth Monitoring
- Cache Allocation Technology
- Code and Data Prioritization
- Memory Bandwidth Allocation

n COSO.Data COSO.Code CAT with CDP COS1.Data COS1.Code Other COS.Data Other COS.Code Ω

Example of Code/Data Prioritization Usage - 16 bit Capacity Masks

- State of the art
- MPAM architecture
- Modelling the system
- Results

ARM MPAM Extension

Memory system resource Partitioning and Monitoring

Extension of ARMv8-A architecture

- Resource Monitoring
- Resource Partitioning

Cache and memory bandwidth

MPAM monitoring

Resource monitoring

Cache storage usage monitors

Memory-bandwidth usage monitors

MPAM partitioning

Resource partitioning

Cache partitioning

- Portion partitioning
- Minimum-Maximum capacity partitioning
- Associativity partitioning

Memory bandwidth partitioning

- Portion partitioning
- Proportional stride partitioning
- Minimum-maximum partitioning
- Priority partitioning

The MPAM specifications are vague

Many details are implementation defined

This is needed because ARM has to take into account many different needs

MPAM implementations

No practical implementation to date for real-time systems

Possibility to influence the future design choices of hardware vendors

- State of the art
- MPAM architecture
- Modelling the system
- Results

ARM MPAM Extension

Memory system resource Partitioning and Monitoring

Extension of ARMv8-A architecture

- Priority partitioning
- Minimum-maximum partitioning

MSC Bandwidth Control

Priority partitioning: priority-based requests scheduling

 Memory-bandwidth minimum and maximum partitioning: a minimum and maximum budget can be specified for every partition

The system has been modelled with an optimization problem, in order to compute the worst-case memory interference with and without the MPAM's functionalities.

Memory controller model

The memory controller model is based on a generalization of models already used in literature. The assumptions of the existing models have been relaxed.

First-ready strategy

The intra-bank queues are scheduled according to the FR-FCFS policy (with thresholding)

Ho do we combine the rules of the MC and the rules of MPAM?

We need to find a global solution that preserves the properties of the two components

Two possible implementations of priority partitioning were compared:

FR-PP (first-ready - priority partitioning):

In case a request targeting an open row is pending, it has precedence over other requests with any priority

Two possible implementations of priority partitioning were compared:

FR-PP (first-ready - priority partitioning):

In case a request targeting an open row is pending, it has precedence over other requests with any priority

> PP-FR (priority partitioning - first-ready):

In case a request targeting an open row is pending, it DOES NOT have precedence over other requests with higher priority

Two possible implementations of priority partitioning were compared:

FR-PP (first-ready - priority partitioning):

In case a request targeting an open row is pending, it has precedence over other requests with any priority

> PP-FR (priority partitioning - first-ready):

In case a request targeting an open row is pending, it DOES NOT have precedence over other requests with higher priority

- State of the art
- MPAM architecture
- Modelling the system
- Results

Priority Partitioning

The model has been tested with a task set derived from the WATERS 2019 industrial challenge by Bosch

(a) max improvement

Priority Partitioning

The model has been tested with a task set derived from the WATERS 2019 industrial challenge by Bosch

(a) max improvement

For each task, the plot shows the improvement when that task is assigned the highest priority

Priority Partitioning

etis

Systems Laborator

Real-Ti

Min-max Partitioning

Scalability

We also assessed how the number of requests affects the execution time of the optimization problem

- MPAM offers interesting tools to reduce memory contention
- The priority partitioning strategy can bring good results
- The min-max strategy offers very reduced benefits in the worst case

Often, simpler is better for predictability

• Analysis of other MPAM strategies

• Use more aggressive configuration of min-max strategy

 Evaluation of the strategies' effectiveness in the average-case scenario (in a simulated environment)

Thank you!

Matteo Zini matteo.zini@santannapisa.it