Memory Interference Analysis on Heterogeneous MPSoCs

Alfonso Mascareñas González ISAE-SUPAERO / ONERA

Workshop CAPITAL 2023 Toulouse

13/06/2023

1. Context

2. On-board profiling

2.1. Hardware performance counters

2.2. Task profiling

2.3. Measurement-based Timing Analysis

3. Memory interference analysis

3.1. Shared cache interference3.2. Multicore Shared SRAM3.3. DDR SDRAM

4. Conclusions

1. Context

- 2. On-board profiling
- 3. Memory interference analysis
- 4. Conclusions

Context: Safety-critical real-time systems

- High performance demanding real-time application, e.g., Autonomous drones
- Traditionally, monocore platforms have been used
- Multicore platforms → SWaP-C + throughput¹
- Resources sharing imply interference \rightarrow Predictability loss
- Execution deadlines can be missed \rightarrow Certification problem²

¹R. Ramanathan, "White paper: Intel[®] multi-core processors making the move to quadcore and beyond"

²S. A. Jacklin, "Certification of safety-critical software under do-178c and do-278a," 2012.

Context: Keystone II MPSoC

Keystone II TCI6636K2H

1. Context

2. On-board profiling

- 3. Memory interference analysis
- 4. Conclusions

On-board profiling: Hardware performance counters

Performance counters are used for monitoring hardware-related events. We highlight the following two advantages:

- Low-overhead access
- No code modification

The access pattern to the counters are important for correlating metrics. We point out these two:

- Reset-Start-Stop-Read
- Start-Read

On-board profiling: Hardware performance counters

Three measurement systems:

- ARM Performance Monitor Counters \rightarrow Reset-Start-Stop-Read pattern
- DSP Time Stamp Register \rightarrow Start-Read pattern
- DDR3 Controller Performance Counters \rightarrow Start-Read pattern

ARM Events

L1 Cache Miss

- L2 Cache Miss

L1 Cache Access

L2 Cache Access

- Time

- **DSP** Events
- Time

TI DDR3 SDRAM Events

- Time
- Total Accesses
- Row Activates
- Writes
- Reads
- Priority elevations
- etc.

System or core perspective

- Bus Access
- Branch miss prediction
- etc.

On-board profiling: Task profiling

On-board profiling: Task properties

The properties of the tasks change according to the PE they are executed on

On-board profiling: Measurement-based (Probabilistic) Timing Analysis

1. Context

2. On-board profiling

3. Memory interference analysis

4. Conclusions

Memory interference analysis: Shared cache

ARM Cortex A78AE L3 shared cache memory

To analyze:

- Execution time overhead
- Nº of L2 cache accesses
- Nº of L2 cache evictions
- Bus accesses
- Etc.

When:

- Default conditions
- Cache partitioning
- Cache locking
- Bandwidth regulator
- Etc.

Memory interference analysis: Multicore Shared SRAM

Keystone II MPSoC Multicore Shared Memory Controller. Note that the ARMs are packed together

To analyze:

- Execution time in isolation
- Execution time overhead
- Effect of slave ports priority
- Effect of slave ports starvation counters
- Etc.

Reverse-engineering:

Interconnection requests scheduling

Curiosity:

Hidden registers (e.g., ARM Cortex slave configuration)

Memory interference analysis: Multicore Shared SRAM

Curiosity:

 On Sitara AM5728, the ARM Cortex A15 takes more time accessing the On Chip RAMs than the DDR SDRAM. According to Texas Instruments, TI Sitara AM5728 ≈ TI DRA74x/75x.

TI DRA74x/75x timer based results (Source: Texas Instruments)

Operations for Cortex-A15	Source	Destination	Bandwidth with Cache Policy - WB WA (MBps)	
CPU_WR	CPU Register	DDR	3642	
	CPU Register	OCMC	1392	
CPU_RD	DDR	CPU Register	2203	
	OCMC	CPU Register	2173	

Sitara AM5728 MPSoC Memory Subsystem. The ARMs (MPU) connects directly to the EMIFs

Memory interference analysis: Multicore Shared SRAM

vo2 = Vector operations benchmark Loads = Stream of reads microbenchmark Stores = Stream of writes microbenchmark

OCMC RAM addressing analysis

Diff. OCMC Same OCMC

OCMC RAM addressing analysis

Diff. OCMC Same OCMC

Memory interference analysis: DDR3 SDRAM

DDR SDRAM logical organization

To analyze:

- Execution time in isolation
- Execution time overhead
- Nº of SDRAM accesses
- Nº of SDRAM row switches
- Nº of SDRAM priority elevations
- Etc.

When:

- Default conditions
- Bank partitioning
- Bandwidth regulator
- Etc.

Memory interference analysis: DDR3 SDRAM

	DDR SDRAM bank bits exploration on Keystone II									Page related	
		VUTS	RQPO	NMLK	JIHG	FEDC	BA98	7654	3210		
PA	0b	0000	0000	0000	0000	0000	0000	0000	0000		
ARM L2	0b	0000	0000	0000	<u>00</u> 00	0000	0000	0000	0000		
DSP L2	0b	0000	0000	0000	0000	0000	0000	0000	0000		
DDR bank	0b	0000	0000	0000	0000	0000	0000	0000	0000		
Cache partitioning (cache coloring) 4KB page Cache line											
	DDR SDRAM bank partitioning										

In some SoCs, SDRAM bank bits must be obtained via reverse-engineering. Many times, we will see intersection between cache and bank partitioning bits like in this example.

Memory interference analysis: DDR3 SDRAM & Shared cache

Bank and Cache partitioning effect on Keystone II

- **1. Context**
- 2. On-board profiling
- 3. Memory interference analysis

4. Conclusions

Conclusions

Use on-board monitoring hardware to measure events for:

- Task profiling
- Interference analysis
- Interference mitigation techniques effectiveness
- Reverse-engineering
- Detect intrusive traffic
- Etc.

On different memory units of the platform:

- L1 Instruction cache / L1 Data cache
- L2/L3/Ln cache
- Shared on-chip SRAM
- DDRx SDRAM

Thank you for your attention